Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In...

12
Int. J. Math. And Appl., 7(2)(2019), 125–136 ISSN: 2347-1557 Available Online: http://ijmaa.in/ A p p l i c a t i o n s I S S N : 2 3 4 7 - 1 5 5 7 I n t e r n a t i o n a l J o u r n a l o f M a t h e m a t i c s A n d i t s International Journal of Mathematics And its Applications Fractional Calculus and Certain Integral Transform of Extended τ -Hypergeometric Function Jai Prakash Patel 1, * and Neelam Pandey 2 1 Department of Mathematics, A P S University, Rewa, Madhya Pradesh, India. 2 Department of Mathematics, Government Model Science College, Rewa, Madhya Pradesh, India. Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized τ -hypergeometric functions 3 Γ τ 2 (z) defined by (R. K. Gupta et al. [3, 4]). Furthermore by applying some integral transforms as Beta-transform, Verma transform, Whittaker transform, Laplace transform and Pα-transform on the resulting formulas. MSC: Primary 26A33, 33B15, 33C05, 33C20, 44A10, 44A20; Secondary 33B99, 33C99, 33D90. Keywords: Extended τ -Hypergeometric Function,Incomplete Pochhammer symbols, Incomplete Gamma function, Fractional deriva- tive and integral operators, integral transform. c JS Publication. 1. Introduction and Preliminaries During the last some decades, number of authors have studied, in depth, the properties, applications and different extensions of various hypergeometric operators of fractional derivatives and integrals. A detailed account of such operators along with their properties and applications have been considered by several authors (see, [1618]). The fractional derivative operators involving various special functions have significant importance and applications in various sub - field of applicable mathematical analysis. Extended τ hypergeometric function 3Γ τ 2 (z) was given by (R. K. Gupta et al. [3, 4]) and defined as follows: 3Γ τ 2 (z)= 3Γ τ 2 ((λ, k), a, b; c, d; z)= Γ(c)Γ(d) Γ(a)Γ(b) X n=0 [λ; k]n Γ(a + τn) Γ(b + τn) Γ(c + τn) Γ(d + τn) z n n! , (1) (k 0; τ> 0; |z| < 1, R(d) > R(a) > 0, R(c) > R(b) > 0 when k = 0). Notes:- (1). If we put b = d, then (1) reduces to the extended τ -hypergeometric function 2Γ τ 1 (z) given by Parmer ([11] p.422, eq.(2.1)) as defined as 2Γ τ 1 (z)= 2Γ τ 1 ((λ, k),b; c; z)= Γ(c) Γ(b) X n=0 [λ; k]n Γ(b + τn) Γ(c + τn) z n n! (2) (λ, b C,c C \ Z - 0 ,k 0; τ> 0; |z| < 1, R(c) > R(b) > 0 when k = 0). * E-mail: [email protected]

Transcript of Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In...

Page 1: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Int. J. Math. And Appl., 7(2)(2019), 125–136

ISSN: 2347-1557

Available Online: http://ijmaa.in/Applications•ISSN:234

7-15

57•In

ternationalJo

urna

l of MathematicsAnd

its

International Journal ofMathematics And its Applications

Fractional Calculus and Certain Integral Transform of

Extended τ-Hypergeometric Function

Jai Prakash Patel1,∗ and Neelam Pandey2

1 Department of Mathematics, A P S University, Rewa, Madhya Pradesh, India.

2 Department of Mathematics, Government Model Science College, Rewa, Madhya Pradesh, India.

Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized τ -hypergeometric functions

3Γτ2 (z) defined by (R. K. Gupta et al. [3, 4]). Furthermore by applying some integral transforms as Beta-transform,

Verma transform, Whittaker transform, Laplace transform and Pα-transform on the resulting formulas.

MSC: Primary 26A33, 33B15, 33C05, 33C20, 44A10, 44A20; Secondary 33B99, 33C99, 33D90.

Keywords: Extended τ -Hypergeometric Function,Incomplete Pochhammer symbols, Incomplete Gamma function, Fractional deriva-tive and integral operators, integral transform.

c© JS Publication.

1. Introduction and Preliminaries

During the last some decades, number of authors have studied, in depth, the properties, applications and different extensions

of various hypergeometric operators of fractional derivatives and integrals. A detailed account of such operators along

with their properties and applications have been considered by several authors (see, [16–18]). The fractional derivative

operators involving various special functions have significant importance and applications in various sub - field of applicable

mathematical analysis. Extended τ hypergeometric function 3Γτ2(z) was given by (R. K. Gupta et al. [3, 4]) and defined as

follows:

3Γτ2(z) = 3Γτ2((λ, k), a, b; c, d; z) =Γ(c)Γ(d)

Γ(a)Γ(b)

∞∑n=0

[λ; k]n Γ(a+ τn) Γ(b+ τn)

Γ(c+ τn) Γ(d+ τn)

zn

n!, (1)

(k ≥ 0; τ > 0; |z| < 1,R(d) > R(a) > 0, R(c) > R(b) > 0when k = 0).

Notes:-

(1). If we put b = d, then (1) reduces to the extended τ -hypergeometric function 2Γτ1(z) given by Parmer ([11] p.422,

eq.(2.1)) as defined as

2Γτ1(z) = 2Γτ1((λ, k), b; c; z) =Γ(c)

Γ(b)

∞∑n=0

[λ; k]n Γ(b+ τn)

Γ(c+ τn)

zn

n!(2)

(λ, b ∈ C, c ∈ C \ Z−0 , k ≥ 0; τ > 0; |z| < 1,R(c) > R(b) > 0when k = 0).

∗ E-mail: [email protected]

125

Page 2: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Fractional Calculus and Certain Integral Transform of Extended τ -Hypergeometric Function

(2). If we put b = d and τ = 1, then (1) reduces to the extended Gauss hypergeometric function ([12] p. 487, eq.17) given

by

2F1(z) = 2F1((λ, k), b; c; z) =

∞∑n=0

[λ; k]n (b)n(c)n

zn

n!. (3)

(3). If we take τ = 1 and k = 0 in (1), then it reduces to the classical Gauss’s hypergeometric function as

3Γ2(z) = 3Γ2((λ, a, b; c, d; z) =

∞∑n=0

(λ)n (a)n (b)n(c)n (d)n

zn

n!(4)

(4). If we take b = d, τ = 1 and k = 0 in (1), then it reduces to the classical Gauss’s hypergeometric function as

2F1(z) = 2F1(a, b; c; z) =

∞∑n=0

(a)n (b)n(c)n

zn

n!. (5)

We need to recall the following pair of the Saigo hypergeometric fractional integral operators (see Saigo [7], Kiryakova [19].

For x > 0, l,m, ξ ∈ C and α > 0, we have

(Il,m,ξ0,x f(t))(x) =x−l−m

Γ(l)

x∫0

(x− t)l−12F1

(l +m,−ξ; l; 1− t

x

)f(t) dt, (6)

(J l,m,ξx,∞ f(t))(x) =1

Γ(l)

∞∫x

(t− x)l−1t−l−m2F1

(l +m,−ξ; l; 1− t

x

)f(t) dt, (7)

We also recall the Pochhammer symbol (λ)n defined (for λ ∈ C) as (Rainville [8])

(λ)n =

1, (n = 0)

λ(λ+ 1) . . . (λ+ n− 1), (n ∈ N)

Γ(λ+n)Γ(λ)

, (λ ∈ C/Z−0 )

(8)

where Z−0 denotes the set of non positive integers.

The operator Il,m,ξ0,x (·) contains both the Riemann-Liouville Rl0,x(·) and the Erdelyi-Kober El,ξ0,x(·) fractional integral operators

as particular cases, by means of the relationships:

(Rl0,xf(t))(x) = (Il,−l,ξ0,x f(t))(x) =1

Γ(l)

x∫0

(x− t)l−1f(t) dt,

(El,ξ0,xf(t))(x) = (Il,0,ξ0,x f(t))(x) =x−l−ξ

Γ(l)

x∫0

(x− t)l−1tηf(t) dt.

And also, note that the operator (7) incorporates the Weyl type and the Erdelyi-Kober fractional operators as follows:

(W lx,∞f(t))(x) = (J l,−l,ξx,∞ f(t))(x) =

1

Γ(l)

∞∫x

(t− x)l−1f(t) dt,

(Kl,ξx,∞f(t))(x) = (J l,0,ξx,∞ f(t))(x) =

Γ(l)

∞∫x

(t− x)l−1t−l−ξf(t) dt.

We also use the following image formulas which are well known facts and easy consequences of the definitions of the operators

(6) and (7) (see Saigo [7]):

(Il,m,ξ0,x tλ−1)(x) =Γ(λ)Γ(λ−m+ ξ)

Γ(λ−m)Γ(λ+ l + ξ)xλ−m−1; (R(λ) > 0,R(λ−m+ ξ) > 0). (9)

126

Page 3: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Jai Prakash Patel and Neelam Pandey

(J l,m,ξx,∞ tλ−1)(x) =Γ(m− λ+ 1)Γ(ξ − λ+ 1)

Γ(1− λ)Γ(m+ l − λ+ ξ + 1)xλ−m−1; (R(m− λ+ 1) > 0,R(ξ − λ+ 1) > 0) (10)

Then the generalized fractional derivative operators are defined as (Saigo [7])

(Dl,m,ξ

0+ f)

(x) =(I−l,−m,l+ξf

)(x) =

(d

dx

)n (I−l+ξ,−m−ξ,l+ξ−n0+ f

)(x); (R(l) ≥ 0, n = [R(l)] + 1). (11)(

Dl,m,ξ

0− f)

(x) =(I−l,−m,l+ξ− f

)(x) =

(− d

dx

)n (I−l+ξ,−m−ξ,l+ξ−n− f

)(x); (R(l) ≥ 0, n = [R(l)] + 1). (12)

The operator(Dl,m,ξ

0+

)(.) contains the Riemann-Liouville Dl

0+(.) and Weyl fractional derivatives by means of the following

relationships:

(Dl,−l,ξ0+ f)(x) = (Dl

0+f)(x) =

(d

dx

)n1

Γ(n− l)

∫ x

0

f(t)dt

(x− t)l−n+1; (x > 0, n = [R(l)] + 1, l ∈ C,R(l) ≥ 0). (13)

(Dl,−l,ξ0− f)(x) = (Dl

−f)(x) =

(− d

dx

)n1

Γ(n− l)

∫ ∞x

f(t)dt

(t− x)l−n+1; (x > 0, n = [R(l)] + 1, l ∈ C,R(l) ≥ 0). (14)

It is noted that the operators (11), (12) include also the Erdelyi-Kober fractional derivative operators (Kiryakova [9]) for

m = 0 and l, η ∈ C,R(l) ≥ 0:

(Dl,0,ξ0+ f)(x) = (D+

ξ,lf)(x) =

(d

dx

)n(I−l+n,−l,−l+ξ−n0+ f)(x); (x > 0, n = [R(l)] + 1, l ∈ C).

(Dl,0,ξ

0− f)(x) = (D−ξ,lf)(x) =

(− d

dx

)n(I−l+n,−l,−l+ξ−n− f)(x); (x > 0, n = [R(l)] + 1, l ∈ C).

We also use the following image formulae which are easy consequences of the operators definitions (Saigo [7]). Namely, for

l,m, ξ ∈ C and R(l) ≥ 0, x > 0, λ > −min[0, l + m + ξ],

Dl,m,ξ0+

(xλ−1

)=

Γ(λ)Γ(λ+ l +m+ ξ)

Γ(λ+m)Γ(λ+ ξ)xλ+m−1, (15)

and for l,m, ξ ∈ C and x > 0, R(l) ≥ 0, λ < 1 + min[(−m− n), (l + ξ)],

Dl,m,η

0−

(xλ−1

)=

Γ(1− λ−m)(1− λ+ l + ξ)

Γ(1− λ)Γ(1− λ+ ξ −m)xλ+m−1. (16)

2. Definition of Certain Integral Transforms

We present some transforms, which exhibit the connection between the Euler, Varma, Pathway, Laplace and Whittaker

integral transforms and the generalized incomplete τ - hypergeometric type function. We begin by recalling the following

beta transform of a function (Sneddon [2]):

B{f(t) : l,m} =

∫ 1

0

tl−1(1− t)m−1f(t)dt; l ,m > 0. (17)

The Verma transform of a function f(t) is defined by the following integral equation (see Mathai [1], pp. 55):

V (f, k,m; s) =

∫ ∞0

(st)m−12 exp(−1

2st) Wk,m(st) f(t)dt, (R(s) > 0), (18)

where Wk,m is the Whittaker function defined by (Mathai [1], pp. 55):

Wk,m(t) =∑m,−m

Γ(−2m)

Γ( 12− k −m)

Mk,m(t), (19)

127

Page 4: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Fractional Calculus and Certain Integral Transform of Extended τ -Hypergeometric Function

where the summation symbol indicates that the expression following it, a similar expression with m replaced by −m is to

be added and

Mk,m(t) = tm+ 12 exp(− t

2) 1F1(

1

2− k +m; 2m+ 1; t).

It is interesting to observe that, for k = −ν + 12, the Verma transform defined by (18) reduces to the well-known Laplace

transform of a function f(t) (Sneddon [2]):

L{f(t) : s} =

∫ ∞0

e−stf(t) dt. (20)

The pathway type transforms (Pν-transforms) of a function f(z) of a real variable z denoted by Pν [f(z); s] is a function

F (s) of complex variable s, valid under certain conditions on f(z) along with the condition ν > 1, and is defined as (Kumar

[10])

Pφ[f(z); s] = F (s) =

∞∫0

[1 + (φ− 1)s]− zφ−1 f(z) dz. (21)

For ρ ∈ C,R(ρ) > 0 and φ > 1, the Pφ-transform of power function is given by Kumar [10] as

Pφ[zρ−1; s] =

{φ− 1

ln[1 + (φ− 1)s]

}ρΓ(ρ) =

Γ(ρ)

[∧(φ; s)]ρ(22)

where ∧(φ; s) = ln[1+(φ−1)s]φ−1

,min{R(s),R(ρ)} > 0;φ > 1. Furthermore, upon letting φ → 1 in (21), the Pφ-transform is

reduces to classical Laplace transform of a function f(z) ([2]) is given by (20). Agarwal [15] obtained solution of fractional

volterra integral equation using integral transform of pathway type.

3. Integral Transform and Fractional Calculus

3.1. Beta transform of fractional derivative of incomplete τ hypergeometric function

Theorem 3.1. Suppose that t, p, q > 0; k ≥ 0; τ > 0; R(d) > R(a) > 0; R(c) > R(b) > 0 and l,m, ξ ∈ C be parameters such

that min{R(λ),R(m)} > 0 and R(λ) > −min{0,R(l + m + ξ)}. Then the following beta-transform of fractional derivative

formula holds:

B

Dl,m,ξ

0+

tλ−13Γτ2

(σ, k), a, b;

c, d;zt

(x) : p, q

= xλ+m−1 B(p, q)

Γ(λ)λ+ l +m+ ξ

Γ(λ+m) Γ(λ+ ξ)3Γτ2 (x) ∗ 3F3

λ, ρ, λ+m+ l + ξ;

p+ q, λ+m, λ+ ξ;x

(23)

and

B

Dl,m,ξ

0+

tλ−13γτ2

(σ, k), a, b;

c, d;zt

(x) : p, q

= xλ+m−1 B(p, q)

Γ(λ)λ+ l +m+ ξ

Γ(λ+m) Γ(λ+ ξ)3γτ2 (x) ∗ 3F3

λ, ρ, λ+m+ l + ξ;

p+ q, λ+m, λ+ ξ;x

(24)

128

Page 5: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Jai Prakash Patel and Neelam Pandey

Proof. For convenience, we denote the left-hand side of the result (23) by ς and using (1), we find

ς = B

[Dl,m,ξ

0+

{tλ−1 Γ(c)Γ(d)

Γ(a)Γ(b)

∞∑n=0

[σ; k]n Γ(a+ τn) Γ(b+ τn)

Γ(c+ τn) Γ(d+ τn)

(zt)n

n!

}(x) : p, q

]

now using (15), (17) and changing order of integration and summation, we get-

ς = xλ+m−1 Γ(λ) Γ(λ+ l +m+ ξ)

Γ(λ+m)Γ(λ+ ξ)

Γ(c)Γ(d)

Γ(a)Γ(b)

∞∑n=0

[σ; k]n Γ(a+ τn) Γ(b+ τn)

Γ(c+ τn) Γ(d+ τn)

xn

n!

(λ)n (λ+ l +m+ ξ)n(λ+m)n (λ+ ξ)n

∫ 1

0

zp+n−1 (1− z)q−1dz

using classical beta function and applying the Hadamard product series yields the desired result, equation (23). As in the

proof of result (24), taking the operator (15) and the result (17) into account, one can easily prove result (24).

Theorem 3.2. Suppose that t, p, q > 0; k ≥ 0; τ > 0; R(d) > R(a) > 0; R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters

such that R(l) ≥ 0 R(λ) > −min{0,R(l + m + ξ)} Then the beta-transform of left-hand side fractional derivative formula

holds:

B

Dl,m,ξ

0−

tλ−13Γτ2

(σ, k), a, b;

c, d;

z

t

(x) : p, q

= xλ+m−1B(p, q)

Γ(Γ(1− λ−m) Γ(1− λ+ l + ξ)

Γ(1− λ) Γ(1− λ+ ξ −m)3Γτ2

(1

x

)∗ 3F3

p, 1− λ−m, 1− λ+ l + ξ;

p+ q, 1− λ, 1− λ+ ξ −m;

1

x

(25)

and

B

Dl,m,ξ

0−

tλ−13γτ2

(σ, k), a, b;

c, d;

z

t

(x) : p, q

= xλ+m−1B(p, q)

Γ(Γ(1− λ−m) Γ(1− λ+ l + ξ)

Γ(1− λ) Γ(1− λ+ ξ −m)3γτ2

(1

x

)∗ 3F3

p, 1− λ−m, 1− λ+ l + ξ;

p+ q, 1− λ, 1− λ+ ξ −m;

1

x

(26)

Proof. For convenience, we denote the left-hand side of the result (25) by ς and using (1), we find

ς = B

[Dl,m,ξ

0−

{tλ−1 Γ(c)Γ(d)

Γ(a)Γ(b)

∞∑n=0

[σ; k]n Γ(a+ τn) Γ(b+ τn)

Γ(c+ τn) Γ(d+ τn)

( zt)n

n!

}(x) : p, q

]

now using (16), (17) and changing order of integration and summation, we get

ς = xλ+m−1 Γ(1− λ−m) Γ(1− λ+ l + ξ)

Γ(1− λ)Γ(1− λ+ ξ −m)

Γ(c)Γ(d)

Γ(a)Γ(b)

∞∑n=0

[σ; k]nΓ(a+ τn)Γ(b+ τn)

Γ(c+ τn)Γ(d+ τn)

x−n

n!

(1− λ−m)n (1− λ+ l + ξ)n(1− λ)n (1− λ+ ξ −m)n

∫ 1

0

zp+n−1 (1− z)q−1dz

using classical beta function and applying the Hadamard product series yields the desired result, equation (25). As in the

proof of result (26), taking the operator (16) and the result (17) into account, one can easily prove result (26).

Further, if we replace m with 0 and m with −l in Theorems 3.1 and 3.2 then we obtain the beta-transform of the Erdelyi-

Kober and Riemann-Liouville fractional derivative of the generalized incomplete τ - hypergeometric type functions given by

the following corollary:

129

Page 6: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Fractional Calculus and Certain Integral Transform of Extended τ -Hypergeometric Function

Corollary 3.3. Suppose that t, p, q > 0; k ≥ 0; τ > 0; R(d) > R(a) > 0; R(c) > R(b) > 0 and l,m, ξ ∈ C be parameters

such that min{R(λ),R(m)} > 0 and R(λ) > −min{0,R(l + ξ)}. Then the following beta-transform of right-hand side

Erdelyi-Kober fractional derivative formula holds:

B

Dl,0,ξ

0+

tλ−13Γτ2

(σ, k), a, b;

c, d;zt

(x) : p, q

= xλ−1B(p, q)Γ(λ+ l + ξ

Γ(λ+ ξ)3Γτ2 (x) ∗ 2F2

ρ, λ+ l + ξ;

p+ q, λ+ ξ;x

(27)

and

B

Dl,0,ξ

0+

tλ−13γτ2

(σ, k), a, b;

c, d;zt

(x) : p, q

= xλ−1B(p, q)Γ(λ+ l + ξ

Γ(λ+ ξ)3γτ2 (x) ∗ 2F2

ρ, λ+ l + ξ;

p+ q, λ+ ξ;x

(28)

Corollary 3.4. Suppose that t, p, q > 0; k ≥ 0; τ > 0; R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ ∈ C be

parameters such that min{R(λ)} > 0 and R(λ) > −min{0,R(ξ)}. Then the following beta-transform of right-hand side

Riemann-Liouville fractional derivative formula holds:

B

Dl,−l,ξ0+

tλ−13Γτ2

(σ, k), a, b;

c, d;zt

(x) : p, q

= xλ−l−1B(p, q)Γ(λ)

Γ(λ− l) 3Γτ2 (x) ∗ 2F2

λ, ρ;

p+ q, λ− l;x

(29)

and

B

Dl,−l,ξ0+

tλ−13γτ2

(σ, k), a, b;

c, d;zt

(x) : p, q

= xλ−l−1B(p, q)Γ(λ)

Γ(λ− l) 3γτ2 (x) ∗ 2F2

λ, ρ;

p+ q, λ− l;x

(30)

Corollary 3.5. Suppose that t, p, q > 0; k ≥ 0; τ > 0; R(d) > R(a) > 0; R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be

parameters such that min{R(λ),R(l)} > 0 and R(λ) > −min{0,R(ξ)}. Then the beta-transform of left-hand side Erdelyi-

Kober fractional derivative formula holds:

B

Dl,0,ξ

0−

tλ−13Γτ2

(σ, k), a, b;

c, d;

z

t

(x) : p, q

= xλ−1B(p, q)Γ(1− λ+ l + ξ)

Γ(1− λ+ ξ)3Γτ2

(1

x

)∗ 2F2

p, 1− λ+ l + ξ;

p+ q, 1− λ+ ξ;

1

x

(31)

and

B

Dl,0,ξ

0−

tλ−13Γτ2

(σ, k), a, b;

c, d;

z

t

(x) : p, q

= xλ−1B(p, q)Γ(1− λ+ l + ξ)

Γ(1− λ+ ξ)3Γτ2

(1

x

)∗ 2F2

p, 1− λ+ l + ξ;

p+ q, 1− λ+ ξ;

1

x

(32)

Corollary 3.6. Suppose that t, p, q > 0; k ≥ 0; τ > 0; R(d) > R(a) > 0; R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters

such that min{R(λ),R(l)} > 0. Then the beta-transform of left-hand side Riemann-Liouville fractional derivative formula

holds:

B

Dl,−l,ξ0−

tλ−13Γτ2

(σ, k), a, b;

c, d;

z

t

(x) : p, q

= xλ−l−1B(p, q)Γ(1− λ+ l)

Γ(1− λ)3Γτ2

(1

x

)∗ 2F2

p, 1− λ+ l;

p+ q, 1− λ;

1

x

(33)

and

B

Dl,−l,ξ0−

tλ−13γτ2

(σ, k), a, b;

c, d;

z

t

(x) : p, q

= xλ−l−1B(p, q)Γ(1− λ+ l)

Γ(1− λ)3γτ2

(1

x

)∗ 2F2

p, 1− λ+ l;

p+ q, 1− λ;

1

x

(34)

130

Page 7: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Jai Prakash Patel and Neelam Pandey

3.2. Pathway transform of fractional calculus of incomplete τ hypergeometric func-tion

Theorem 3.7. Suppose that t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters such

that R(λ) > 0,R(λ−m+ ξ) > 0 and φ > 1, and R(λ) > −min{0,R(l+m+ ξ)}. Then the following image formula holds:

zρ−1 Il,m,ξ0,x

tλ−13Γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=xλ−m−1

[∧(φ; s)]ρΓ(ρ) Γ(λ)

Γ(λ−m)

Γ(λ−m+ ξ)

Γ(λ+ l + ξ)3Γτ2

(x

[∧(φ; s)]

)∗ 3F2

λ, ρ, λ−m+ ξ;

λ−m, λ+ l + ξ;

x

[∧(φ; s)]

(35)

and

zρ−1 Il,m,ξ0,x

tλ−13γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=xλ−m−1

[∧(φ; s)]ρΓ(ρ) Γ(λ)

Γ(λ−m)

Γ(λ−m+ ξ)

Γ(λ+ l + ξ)3γτ2

(x

[∧(φ; s)]

)∗ 3F2

λ, ρ, λ−m+ ξ;

λ−m, λ+ l + ξ;

x

[∧(φ; s)]

(36)

Proof. For convenience, we denote the left-hand side of the result (35) by ς and using (1), we find

ς = Pφ

[zρ−1 Il,m,ξ0,x

{tλ−1 Γ(c)Γ(d)

Γ(a)Γ(b)

∞∑n=0

[σ; k]n Γ(a+ τn) Γ(b+ τn)

Γ(c+ τn) Γ(d+ τn)

(zt)n

n!

}(x) : s

]

Now using (9), (22) and changing the order of integration and summation, we obtain

ς = xλ−m−1 Γ(λ) Γ(λ−m+ ξ)

Γ(λ−m) Γ(λ+ l + ξ)

Γ(c)Γ(d)

Γ(a)Γ(b)

∞∑n=0

[σ; k]n Γ(a+ τn) Γ(b+ τn)

Γ(c+ τn) Γ(d+ τn)

xn

n!

(λ)n (λ−m+ ξ)n(λ−m)n (λ+ l + ξ)n

Γ(ρ+ n)

[∧φ; s]ρ+n

Using (8) and applying the Hadamard product series yields the desired result, equation (35). As in the proof of result (36),

taking the operator (9) and the result (22) into account, one can easily prove result (36). Therefore, we omit the details of

the proof.

Theorem 3.8. Suppose that t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters such

that R(m− λ+ 1) > 0,R(ξ − λ+ 1) > 0 and φ > 1, and min{R(λ),R(m)} > 0 and R(λ) > −min{0,R(l +m+ ξ)}. Then

the following pathway transform formula holds:

zρ−1 J l,m,ξx,∞

tλ−13Γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ−m−1

[∧(φ; s)]ρΓ(ρ) Γ(m− λ+ 1)

Γ(1− λ)

Γ(ξ − λ+ 1)

Γ(m+ l − λ+ ξ + 1)3Γτ2

(1

x [∧(φ; s)]

)∗ 3F2

ρ,m− λ+ 1, ξ − λ+ 1;

1− λ, m+ l − λ+ ξ + 1;

1

x [∧(φ; s)]

(37)

and

zρ−1 J l,m,ξx,∞

tλ−13γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ−m−1

[∧(φ; s)]ρΓ(ρ) Γ(m− λ+ 1)

Γ(1− λ)

Γ(ξ − λ+ 1)

Γ(m+ l − λ+ ξ + 1)3γτ2

(1

x [∧(φ; s)]

)∗ 3F2

ρ,m− λ+ 1, ξ − λ+ 1;

1− λ, m+ l − λ+ ξ + 1;

1

x [∧(φ; s)]

(38)

131

Page 8: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Fractional Calculus and Certain Integral Transform of Extended τ -Hypergeometric Function

Proof. As in the proof of Theorem 3.7, taking the operator (10) and the result (22) into account, one can easily prove

result (37) and (38). Therefore, we omit the details of the proof.

Theorem 3.9. Suppose that t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters such

that min{R(λ),R(m)} > 0 and R(λ) > −min{0,R(l +m+ ξ)}. Then the following image formula holds:

zρ−1 Dl,m,ξ

0+

tλ−13Γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=xλ+m−1

[∧(φ; s)]ρΓ(ρ) Γ(λ)

Γ(λ+m)

Γ(λ+ l +m+ ξ)

Γ(λ+ ξ)3Γτ2

(x

[∧(φ; s)]

)∗ 3F2

λ, ρ, λ+m+ l + ξ;

λ+m, λ+ ξ;

x

[∧(φ; s)]

(39)

and

zρ−1 Dl,m,ξ

0+

tλ−13γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=xλ+m−1

[∧(φ; s)]ρΓ(ρ) Γ(λ)

Γ(λ+m)

Γ(λ+ l +m+ ξ)

Γ(λ+ ξ)3γτ2

(x

[∧(φ; s)]

)∗ 3F2

λ, ρ, λ+m+ l + ξ;

λ+m, λ+ ξ;

x

[∧(φ; s)]

(40)

Proof. As in the proof of Theorem 3.7, taking the operator (15) and the result (22) into account, one can easily prove

result (39) and (40). Therefore, we omit the details of the proof.

Theorem 3.10. Suppose that φ > 1 t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters

such that R(l) ≥ 0 R(λ) > −min{0,R(l + m + ξ)} Then the Pφ-transform of left-hand side fractional derivative formula

holds:

zρ−1 Dl,m,ξ

0−

tλ−13Γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ+m−1

[∧(φ; s)]ρΓ(ρ) Γ(1− λ−m)

Γ(1− λ)

Γ(1− λ+ l + ξ)

Γ(1− λ+ ξ −m)3Γτ2

(1

x [∧(φ; s)]

)∗ 3F2

ρ, 1− λ−m, 1− λ+ l + ξ;

1− λ, 1− λ+ ξ −m;

1

x [∧(φ; s)]

(41)

and

zρ−1 Dl,m,ξ

0−

tλ−13γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ+m−1

[∧(φ; s)]ρΓ(ρ) Γ(1− λ−m)

Γ(1− λ)

Γ(1− λ+ l + ξ)

Γ(1− λ+ ξ −m)3γτ2

(1

x [∧(φ; s)]

)∗ 3F2

ρ, 1− λ−m, 1− λ+ l + ξ;

1− λ, 1− λ+ ξ −m;

1

x [∧(φ; s)]

(42)

Proof. As in the proof of Theorem 3.7, taking the operator (16) and the result (22) into account, one can easily prove

result (41) and (42). Therefore, we omit the details of the proof.

Further, if we replace m with 0 and m with −l in Theorems 3.7, 3.8, 3.9 and 3.10 then we obtain the Pφ-transform of the

Erdelyi-Kober, Weyl and Riemann-Liouville fractional integral and derivative of the generalized incomplete τ - hypergeomet-

ric type functions given by the following corollary:

Corollary 3.11. Suppose that t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters such

that R(λ) > 0,R(λ−m+ ξ) > 0 and φ > 1, and R(λ) > −min{0,R(l+m+ ξ)}. Then the Pφ-transform of right hand side

132

Page 9: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Jai Prakash Patel and Neelam Pandey

Erdelyi-Kober fractional integral formulae holds:

zρ−1 Il,0,ξ0,x

tλ−13Γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=

xλ−1

[∧(φ; s)]ρΓ(ρ) Γ(λ+ ξ)

Γ(λ+ l + ξ)3Γτ2

(x

[∧(φ; s)]

)∗ 2F1

ρ, λ+ ξ;

λ+ l + ξ;

x

[∧(φ; s)]

(43)

and

zρ−1 Il,0,ξ0,x

tλ−13γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=

xλ−1

[∧(φ; s)]ρΓ(ρ) Γ(λ+ ξ)

Γ(λ+ l + ξ)3γτ2

(x

[∧(φ; s)]

)∗ 2F1

ρ, λ+ ξ;

λ+ l + ξ;

x

[∧(φ; s)]

(44)

Corollary 3.12. Suppose that t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters such

that R(λ) > 0,R(λ−m+ξ) > 0 and φ > 1, and min{R(λ),R(m)} > 0 and R(λ) > −min{0,R(ξ)}. Then the Pφ-transform

of right hand side Riemann-liouville fractional integral formulae holds:

zρ−1 Il,−l,ξ0,x

tλ−13Γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=

xλ+l−1

[∧(φ; s)]ρΓ(ρ) Γ(λ)

Γ(λ+ l)3Γτ2

(x

[∧(φ; s)]

)∗ 2F1

λ, ρ;

λ+ l;

x

[∧(φ; s)]

(45)

and

zρ−1 Il,−l,ξ0,x

tλ−13γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=

xλ+l−1

[∧(φ; s)]ρΓ(ρ) Γ(λ)

Γ(λ+ l)3γτ2

(x

[∧(φ; s)]

)∗ 2F1

λ, ρ;

λ+ l;

x

[∧(φ; s)]

(46)

Corollary 3.13. Suppose that t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters such

that R(m− λ+ 1) > 0,R(ξ − λ+ 1) > 0 and φ > 1, and min{R(λ),R(m)} > 0 and R(λ) > −min{0,R(l +m+ ξ)}. Then

the Pφ-transform of right hand side Erdelyi-Kober fractional integral formula holds :

zρ−1 Kl,ξx,∞

tλ−13Γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ−1

[∧(φ; s)]ρ

Γ(ρ) Γ(ξ − λ+ 1)

Γ(l − λ+ ξ + 1)3Γτ2

(1

x [∧(φ; s)]

)∗ 2F1

ρ, ξ − λ+ 1;

l − λ+ ξ + 1;

1

x [∧(φ; s)]

(47)

and

zρ−1 Kl,ξx,∞

tλ−13γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ−1

[∧(φ; s)]ρ

Γ(ρ) Γ(ξ − λ+ 1)

Γ(l − λ+ ξ + 1)3γτ2

(1

x [∧(φ; s)]

)∗ 2F1

ρ, ξ − λ+ 1;

l − λ+ ξ + 1;

1

x [∧(φ; s)]

(48)

133

Page 10: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Fractional Calculus and Certain Integral Transform of Extended τ -Hypergeometric Function

Corollary 3.14. Suppose that t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters such

that R(m− λ+ 1) > 0,R(ξ − λ+ 1) > 0 and φ > 1, and min{R(λ),R(m)} > 0 and R(λ) > −min{0,R(l +m+ ξ)}. Then

the Pφ-transform of right hand side Weyl fractional integral

zρ−1 W l,−l,ξx,∞

tλ−13Γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ+l−1

[∧(φ; s)]ρ

Γ(ρ) Γ(1− λ− l)Γ(1− λ)

3Γτ2

(1

x [∧(φ; s)]

)∗ 2F1

ρ, 1− λ− l;1− λ;

1

x [∧(φ; s)]

(49)

and

zρ−1 W l,−l,ξx,∞

tλ−13γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ+l−1

[∧(φ; s)]ρ

Γ(ρ) Γ(1− λ− l)Γ(1− λ)

3γτ2

(1

x [∧(φ; s)]

)∗ 2F1

ρ, 1− λ− l;1− λ;

1

x [∧(φ; s)]

(50)

Corollary 3.15. Suppose that t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters such

that min{R(λ),R(l)} > 0 and R(λ) > −min{0,R(ξ)}. Then the Pφ-transform of right-hand side Erdelyi-Kober fractional

derivative formulae holds:

zρ−1 Dl,0,ξ

0+

tλ−13Γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=xλ−1

[∧(φ; s)]ρ

Γ(ρ) Γ(λ+ l + ξ)

Γ(λ+ ξ)3Γτ2

(x

[∧(φ; s)]

)∗ 2F1

ρ, λ+ l + ξ;

λ+ ξ;

x

[∧(φ; s)]

(51)

and

zρ−1 Dl,0,ξ

0+

tλ−13γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=xλ−1

[∧(φ; s)]ρ

Γ(ρ) Γ(λ+ l + ξ)

Γ(λ+ ξ)3γτ2

(x

[∧(φ; s)]

)∗ 2F1

ρ, λ+ l + ξ;

λ+ ξ;

x

[∧(φ; s)]

(52)

Corollary 3.16. Suppose that φ > 1 t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C

be parameters such that min{R(λ),R(l)} > 0. Then the Pφ-transform of the right-hand side Riemann-Liouville fractional

derivative formulae holds

zρ−1 Dl,−l,ξ0+

tλ−13Γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=xλ−l−1

[∧(φ; s)]ρ

Γ(ρ) Γ(λ)

Γ(λ− l) 3Γτ2

(x

[∧(φ; s)]

)∗ 2F1

λ, ρ;

λ− l;

x

[∧(φ; s)]

(53)

and

zρ−1 Dl,−l,ξ0+

tλ−13γτ2

(σ, k), a, b;

c, d;zt

(x) : s

=xλ−l−1

[∧(φ; s)]ρ

Γ(ρ) Γ(λ)

Γ(λ− l) 3γτ2

(x

[∧(φ; s)]

)∗ 2F1

λ, ρ;

λ− l;

x

[∧(φ; s)]

(54)

134

Page 11: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Jai Prakash Patel and Neelam Pandey

Corollary 3.17. Suppose that φ > 1 t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters

such that min{R(λ),R(l)} > 0 and R(λ) > −min{0,R(ξ)}. Then the Pφ-transform of left-hand side Erdelyi-Kober fractional

derivative formulae holds:

zρ−1 Dl,0,ξ

0−

tλ−13Γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ−1

[∧(φ; s)]ρ

Γ(ρ) Γ(1− λ+ l + ξ)

Γ(1− λ+ ξ)3Γτ2

(1

x [∧(φ; s)]

)∗ 2F1

ρ, 1− λ+ l + ξ;

1− λ+ ξ;

1

x [∧(φ; s)]

(55)

and

zρ−1 Dl,0,ξ

0−

tλ−13γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ−1

[∧(φ; s)]ρ

Γ(ρ) Γ(1− λ+ l + ξ)

Γ(1− λ+ ξ)3γτ2

(1

x [∧(φ; s)]

)∗ 2F1

ρ, 1− λ+ l + ξ;

1− λ+ ξ;

1

x [∧(φ; s)]

(56)

Corollary 3.18. Suppose that φ > 1 t > 0, k ≥ 0; τ > 0;R(d) > R(a) > 0;R(c) > R(b) > 0 and l,m, ξ, λ ∈ C be parameters

such that min{R(λ),R(l)} > 0. Then the Pφ-transform of the left-hand side Riemann-Liouville fractional derivative formulae

holds:

zρ−1 Dl,−l,ξ0−

tλ−13Γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ−l−1

[∧(φ; s)]ρ

Γ(ρ) Γ(1− λ+ l)

Γ(1− λ)3Γτ2

(1

x [∧(φ; s)]

)∗ 2F1

ρ, 1− λ+ l;

1− λ;

1

x [∧(φ; s)]

(57)

and

zρ−1 Dl,−l,ξ0−

tλ−13γτ2

(σ, k), a, b;

c, d;

z

t

(x) : s

=xλ−l−1

[∧(φ; s)]ρ

Γ(ρ) Γ(1− λ+ l)

Γ(1− λ)3γτ2

(1

x [∧(φ; s)]

)∗ 2F1

ρ, 1− λ+ l;

1− λ;

1

x [∧(φ; s)]

(58)

Remark 3.19. It is interesting to observe that for φ→ 1 in pathway integral transform defined by (21) reduces to Laplace

transform, we obtain above results for Laplace transform.

Remark 3.20. In the above similar manner we will find Verma transform and Whittekar trasform of fractional derivative

of incomplete τ -hypergeometric function 3Γτ2(z).

4. Conclusion

This article provides certain image formulas pertaining incomplete generalized τ -hypergeometric function and Pathway

integral transform. Furthermore, the implementation of the Beta, Laplace and pathway integral transform on fractional

calculus operators of incomplete generalized τ -hypergeometric function have been discussed. The importance of using PΦ-

transform method is that we get a wider class of integrals varying from binomial to exponential function(See [5, 6]). The

method could lead to a promising approach for many applications in applied sciences.

135

Page 12: Fractional Calculus and Certain Integral Transform of ...ijmaa.in/v7n2/125-136.pdf · Abstract: In this paper, authors establish the some new integral and derivative formulas of generalized

Fractional Calculus and Certain Integral Transform of Extended τ -Hypergeometric Function

References

[1] A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-functions: Theory and Applications, Springer, New York, (2010).

[2] I. N. Sneddon, The use of integral transform, Tata McGraw-Hill, New Delhi, India, (1979).

[3] R. K. Gupta B. S. Shaktawat D. Kumar, Some results Associated with extended τ -Gauss Hypergeometric Functions and

its Properties, Ganit Sandesh, 28(1-2)(2014), 55-60.

[4] D. Kumar, An Extension of the τ -Gauss Hypergeometric Functions and its Properties, Mathematical Sciences and

Applications E-Notes, 5(1)(2017), 57-63.

[5] D. Kumar and A. A. Kilbas, Fractional calculus of P transform, Fractional Calculus and Appl. Anal., 13(3)(2010),

309-328.

[6] D. Kumar and H. J.Haubold, On Extended thermonuclear function through pathway model, Adv. Space Res., 45(2010),

698-708.

[7] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. College of General

Edu. Kyushu University, 1(1978), 135-143.

[8] E. D. Rainville, Special Functions, Macmillan Company, New York, (1960); Reprinted by Chelsea Publishing Company,

Bronx - New York, (1971).

[9] V. Kiryakova, Generalized Fractional Calculus and Applications, Wiley and Sons Inc., New York, (1994).

[10] D. Kumar, Solution of fractional kinetic by a class of integral transform of pathway type, Journal of Mathematical

Physics, 54(2013).

[11] R. K. Parmer, Extended τ -hypergeometric functions and associated properties, Computes Rendus Mathematique,

353(5)(2015), 421-426.

[12] H. M. Srivastava, A. Cetinkaya, I. O. Kiyamaz, A certain generalized Pochhammar symbol and its applications to

hypergeometric functions, Appl. Math. Comput., 216(2014), 484-491.

[13] H. M. Srivastava, R. Agarwal and S. Jai, Integral transform and fractional derivative formulas involving the extended

generalized hypergeometric functions and probability distributions, Math. Meth. Appl. Sci., 40(2017), 255-273.

[14] R. Agarwal and S. Jain, A Family of the Incomplete Hypergeometric functions and Associated Integral Transform and

Fractional Derivative Formulas, Filomat, 31(1)(2017), 125-140.

[15] R. Agarwal, S. Jain and R. P. Agarwal, Solution of fractional Volterra integral equation and non-homogeneous time

fractional heat equation using integral transform of pathway type, Progr. Fract. Different. Appl., 1(2015), 145-155.

[16] P. Agarwal, Certain properties of the generalized Gauss Hypergeometric functions, Appl. Math. Inform. Sci., 8(5)(2014),

2315-2320.

[17] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. kyushu Univ.,

11(1978), 135-143.

[18] R. K. Saxena, M. Saigo, Generalized fractional calculus of the H-function associated with the Appell function, J. Fract.

Calcul., 19(2001), 89-104.

[19] V. Kiryakova, On two Saigo’s fractional integral operators in the class of univalent functions, Fractional Calculus and

Applied Analysis, 9(2)(2006), 161-176.

136