Geometric Duality - Aarhus Universitet · Outline 1 Geometry Metric geometry with torsion KT...

76
Geometric Duality Andrew Swann IMADA / CP 3 -Origins University of Southern Denmark [email protected] November 2009 / Odense

Transcript of Geometric Duality - Aarhus Universitet · Outline 1 Geometry Metric geometry with torsion KT...

  • Geometric Duality

    Andrew Swann

    IMADA / CP3-OriginsUniversity of Southern Denmark

    [email protected]

    November 2009 / Odense

  • Geometry Twists Superconformal Other

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    Geometry from supersymmetry

    Classical geometries

    Riemannian/Lorentzian metric g = (gij), has a uniquecovariant derivative ∇lc, Levi-Civita connection, that ismetric ∇lcg = 0 and torsion-free ∇lcX Y−∇lcY X = [X, Y]:

    2g(∇lcX Y, Z) = Xg(Y, Z) + Yg(X, Z)− Zg(X, Y)+ g([X, Y], Z) + g([Z, X], Y) + g(X, [Z, Y]);

    ∇lc∂∂xi

    ∂∂xj = Γ

    kij

    ∂∂xk , Γ

    kij =

    12 g

    k`(g`i,j + gj`,i − gij,`) = Γkji.

    Supersymmetry: usually parallel complex structures J = (Jij):

    g(JX, JY) = g(X, Y), J2 = −1, ∇lcJ = 0;Ji`Jjkg`k = gij, JijJjk = −δki , Jik,j = Γ`ijJ`k.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    One complex structureKähler geometry: Riemann surfaces, CP(n),projective varieties X =

    ⋂i(fi = 0) ⊂ CP(n),

    Hermitian symmetric spaces,. . .Calabi-Yau manifolds, Kähler with c1 = 0:have Ric ≡ 0 so Einstein;X = (f = 0) ⊂ CP(n), deg f = n + 1; K3surface (x4 + y4 + z4 + w4 = 0) ⊂ CP(3).

    Multiple complex structuresHyperKähler geometry I, J, K, IJ = K = −JI:are Calabi-Yau; K3 surfaces, T4k = R4k/Z4k;Hilbert schemes; instanton moduli;. . .

    Holonomy classification (Berger,. . . ) essentially only getproducts of the above examples

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    Torsion Geometry

    Metric geometry with torsionmetric g, connection ∇, torsionT∇(X, Y) = ∇XY−∇YX− [X, Y]∇g = 0

    c(X, Y, Z) = g(T∇(X, Y), Z) athree-form

    ∇ ∂∂xi

    ∂∂xj = γ

    kij

    ∂∂xk ,

    T`ij = γk[ij],

    cijk = c[ijk] = g`kT`ij,

    ∇ = ∇lc + 12 cγkij = Γ

    kij +

    12 cijk

    Any c ∈ Ω3(M) willdo.∇, ∇lc have thesame geodesics(dynamics).The geometry isstrong if dc = 0.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    Torsion Geometry

    Metric geometry with torsionmetric g, connection ∇, torsionT∇(X, Y) = ∇XY−∇YX− [X, Y]∇g = 0c(X, Y, Z) = g(T∇(X, Y), Z) athree-form

    ∇ ∂∂xi

    ∂∂xj = γ

    kij

    ∂∂xk ,

    T`ij = γk[ij],

    cijk = c[ijk] = g`kT`ij,

    ∇ = ∇lc + 12 cγkij = Γ

    kij +

    12 cijk

    Any c ∈ Ω3(M) willdo.∇, ∇lc have thesame geodesics(dynamics).The geometry isstrong if dc = 0.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    Torsion Geometry

    Metric geometry with torsionmetric g, connection ∇, torsionT∇(X, Y) = ∇XY−∇YX− [X, Y]∇g = 0c(X, Y, Z) = g(T∇(X, Y), Z) athree-form

    ∇ ∂∂xi

    ∂∂xj = γ

    kij

    ∂∂xk ,

    T`ij = γk[ij],

    cijk = c[ijk] = g`kT`ij,

    ∇ = ∇lc + 12 cγkij = Γ

    kij +

    12 cijk

    Any c ∈ Ω3(M) willdo.∇, ∇lc have thesame geodesics(dynamics).The geometry isstrong if dc = 0.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    Such geometries with extra structure from supersymmetryarise from:

    Wess-Zumino terms in the Lagrangian, superstrings withtorsion, B-fields (Strominger, 1986)One-dimensional quantum mechanics with type Bsupersymmetry, blackhole dynamics and moduli(Michelson and Strominger, 2000; Coles andPapadopoulos, 1990; Hull, 1999; Gibbons et al., 1997)Constructions in supergravity (Grover et al., 2009)

    Mathematically, one wishes to:clarify the basic definitions and relationships to knowngeometries,construct and classify examples in given categories.

    In particular, we will be looking for compact simply-connectedtorsion geometries with compatible complex structures.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    KT Geometry

    g, ∇ = ∇lc + 12 c, c ∈ Λ3T∗M

    KT geometryadditionally

    I integrable complexstructureg(IX, IY) = g(X, Y)∇I = 0

    Two form ωI(X, Y) = g(IX, Y)

    ∇ is unique

    c = −IdωI

    the Bismut connection

    KT geometry = Hermitiangeometry + Bismutconnectionc = 0 is Kähler geometrystrong KT is ∂∂̄ωI = 0

    ExampleM6 = S3 × S3 = SU(2)× SU(2)

    Gauduchon (1991)

    every compact Hermitian M4 isconformal to strong KT

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    KT Geometry

    g, ∇ = ∇lc + 12 c, c ∈ Λ3T∗M

    KT geometryadditionally

    I integrable complexstructureg(IX, IY) = g(X, Y)∇I = 0

    Two form ωI(X, Y) = g(IX, Y)

    ∇ is unique

    c = −IdωI

    the Bismut connection

    KT geometry = Hermitiangeometry + Bismutconnectionc = 0 is Kähler geometrystrong KT is ∂∂̄ωI = 0

    ExampleM6 = S3 × S3 = SU(2)× SU(2)

    Gauduchon (1991)

    every compact Hermitian M4 isconformal to strong KT

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    KT Geometry

    g, ∇ = ∇lc + 12 c, c ∈ Λ3T∗M

    KT geometryadditionally

    I integrable complexstructureg(IX, IY) = g(X, Y)∇I = 0

    Two form ωI(X, Y) = g(IX, Y)

    ∇ is unique

    c = −IdωI

    the Bismut connection

    KT geometry = Hermitiangeometry + Bismutconnectionc = 0 is Kähler geometrystrong KT is ∂∂̄ωI = 0

    ExampleM6 = S3 × S3 = SU(2)× SU(2)

    Gauduchon (1991)

    every compact Hermitian M4 isconformal to strong KT

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    KT Geometry

    g, ∇ = ∇lc + 12 c, c ∈ Λ3T∗M

    KT geometryadditionally

    I integrable complexstructureg(IX, IY) = g(X, Y)∇I = 0

    Two form ωI(X, Y) = g(IX, Y)

    ∇ is unique

    c = −IdωI

    the Bismut connection

    KT geometry = Hermitiangeometry + Bismutconnectionc = 0 is Kähler geometrystrong KT is ∂∂̄ωI = 0

    ExampleM6 = S3 × S3 = SU(2)× SU(2)

    Gauduchon (1991)

    every compact Hermitian M4 isconformal to strong KT

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    HKT Geometry

    HKT structure(g,∇, I, J, K) with

    (g,∇, A) KT, A = I, J, KIJ = K = −JI

    c = −AdωA independent of A

    Martín Cabrera andSwann (2008)

    IdωI = JdωJ = KdωK

    implies I, J, K integrable, soHKT.

    ExamplesDim 4 T4, K3, S3 × S1 (Boyer,

    1988)Dim 8 Hilbert schemes, SU(3),

    nilmanifolds, vectorbundles over discretegroups (Verbitsky, 2003;Barberis and Fino, 2008)

    Compact, simply-connectedexamples which are neitherhyperKähler norhomogeneous?

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    HKT Geometry

    HKT structure(g,∇, I, J, K) with

    (g,∇, A) KT, A = I, J, KIJ = K = −JI

    c = −AdωA independent of A

    Martín Cabrera andSwann (2008)

    IdωI = JdωJ = KdωK

    implies I, J, K integrable, soHKT.

    ExamplesDim 4 T4, K3, S3 × S1 (Boyer,

    1988)Dim 8 Hilbert schemes, SU(3),

    nilmanifolds, vectorbundles over discretegroups (Verbitsky, 2003;Barberis and Fino, 2008)

    Compact, simply-connectedexamples which are neitherhyperKähler norhomogeneous?

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    HKT Geometry

    HKT structure(g,∇, I, J, K) with

    (g,∇, A) KT, A = I, J, KIJ = K = −JI

    c = −AdωA independent of A

    Martín Cabrera andSwann (2008)

    IdωI = JdωJ = KdωK

    implies I, J, K integrable, soHKT.

    ExamplesDim 4 T4, K3, S3 × S1 (Boyer,

    1988)Dim 8 Hilbert schemes, SU(3),

    nilmanifolds, vectorbundles over discretegroups (Verbitsky, 2003;Barberis and Fino, 2008)

    Compact, simply-connectedexamples which are neitherhyperKähler norhomogeneous?

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other Metric KT HKT

    HKT Geometry

    HKT structure(g,∇, I, J, K) with

    (g,∇, A) KT, A = I, J, KIJ = K = −JI

    c = −AdωA independent of A

    Martín Cabrera andSwann (2008)

    IdωI = JdωJ = KdωK

    implies I, J, K integrable, soHKT.

    ExamplesDim 4 T4, K3, S3 × S1 (Boyer,

    1988)Dim 8 Hilbert schemes, SU(3),

    nilmanifolds, vectorbundles over discretegroups (Verbitsky, 2003;Barberis and Fino, 2008)

    Compact, simply-connectedexamples which are neitherhyperKähler norhomogeneous?

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    Four-dimensional inspiration

    HyperKähler M4

    ds2 = V−1(dτ + ω)2

    + Vγijdxidxj

    dV = ∗3dω

    T duality

    onX = ∂∂τ

    Strong HKT W4

    ds2 = V(d2τ + γijdxidxj)

    c = −dτ ∧ dω

    Gibbons, Papadopoulos, and Stelle, 1997Callan, Harvey, and Strominger, 1991Bergshoeff, Hull, and Ortı́n, 1995

    For circle actions have:

    R↔ 1/R and here W = (M/S1)× S1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    Four-dimensional inspiration

    HyperKähler M4

    ds2 = V−1(dτ + ω)2

    + Vγijdxidxj

    dV = ∗3dω

    T duality

    onX = ∂∂τ

    Strong HKT W4

    ds2 = V(d2τ + γijdxidxj)

    c = −dτ ∧ dω

    Gibbons, Papadopoulos, and Stelle, 1997Callan, Harvey, and Strominger, 1991Bergshoeff, Hull, and Ortı́n, 1995

    For circle actions have:

    R↔ 1/R and here W = (M/S1)× S1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    Four-dimensional inspiration

    HyperKähler M4

    ds2 = V−1(dτ + ω)2

    + Vγijdxidxj

    dV = ∗3dω

    T duality

    onX = ∂∂τ

    Strong HKT W4

    ds2 = V(d2τ + γijdxidxj)

    c = −dτ ∧ dω

    Gibbons, Papadopoulos, and Stelle, 1997Callan, Harvey, and Strominger, 1991Bergshoeff, Hull, and Ortı́n, 1995

    For circle actions have:

    R↔ 1/R and here W = (M/S1)× S1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    T-duality as a Twist

    Xp generating a n-torusaction on M(P, θ, Yq)

    π−→ M aninvariant principalTn-bundle

    X′p = X̃p + apqYq a lift of Xpgenerating a free torusaction, dapq = −Xp y Fθq

    DefinitionA twist W of M with respect toXp is

    W := P/〈X′p〉

    Transverse locally free liftsalways exist for Xp y Fθqexact.W is at worst an orbifold.

    M W

    YqπW

    X′p

    DuallyM is a twist of W with respectto XWq = (πW)∗Yq,θWp = (a−1)pqθq

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    T-duality as a Twist

    Xp generating a n-torusaction on M(P, θ, Yq)

    π−→ M aninvariant principalTn-bundleX′p = X̃p + apqYq a lift of Xpgenerating a free torusaction, dapq = −Xp y Fθq

    DefinitionA twist W of M with respect toXp is

    W := P/〈X′p〉

    Transverse locally free liftsalways exist for Xp y Fθqexact.W is at worst an orbifold.

    M W

    YqπW

    X′p

    DuallyM is a twist of W with respectto XWq = (πW)∗Yq,θWp = (a−1)pqθq

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    T-duality as a Twist

    Xp generating a n-torusaction on M(P, θ, Yq)

    π−→ M aninvariant principalTn-bundleX′p = X̃p + apqYq a lift of Xpgenerating a free torusaction, dapq = −Xp y Fθq

    DefinitionA twist W of M with respect toXp is

    W := P/〈X′p〉

    Transverse locally free liftsalways exist for Xp y Fθqexact.W is at worst an orbifold.

    M W

    YqπW

    X′p

    DuallyM is a twist of W with respectto XWq = (πW)∗Yq,θWp = (a−1)pqθq

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    T-duality as a Twist

    Xp generating a n-torusaction on M(P, θ, Yq)

    π−→ M aninvariant principalTn-bundleX′p = X̃p + apqYq a lift of Xpgenerating a free torusaction, dapq = −Xp y Fθq

    DefinitionA twist W of M with respect toXp is

    W := P/〈X′p〉

    Transverse locally free liftsalways exist for Xp y Fθqexact.W is at worst an orbifold.

    M W

    YqπW

    X′p

    DuallyM is a twist of W with respectto XWq = (πW)∗Yq,θWp = (a−1)pqθq

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    T-duality as a Twist

    Xp generating a n-torusaction on M(P, θ, Yq)

    π−→ M aninvariant principalTn-bundleX′p = X̃p + apqYq a lift of Xpgenerating a free torusaction, dapq = −Xp y Fθq

    DefinitionA twist W of M with respect toXp is

    W := P/〈X′p〉

    Transverse locally free liftsalways exist for Xp y Fθqexact.W is at worst an orbifold.

    M W

    YqπW

    X′p

    DuallyM is a twist of W with respectto XWq = (πW)∗Yq,θWp = (a−1)pqθq

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    DefinitionTensors α on αW on M and W are H-related, αW ∼H α if theirpull-backs agree on H = ker θ

    Move invariant geometry from M to W by using thecorresponding H-related tensors

    gW ∼H g, ωWI ∼H ωI, etc.

    For invariant forms

    dαW ∼H dα− Fθq ∧ (a−1)pqXq y α

    For the KT torsion form c = −IdωI:

    cW ∼H c− (a−1)pqIFθq ∧Xp.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other T-dual

    DefinitionTensors α on αW on M and W are H-related, αW ∼H α if theirpull-backs agree on H = ker θ

    Move invariant geometry from M to W by using thecorresponding H-related tensors

    gW ∼H g, ωWI ∼H ωI, etc.

    For invariant forms

    dαW ∼H dα− Fθq ∧ (a−1)pqXq y α

    For the KT torsion form c = −IdωI:

    cW ∼H c− (a−1)pqIFθq ∧Xp.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Quantum Mechanics

    N particles in 1 dimension

    H =12

    P∗a gabPb + V(x)

    Standard quantisation

    Pa ∼ −i∂

    ∂xa, a = 1, . . . , N

    Michelson and Strominger (2000); Papadopoulos(2000)

    operator D with [D, H] = 2iH ⇐⇒ vector field X withLXg = 2g & LXV = −2VK so span{iH, iD, iK} ∼= sl(2, R) ⇐⇒ X[ = g(X, ·) isclosedthen K = 12 g(X, X).

    Choose a superalgebra containing sl(2, R) in its even part.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Quantum Mechanics

    N particles in 1 dimension

    H =12

    P∗a gabPb + V(x)

    Standard quantisation

    Pa ∼ −i∂

    ∂xa, a = 1, . . . , N

    Michelson and Strominger (2000); Papadopoulos(2000)

    operator D with [D, H] = 2iH ⇐⇒ vector field X withLXg = 2g & LXV = −2VK so span{iH, iD, iK} ∼= sl(2, R) ⇐⇒ X[ = g(X, ·) isclosedthen K = 12 g(X, X).

    Choose a superalgebra containing sl(2, R) in its even part.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    The Superalgebras D(2, 1; α)

    The classification of simple Liesuperalgebras contains onecontinuous family

    D(2, 1; α)

    g = g0 + g1g0 =sl(2, C) + sl(2, C)+ + sl(2, C)−g1 = C2 ⊗C2+ ⊗C2− = C4Q + C4S[Sa, Qa] = D,[S1, Q2] = − 4α1+α R3+ −

    41+α R

    3−

    Simple for α 6= −1, 0, ∞.

    Over C,isomorphismsbetween the casesα±1, −(1 + α)±1,−(α/(1 + α))±1.Real formg0 = sl(2, R) +su(2)+ + su(2)−.Over R,isomorphisms forα±1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    The Superalgebras D(2, 1; α)

    The classification of simple Liesuperalgebras contains onecontinuous family

    D(2, 1; α)

    g = g0 + g1

    g0 =sl(2, C) + sl(2, C)+ + sl(2, C)−g1 = C2 ⊗C2+ ⊗C2− = C4Q + C4S[Sa, Qa] = D,[S1, Q2] = − 4α1+α R3+ −

    41+α R

    3−

    Simple for α 6= −1, 0, ∞.

    Over C,isomorphismsbetween the casesα±1, −(1 + α)±1,−(α/(1 + α))±1.Real formg0 = sl(2, R) +su(2)+ + su(2)−.Over R,isomorphisms forα±1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    The Superalgebras D(2, 1; α)

    The classification of simple Liesuperalgebras contains onecontinuous family

    D(2, 1; α)

    g = g0 + g1g0 =sl(2, C) + sl(2, C)+ + sl(2, C)−g1 = C2 ⊗C2+ ⊗C2− = C4Q + C4S

    [Sa, Qa] = D,[S1, Q2] = − 4α1+α R3+ −

    41+α R

    3−

    Simple for α 6= −1, 0, ∞.

    Over C,isomorphismsbetween the casesα±1, −(1 + α)±1,−(α/(1 + α))±1.Real formg0 = sl(2, R) +su(2)+ + su(2)−.Over R,isomorphisms forα±1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    The Superalgebras D(2, 1; α)

    The classification of simple Liesuperalgebras contains onecontinuous family

    D(2, 1; α)

    g = g0 + g1g0 =sl(2, C) + sl(2, C)+ + sl(2, C)−g1 = C2 ⊗C2+ ⊗C2− = C4Q + C4S[Sa, Qa] = D,[S1, Q2] = − 4α1+α R3+ −

    41+α R

    3−

    Simple for α 6= −1, 0, ∞.

    Over C,isomorphismsbetween the casesα±1, −(1 + α)±1,−(α/(1 + α))±1.Real formg0 = sl(2, R) +su(2)+ + su(2)−.Over R,isomorphisms forα±1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    The Superalgebras D(2, 1; α)

    The classification of simple Liesuperalgebras contains onecontinuous family

    D(2, 1; α)

    g = g0 + g1g0 =sl(2, C) + sl(2, C)+ + sl(2, C)−g1 = C2 ⊗C2+ ⊗C2− = C4Q + C4S[Sa, Qa] = D,[S1, Q2] = − 4α1+α R3+ −

    41+α R

    3−

    Simple for α 6= −1, 0, ∞.

    Over C,isomorphismsbetween the casesα±1, −(1 + α)±1,−(α/(1 + α))±1.Real formg0 = sl(2, R) +su(2)+ + su(2)−.Over R,isomorphisms forα±1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    The Superalgebras D(2, 1; α)

    The classification of simple Liesuperalgebras contains onecontinuous family

    D(2, 1; α)

    g = g0 + g1g0 =sl(2, C) + sl(2, C)+ + sl(2, C)−g1 = C2 ⊗C2+ ⊗C2− = C4Q + C4S[Sa, Qa] = D,[S1, Q2] = − 4α1+α R3+ −

    41+α R

    3−

    Simple for α 6= −1, 0, ∞.

    Over C,isomorphismsbetween the casesα±1, −(1 + α)±1,−(α/(1 + α))±1.

    Real formg0 = sl(2, R) +su(2)+ + su(2)−.Over R,isomorphisms forα±1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    The Superalgebras D(2, 1; α)

    The classification of simple Liesuperalgebras contains onecontinuous family

    D(2, 1; α)

    g = g0 + g1g0 =sl(2, C) + sl(2, C)+ + sl(2, C)−g1 = C2 ⊗C2+ ⊗C2− = C4Q + C4S[Sa, Qa] = D,[S1, Q2] = − 4α1+α R3+ −

    41+α R

    3−

    Simple for α 6= −1, 0, ∞.

    Over C,isomorphismsbetween the casesα±1, −(1 + α)±1,−(α/(1 + α))±1.Real formg0 = sl(2, R) +su(2)+ + su(2)−.Over R,isomorphisms forα±1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Geometry

    N = 4B quantummechanicswith D(2, 1; α)superconformalsymmetry

    HKT manifold Mwith X a special homothety of type (a, b)

    LXg = ag,LIXJ = bK,LXI = 0, LIXI = 0,. . .

    α = ab − 1Action ofR× SU(2)rotating I, J, K

    For a 6= 0

    M is non-compact

    µ = 2a(a−b)‖X‖2 is an HKT potential

    ωI = 12 (ddI + dJdK)µ =12 (1− J)dIdµ.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Geometry

    N = 4B quantummechanicswith D(2, 1; α)superconformalsymmetry

    HKT manifold Mwith X a special homothety of type (a, b)

    LXg = ag,LIXJ = bK,LXI = 0, LIXI = 0,. . .

    α = ab − 1Action ofR× SU(2)rotating I, J, K

    For a 6= 0

    M is non-compact

    µ = 2a(a−b)‖X‖2 is an HKT potential

    ωI = 12 (ddI + dJdK)µ =12 (1− J)dIdµ.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Geometry

    N = 4B quantummechanicswith D(2, 1; α)superconformalsymmetry

    HKT manifold Mwith X a special homothety of type (a, b)

    LXg = ag,LIXJ = bK,LXI = 0, LIXI = 0,. . .

    α = ab − 1Action ofR× SU(2)rotating I, J, K

    For a 6= 0

    M is non-compact

    µ = 2a(a−b)‖X‖2 is an HKT potential

    ωI = 12 (ddI + dJdK)µ =12 (1− J)dIdµ.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Geometry II

    ExampleM = Hn+1 \ {0} →HP(n)a = 2, b = −2, α = −2.

    Poon and Swann (2003)

    a 6= 0 corresponds toQ = M/(R× SU(2)) =µ−1(1)/ SU(2) a QKT orbifold(of special type).

    E.g. Q = k CP(2).For S 3-Sasaki, M = S×Rwarped product, ishyperKähler with specialhomothety α = −2

    Get to a = 0, special isometry,by potential change

    g1 =1µ

    g− 12µ2

    (dHµ)2

    Discrete quotient

    M = (µ−1(1)×R)/Z(ϕ, 2)

    with g1 is HKT with specialisometry X

    In this casedX[ = 0b1(M) > 1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Geometry II

    ExampleM = Hn+1 \ {0} →HP(n)a = 2, b = −2, α = −2.

    Poon and Swann (2003)

    a 6= 0 corresponds toQ = M/(R× SU(2)) =µ−1(1)/ SU(2) a QKT orbifold(of special type).

    E.g. Q = k CP(2).For S 3-Sasaki, M = S×Rwarped product, ishyperKähler with specialhomothety α = −2

    Get to a = 0, special isometry,by potential change

    g1 =1µ

    g− 12µ2

    (dHµ)2

    Discrete quotient

    M = (µ−1(1)×R)/Z(ϕ, 2)

    with g1 is HKT with specialisometry X

    In this casedX[ = 0b1(M) > 1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Geometry II

    ExampleM = Hn+1 \ {0} →HP(n)a = 2, b = −2, α = −2.

    Poon and Swann (2003)

    a 6= 0 corresponds toQ = M/(R× SU(2)) =µ−1(1)/ SU(2) a QKT orbifold(of special type).

    E.g. Q = k CP(2).

    For S 3-Sasaki, M = S×Rwarped product, ishyperKähler with specialhomothety α = −2

    Get to a = 0, special isometry,by potential change

    g1 =1µ

    g− 12µ2

    (dHµ)2

    Discrete quotient

    M = (µ−1(1)×R)/Z(ϕ, 2)

    with g1 is HKT with specialisometry X

    In this casedX[ = 0b1(M) > 1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Geometry II

    ExampleM = Hn+1 \ {0} →HP(n)a = 2, b = −2, α = −2.

    Poon and Swann (2003)

    a 6= 0 corresponds toQ = M/(R× SU(2)) =µ−1(1)/ SU(2) a QKT orbifold(of special type).

    E.g. Q = k CP(2).For S 3-Sasaki, M = S×Rwarped product, ishyperKähler with specialhomothety α = −2

    Get to a = 0, special isometry,by potential change

    g1 =1µ

    g− 12µ2

    (dHµ)2

    Discrete quotient

    M = (µ−1(1)×R)/Z(ϕ, 2)

    with g1 is HKT with specialisometry X

    In this casedX[ = 0b1(M) > 1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Geometry II

    ExampleM = Hn+1 \ {0} →HP(n)a = 2, b = −2, α = −2.

    Poon and Swann (2003)

    a 6= 0 corresponds toQ = M/(R× SU(2)) =µ−1(1)/ SU(2) a QKT orbifold(of special type).

    E.g. Q = k CP(2).For S 3-Sasaki, M = S×Rwarped product, ishyperKähler with specialhomothety α = −2

    Get to a = 0, special isometry,by potential change

    g1 =1µ

    g− 12µ2

    (dHµ)2

    Discrete quotient

    M = (µ−1(1)×R)/Z(ϕ, 2)

    with g1 is HKT with specialisometry X

    In this casedX[ = 0b1(M) > 1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Geometry II

    ExampleM = Hn+1 \ {0} →HP(n)a = 2, b = −2, α = −2.

    Poon and Swann (2003)

    a 6= 0 corresponds toQ = M/(R× SU(2)) =µ−1(1)/ SU(2) a QKT orbifold(of special type).

    E.g. Q = k CP(2).For S 3-Sasaki, M = S×Rwarped product, ishyperKähler with specialhomothety α = −2

    Get to a = 0, special isometry,by potential change

    g1 =1µ

    g− 12µ2

    (dHµ)2

    Discrete quotient

    M = (µ−1(1)×R)/Z(ϕ, 2)

    with g1 is HKT with specialisometry X

    In this casedX[ = 0b1(M) > 1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Superconformal Geometry II

    ExampleM = Hn+1 \ {0} →HP(n)a = 2, b = −2, α = −2.

    Poon and Swann (2003)

    a 6= 0 corresponds toQ = M/(R× SU(2)) =µ−1(1)/ SU(2) a QKT orbifold(of special type).

    E.g. Q = k CP(2).For S 3-Sasaki, M = S×Rwarped product, ishyperKähler with specialhomothety α = −2

    Get to a = 0, special isometry,by potential change

    g1 =1µ

    g− 12µ2

    (dHµ)2

    Discrete quotient

    M = (µ−1(1)×R)/Z(ϕ, 2)

    with g1 is HKT with specialisometry X

    In this casedX[ = 0b1(M) > 1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Twisting HKT

    Twist by

    gW ∼H g, ωWI ∼H ωI, etc.

    Then

    IdωWI ∼H IdωI + 1a X[ ∧ Iωθ

    For HKT need

    c = −IdωI = −JdωJ = −KdωKPropositionHKT twists to HKT via a circle ifand only if Fθ ∈ S2E =

    ⋂I Λ

    1,1I ,

    i.e., an instanton

    X a special isometry, X y Fθ = 0twists to XW a special isometry

    TheoremM HKT with special isometry(α = −1). Can

    untwist locally to dX[ = 0on S× S1

    change potential on S×R toa 6= 0, (α = −2)

    Fθ = dX[ is an instanton

    Many simply-connectedexamples when b2(S) > 1E.g., Q = k CP(2)

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Twisting HKT

    Twist by

    gW ∼H g, ωWI ∼H ωI, etc.

    Then

    IdωWI ∼H IdωI + 1a X[ ∧ Iωθ

    For HKT need

    c = −IdωI = −JdωJ = −KdωK

    PropositionHKT twists to HKT via a circle ifand only if Fθ ∈ S2E =

    ⋂I Λ

    1,1I ,

    i.e., an instanton

    X a special isometry, X y Fθ = 0twists to XW a special isometry

    TheoremM HKT with special isometry(α = −1). Can

    untwist locally to dX[ = 0on S× S1

    change potential on S×R toa 6= 0, (α = −2)

    Fθ = dX[ is an instanton

    Many simply-connectedexamples when b2(S) > 1E.g., Q = k CP(2)

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Twisting HKT

    Twist by

    gW ∼H g, ωWI ∼H ωI, etc.

    Then

    IdωWI ∼H IdωI + 1a X[ ∧ Iωθ

    For HKT need

    c = −IdωI = −JdωJ = −KdωKPropositionHKT twists to HKT via a circle ifand only if Fθ ∈ S2E =

    ⋂I Λ

    1,1I ,

    i.e., an instanton

    X a special isometry, X y Fθ = 0twists to XW a special isometry

    TheoremM HKT with special isometry(α = −1). Can

    untwist locally to dX[ = 0on S× S1

    change potential on S×R toa 6= 0, (α = −2)

    Fθ = dX[ is an instanton

    Many simply-connectedexamples when b2(S) > 1E.g., Q = k CP(2)

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Twisting HKT

    Twist by

    gW ∼H g, ωWI ∼H ωI, etc.

    Then

    IdωWI ∼H IdωI + 1a X[ ∧ Iωθ

    For HKT need

    c = −IdωI = −JdωJ = −KdωKPropositionHKT twists to HKT via a circle ifand only if Fθ ∈ S2E =

    ⋂I Λ

    1,1I ,

    i.e., an instanton

    X a special isometry, X y Fθ = 0twists to XW a special isometry

    TheoremM HKT with special isometry(α = −1). Can

    untwist locally to dX[ = 0on S× S1

    change potential on S×R toa 6= 0, (α = −2)

    Fθ = dX[ is an instanton

    Many simply-connectedexamples when b2(S) > 1E.g., Q = k CP(2)

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Twisting HKT

    Twist by

    gW ∼H g, ωWI ∼H ωI, etc.

    Then

    IdωWI ∼H IdωI + 1a X[ ∧ Iωθ

    For HKT need

    c = −IdωI = −JdωJ = −KdωKPropositionHKT twists to HKT via a circle ifand only if Fθ ∈ S2E =

    ⋂I Λ

    1,1I ,

    i.e., an instanton

    X a special isometry, X y Fθ = 0twists to XW a special isometry

    TheoremM HKT with special isometry(α = −1). Can

    untwist locally to dX[ = 0on S× S1

    change potential on S×R toa 6= 0, (α = −2)

    Fθ = dX[ is an instanton

    Many simply-connectedexamples when b2(S) > 1E.g., Q = k CP(2)

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Twisting HKT

    Twist by

    gW ∼H g, ωWI ∼H ωI, etc.

    Then

    IdωWI ∼H IdωI + 1a X[ ∧ Iωθ

    For HKT need

    c = −IdωI = −JdωJ = −KdωKPropositionHKT twists to HKT via a circle ifand only if Fθ ∈ S2E =

    ⋂I Λ

    1,1I ,

    i.e., an instanton

    X a special isometry, X y Fθ = 0twists to XW a special isometry

    TheoremM HKT with special isometry(α = −1). Can

    untwist locally to dX[ = 0on S× S1

    change potential on S×R toa 6= 0, (α = −2)

    Fθ = dX[ is an instanton

    Many simply-connectedexamples when b2(S) > 1E.g., Q = k CP(2)

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Twisting HKT

    Twist by

    gW ∼H g, ωWI ∼H ωI, etc.

    Then

    IdωWI ∼H IdωI + 1a X[ ∧ Iωθ

    For HKT need

    c = −IdωI = −JdωJ = −KdωKPropositionHKT twists to HKT via a circle ifand only if Fθ ∈ S2E =

    ⋂I Λ

    1,1I ,

    i.e., an instanton

    X a special isometry, X y Fθ = 0twists to XW a special isometry

    TheoremM HKT with special isometry(α = −1). Can

    untwist locally to dX[ = 0on S× S1

    change potential on S×R toa 6= 0, (α = −2)

    Fθ = dX[ is an instanton

    Many simply-connectedexamples when b2(S) > 1E.g., Q = k CP(2)

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Outline

    1 GeometryMetric geometry with torsionKT GeometryHKT Geometry

    2 TwistsT-duality as a Twist Construction

    3 Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2, 1; α)Geometric StructureHKT ExamplesSummary

    4 Other Examples via the Twist

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Summary

    D(2, 1; α) superconformal symmetry realised by HKT withR× SU(2) action

    α 6= −1 comes from R× SO(3) bundles over certain QKTorbifoldsα = −1 comes from previous examples via change ofpotential and twistconstruct non-homogeneous compact simply-connectedexamples with α = −1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Summary

    D(2, 1; α) superconformal symmetry realised by HKT withR× SU(2) actionα 6= −1 comes from R× SO(3) bundles over certain QKTorbifolds

    α = −1 comes from previous examples via change ofpotential and twistconstruct non-homogeneous compact simply-connectedexamples with α = −1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Summary

    D(2, 1; α) superconformal symmetry realised by HKT withR× SU(2) actionα 6= −1 comes from R× SO(3) bundles over certain QKTorbifoldsα = −1 comes from previous examples via change ofpotential and twist

    construct non-homogeneous compact simply-connectedexamples with α = −1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other QM D(2, 1; α) Geometry HKT Summary

    Summary

    D(2, 1; α) superconformal symmetry realised by HKT withR× SU(2) actionα 6= −1 comes from R× SO(3) bundles over certain QKTorbifoldsα = −1 comes from previous examples via change ofpotential and twistconstruct non-homogeneous compact simply-connectedexamples with α = −1

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other

    General HKT with Torus Symmetry

    M = N1 ×N2N2 with an HKT torus symmetry Xp[Fθq] ∈ H2(N1, Z), Fθq ∈ S2E instanton

    Twists to N2 → W → N1 HKT with torus symmetry

    ExampleN1 a K3 surfaceN2 = G compact Lie dim = 4k or N2 = S× S1, S 3-SasakiFθ self-dual, primitive

    Generate:large number of simply-connected examples, includingnew examples with reduced holonomy;all examples on compact nilmanifolds, Ni tori.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other

    General HKT with Torus Symmetry

    M = N1 ×N2N2 with an HKT torus symmetry Xp[Fθq] ∈ H2(N1, Z), Fθq ∈ S2E instanton

    Twists to N2 → W → N1 HKT with torus symmetry

    ExampleN1 a K3 surfaceN2 = G compact Lie dim = 4k or N2 = S× S1, S 3-SasakiFθ self-dual, primitive

    Generate:large number of simply-connected examples, includingnew examples with reduced holonomy;all examples on compact nilmanifolds, Ni tori.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other

    General HKT with Torus Symmetry

    M = N1 ×N2N2 with an HKT torus symmetry Xp[Fθq] ∈ H2(N1, Z), Fθq ∈ S2E instanton

    Twists to N2 → W → N1 HKT with torus symmetry

    ExampleN1 a K3 surfaceN2 = G compact Lie dim = 4k or N2 = S× S1, S 3-SasakiFθ self-dual, primitive

    Generate:large number of simply-connected examples, includingnew examples with reduced holonomy;all examples on compact nilmanifolds, Ni tori.

    Andrew Swann Geometric Duality

  • Geometry Twists Superconformal Other

    Hypercomplex vs. HKT

    Theorem (Swann (2008))

    There is a simply-connected T4-bundle M over a K3 surface N thatadmits integrable I, J and K, but no compatible HKT metric.

    This is constructed as a twist of T4 ×N using Fθq not ofinstanton type, but chosen so that integrability of the complexstructures is preserved.

    Andrew Swann Geometric Duality

  • References

    References I

    M. L. Barberis and A. Fino. New strong HKT manifoldsarising from quaternionic representations, May 2008. eprintarXiv:0805.2335[math.DG].

    E. Bergshoeff, C. Hull, and T. Ortı́n. Duality in the type-IIsuperstring effective action. Nuclear Phys. B, 451(3):547–575,1995. ISSN 0550-3213.

    C. P. Boyer. A note on hyperHermitian four-manifolds. Proc.Amer. Math. Soc., 102:157–164, 1988.

    C. G. Callan, Jr., J. A. Harvey, and A. Strominger. Worldsheetapproach to heterotic instantons and solitons. Nuclear Phys.B, 359(2-3):611–634, 1991. ISSN 0550-3213.

    Andrew Swann Geometric Duality

    arXiv:0805.2335 [math.DG]

  • References

    References II

    R. A. Coles and G. Papadopoulos. The geometry of theone-dimensional supersymmetric nonlinear sigma models.Classical Quantum Gravity, 7(3):427–438, 1990. ISSN0264-9381.

    P. Gauduchon. Structures de Weyl et théorèmes d’annulationsur une varété conforme autoduale. Ann. Sc. Norm. Sup. Pisa,18:563–629, 1991.

    G. W. Gibbons, G. Papadopoulos, and K. S. Stelle. HKT andOKT geometries on soliton black hole moduli spaces.Nuclear Phys. B, 508(3):623–658, 1997. ISSN 0550-3213.

    Jai Grover, Jan B. Gutowski, Carlos A. R. Herdeiro, and WaficSabra. HKT geometry and de Sitter supergravity. NuclearPhys. B, 809(3):406–425, 2009. ISSN 0550-3213. doi:10.1016/j.nuclphysb.2008.08.024. URLhttp://dx.doi.org/10.1016/j.nuclphysb.2008.08.024.

    Andrew Swann Geometric Duality

    http://dx.doi.org/10.1016/j.nuclphysb.2008.08.024

  • References

    References III

    C. M. Hull. The geometry of supersymmetric quantummechanics, October 1999. eprint arXiv:hep-th/9910028.

    F. Martı́n Cabrera and A. F. Swann. The intrinsic torsion ofalmost quaternion-hermitian manifolds. Ann. Inst. Fourier,58(5):1455–1497, 2008. ISSN 0373-0956.

    J. Michelson and A. Strominger. The geometry of (super)conformal quantum mechanics. Comm. Math. Phys., 213(1):1–17, 2000. ISSN 0010-3616.

    G. Papadopoulos. Conformal and superconformal mechanics.Classical Quantum Gravity, 17(18):3715–3741, 2000. ISSN0264-9381.

    Y. S. Poon and A. F. Swann. Superconformal symmetry andhyperKähler manifolds with torsion. Commun. Math. Phys.,241(1):177–189, 2003.

    Andrew Swann Geometric Duality

    arXiv:hep-th/9910028

  • References

    References IV

    A. Strominger. Superstrings with torsion. Nuclear Phys. B, 274(2):253–284, 1986. ISSN 0550-3213.

    A. F. Swann. Twisting Hermitian and hypercomplexgeometries. in preparation, 2008.

    M. Verbitsky. Hyperkähler manifolds with torsion obtainedfrom hyperholomorphic bundles, March 2003. eprintarXiv:math.DG/0303129.

    Andrew Swann Geometric Duality

    arXiv:math.DG/0303129

    GeometryMetric geometry with torsionKT GeometryHKT Geometry

    TwistsT-duality as a Twist Construction

    Superconformal SymmetrySuperconformal Quantum MechanicsThe Superalgebras D(2,1;alpha)Geometric StructureHKT ExamplesSummary

    Other Examples via the TwistAppendixReferences