Ge incorporated Cu ZnSnSe thin- film solar cells · 2020. 7. 29. · Ge incorporated Cu 2ZnSnSe 4...

12
Ge incorporated Cu 2 ZnSnSe 4 thin- film solar cells Shinho Kim, Kang Min Kim, Hitoshi Tampo, Hajime Shibata and Shigeru Niki National Institute of Advanced Industrial Science and Technology (AIST) Research Center for Photovoltaics (RCPV) Compound Semiconductor Thin Film Team

Transcript of Ge incorporated Cu ZnSnSe thin- film solar cells · 2020. 7. 29. · Ge incorporated Cu 2ZnSnSe 4...

  • Ge incorporated Cu2ZnSnSe4 thin-film solar cells

    Shinho Kim, Kang Min Kim, Hitoshi Tampo, Hajime Shibata and Shigeru Niki

    National Institute of Advanced Industrial Science and Technology (AIST)

    Research Center for Photovoltaics (RCPV) Compound Semiconductor Thin Film Team

  • • In, Ga → Zn, Sn • High absorption

    coefficient – α> 104 cm-1

    • Using the earth abundant materials

    • Production cost down

    Introduction – Kesterite solar cells

    Cu In Ga Se

    Cu Zn Sn S/Se

    I III VI III

    I II VI IV

    Cu2InxGa1-xSe4

    Cu2ZnSnSe4

    CZT(S)Se

    1

  • Introduction – Band gap tuning of kesterite thin films

    • The control of S/(S+Se) ratio is difficult

    due to the high volatility of the anionic

    components.

    • Large VOC deficit (Eg/q-VOC) with S

    incorporation 1

    • CZTSe ≈ 0.577 mV → CZTSSe ≈ 0.647, (at

    champion cells respectively)

    • Ex) CIGSe ≈ 0.5

    • Low FF 2

    • Low VOC and high ideality factor (A)

    • Secondary phase problems

    Problems of S incorporation

    2

    Cu2ZnSn(SxSe)4 Cu2ZnSnSe4

    1.50 eV 1.00

    -0.15 0.00

    ~1.0 < Eg(CZT(SxSex-1)) < ~1.5 eV

    Band gap tuning with S incorporation

    1. A. Polizzotti et al., Energy & Environmental Science 6 (11), 3171-3182 (2013). 2. K. F. Tai et al., Advanced Energy Materials 6 (3), (2016)

  • 3

    • Tunable band-gap using cationic element → ~1.0

  • Cell Eff. (%) VOC (V)

    JSC (mA/cm2)

    FF (%)

    Eg (eV) Eg/ q-VOC

    CZTGSSe Perdue Univ. (2013) 1 9.40 0.460 31.9 63.8 1.19 0.730

    CZTGSe AIST (2015) 2 10.03 0.543 29.5 62.7 1.19 0.647

    CZTSe IREC(2015) 3 10.60 0.473 34.3 65.1 1.03 0.550

    CZTGSe Univ. of Washington (2016) 4 11.00 0.583 33.6 55.9 1.30 0.717

    I-V Results of Ge incorporated Cells

    4

    1. C. J. Hages et al., Progress in Photovoltaics: Research and Applications 23 (3), 376-384 (2013). 2. S. Kim et al., Solar Energy Materials and Solar Cells 144, 488-492 (2016). 3. S. Giraldo et al., Advanced Energy Materials 5 (21), (2015). 4. A. D. Collord and H. W. Hillhouse, Chemistry of Materials 28 (7), 2067-2073 (2016).

  • 5

    Experimental Procedure

    SLG Mo

    CZTGSe CdS

    i-ZnO AZO

    Al

    As grown CZTGSe deposited by co-evaporation method. Composition Control

    Annealing using two zone furnace Grain Growth

    Co-evaporation Annealing

    CZTGSe solar cell structure

    Ge

    SLG Mo

    Heater 200 ℃

    Sample Pellets

    Internal gases flow

  • 0.0 0.1 0.2 0.3 0.4 0.50

    10

    20

    30

    J (m

    A/c

    m2 )

    V (V)

    Eff. VOC JSC FF 12.322 0.527 32.157 0.727

    400 600 800 1000 12000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    EQ

    E (%

    )

    Wavelength (nm)

    0.9 1.0 1.1 1.2 1.30.0

    0.2

    0.4

    0.6

    0.8

    1.0

    [E ln

    (1-E

    QE

    )]2

    Energy (eV)

    Eg=1.1eV

    New efficiency of Ge incorporated kesterite solar cell

    • The highest efficiency of Ge incorporated kesterite solar cell greater than 12%

    6

  • 7

    Device parameters

    Cell Eff. (%) VOC (V)

    JSC (mA/cm2) FF

    Rs (Ω·cm2)

    Rsh (Ω·cm2) A

    J0 (A/ cm2)

    Eg (eV) Eg/q-VOC

    CZTSSe IBM (2013) 12.60 0.513 35.2 0.698 0.72 621 1.45 7.0E-8 1.13 0.617

    CZTGSe AIST (2015) 10.03 0.543 29.5 0.627 0.20 694 2.49 6.3E-6 1.19 0.647

    CZTGSe AIST (2016) 12.32 0.527 32.2 0.727 0.36 1111 1.47 3.6E-8 1.11 0.583

    • Highly improved fill factor over 0.7 • Reduced device parameters – A, Jo and VOC deficit → Improved junction quality and reduced carrier recombination in SCR

  • 0.5 1.0 1.5 2.0 2.5 3.0

    0

    2

    4

    6

    8

    10

    12 Efficiency FF

    Zn/IVE

    ffici

    ency

    (%)

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    FF

    Atomic ratio of CZTGSe thin films (EPMA)

    • Efficiency shows similar tendency with FF. • Optimized surface conditions are observed at Cu/Zn=1.9 and Zn/IV=1.2.

    0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    2

    4

    6

    8

    10

    12 Efficiency FF

    Cu/Zn

    Effic

    ienc

    y (%

    )

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    FF

    Surface composition ~ 120 nm

    8

  • 0 10 20 30 40 501

    10

    100

    1000

    10000

    PL

    Inte

    nsity

    (cou

    nts)

    Time (ns)

    Decay curve Fit

    τ2 = 5.6 ns

    Lifetime measurement by TRPL Cell Eff. (%) Lifetime (ns)

    CZTSSe IBM (2013) 12.60 6.7

    CZTGSe AIST (2015) 10.03 2.5

    CZTGSe AIST (2016) 12.32 5.6

    0.9 1.0 1.1 1.2 1.3

    PL In

    tens

    ity (a

    rb. u

    nits

    )

    Energy (eV)

    Eg = 1.1 eVEgopt = 1.08 eV • Improved carrier life time

    • PL peak is closed to the band edge position (≈0.03) – it may be beneficial effect in reducing VOC deficit

    9

  • Summary

    • We demonstrate new results of Ge incorporated kesterite

    thin-film solar cell.

    – High efficiency greater than 12%

    – Large improvement in FF over 0.7

    – Improved junction quality and reduced carrier recombination in SCR

    – A, J0 and VOC deficit

    – Increased carrier life time

    10

  • Thank you for your attention!

    スライド番号 1Introduction – Kesterite solar cellsスライド番号 3Ge incorporated CZTSe (CZTGSe)スライド番号 5Experimental Procedureスライド番号 7Device parametersスライド番号 9スライド番号 10スライド番号 11スライド番号 12