Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t...

28
F!r-top events at " LHC from top-ilic new ysics Géraldine SERVANT, CERN-TH Léa Gauthier, Anne-Isabelle Etienvre (ATLAS, SPP, CEA Saclay ) paper in preparation, for a short preview see chapter 12, p.137 of 1005.1229 in collaboration with

Transcript of Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t...

Page 1: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

F!r-top events at " LHC

from top-philic new physicsGéraldine SERVANT, CERN-TH

● Léa Gauthier, Anne-Isabelle Etienvre (ATLAS, SPP, CEA Saclay )

paper in preparation, for a short preview see chapter 12, p.137 of 1005.1229

in collaboration with

Page 2: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

Four-top production in the Standard Model

t

t

t

t

q

qt

t

t

t

g

g

+ + ....

σLHC ~ 7.5 fb @ 14 TeV

➾ 4 top final state sensitive to several classes of new TeV scale physics

88 %

σLHC ~ 0.2 fb @ 7 TeV

e.g. SUSY (gluino pair production with g → t t χ0)~ -

top compositeness

Page 3: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

t

tg

g

t

tX

Low energy effective theory approach

After integrating out heavy resonances, we are left with higher dimensional operators such as

1Λ2

(tRγµtR)(tRγµtR)

leading to:

In particular, well-motivated models where new heavy resonances have a preference for the top quark

[Pomarol-Serra,’08] [Lillie-Shu-Tait,’08]

Page 4: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

t t - ν

ν -or

-t

t Z’

gg → tt + Z ′

tt + ET

tttt

Z′ →

νν

Z ′→tt

Z’ has suppressed couplings to light quarks -> no observable resonances

Four-top events from a top-philic and Dark Matter-philic Z’

instead:

Jackson, Servant, Shaughnessy,Tait, Taoso,’09

(DM)(DM)

t t-

Page 5: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

4-top production cross sections at the LHC

7 Study of an effective interaction

7.1 A few about theory

In low energy effective theory approch, after integrating out heavy resonances, we are left with higherdimensional operators such as :

1

Λ2(t̄RγµtR)(t̄RγµtR) (11)

leading to :

Fig. 74 – Feynman diagram of the process

7.2 Study of the process

7.2.1 cross section

On the figure ?? is represented the cross section of this process versus Λ for 14TeV in the center ofmass and a renormalisation and factorisation scale of 2mtop.

[GeV]!0 200 400 600 800 1000 1200 1400 1600

Cro

ss s

ecti

on

[fb

]

1

10

210

310

410

510

Cross section versus lambda for the effective interaction

(a)

[GeV]!, KK

, MZ’M400 600 800 1000 1200 1400 1600

Cro

ss s

ecti

on

[fb

]

-310

-210

-110

1

model KK

g

Z’ model

effective interaction

SM

=14TeVs for tt tt"pp

(b)

Fig. 75 – cross section of the effective interaction versus Λ for√

s = 14TeV and µ = µF = µR = 2mtop

(a) and superposition of this signal with the Kaluza Zlein model, the Z’ model and the SM (b)

7.2.2 polarisation

On the figure ?? is represented the value of the polarisation of the top (value of the parameter A inthe formula 7). These values are for the distribution of cos(θl+).

47

[pb]

(gZ′

tR= 3)

Page 6: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

ννq̄ ql+ l+ ν l+

B

t

W+

W−W+

W−

l+qq̄

b

T5/3

T̄5/3

W+W+

ν qq̄ qq̄

t

b

b̄W−

W−

same-sign dilepton channel powerful to get rid of the ttbar bgd

[Contino & Servant, ‘08]promising to search for WW final states from pair

production of heavy quarks (recently used by CDF to put bound on mass of 4th generation b’)

tttt production: similar final state but 2 additional b quarks- -

final state: l± l± + n jets + ET,missing

(of which 4 are b-jets)

t t-

Page 7: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

t

t

t

t−

−Z’

t

t

t

t

Z’

Four-top events from a top-philic Z’

Page 8: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

Higgs profile

!

BulkUVbrane

IRbrane

!light" SM fields live here

SM sector Composite sector

UV brane Bulk + IR brane

ds2 = e−2kydxµdxνηµν − dy2

RH top

is here

L = LSM − 14F ′

µνF ′µν + M2Z′Z ′

µZ ′µ + iν̄γµDµν + gtRt̄γµPRZ ′µt +

χ

2F ′

µνFµνY

Dµ ≡ ∂µ − i (gνRPR + gν

LPL) Z ′µ

A very simple effective theory

There is a new spontaneously broken U(1)’.The only SM particle with a large coupling to the Z’ is the top quark

This model is inspired by the Randall-Sundrum setup (warped extra dimension):

More generally, in models of partial fermion compositeness, natural to expect that only the top couples sizably to a new strongly interacting sector.

TeV KK modes (such as Z’) have enhanced couplings

to RH top quark

DM

Jackson, Servant, Shaughnessy,Tait, Taoso,’09 Agashe-Servant ’04; Belanger-Pukhov-Servant ’07

(as well as Higgs and DM)

Page 9: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

Yukawa hierarchy comes from the hierarchy of compositeness

Partial compositeness: Dual picture

zero mode mass eigen state is mixture of elementary and composite

Higgs is part of composite sector: it couples only to composite fermions

massless

SM sectorstrong sectorEWSBelementary fermions: χ

Higgsheavy fermions: ψ

vector resonances: ρ

linear mixing

massive

amount of compositeness in the light dof

|light >L= cos φ|χL > +sinφ|ψL >|heavy >L= − sinφ|χL > +cos φ|ψL >

|heavy >R= |ψR >

−∆χLψR

tanφ =∆M∗

Page 10: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

pp->ttZ’->tttt production cross section-- -

!

Gauthier L – Servant G – Etienvre A.I GDR Terascale 31 mars 2010 6

Cross section of the process

We work with √s = 14 TeV

We have : = 838 fb for m(Z') = 500GeV!

= 61 fb for m(Z')= 1 TeV!

If we work with √s = 7TeV = 110 fb for m(Z') = 400GeV!

!"#

$%&'

()*+

mass of Z’ [GeV]200 400 600 800 1000 1200 1400 1600 1800 2000

Cros

s se

ctio

n [p

b]

-410

-310

-210

-110

1

= 14 TeV s = 10 TeVs = 7 TeVs

SM 14 TeVSM 10 TeVSM 7 TeV

tt for pp->ttZ’Cross section versus M

(gZ′

tR= 3)

Page 11: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

) [GeV]tM(t400 600 800 1000 1200 1400 1600 1800

]-1

[GeV

)tdM

(t !d

!1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

) [GeV]tM(t400 600 800 1000 1200 1400 1600 1800

]-1

[GeV

)tdM

(t !d

!1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

)tdistribution of M(t from the Z’ for M(Z’)=1.2TeVtt

for M(Z’)=1.2TeVtspectator t

random combination for M(Z’)=1.2TeV

SM

= 500GeV"effective model for

t t invariant mass-

for 14TeV in the COM. We can see that the maximum of the distribution for the random combinationdepends on the mass of the Z’. So we plot this maximum versus the mass of the Z’.

mass of Z’ [GeV]400 600 800 1000 1200 1400 1600

)tm

axim

um

of

M(t

400

500

600

700

800

900

1000 / ndf 2! 0.2768 / 5

origine 74.97± 306.5 slope 0.1187± 0.3794

/ ndf 2! 0.2768 / 5origine 74.97± 306.5 slope 0.1187± 0.3794

)versus m(Z’)tmaximum of M(t

Fig. 19 – distribution of the maximum of the distribution M(tt̄) for a random combination versus themass of the Z’

Thanks to a fit on the figure 19 we find this dependance is linear and the parameters are :– origin of the curve : 306.5 ± 74.97– slope of the curve : 0.379 ± 0.12

3.3.3 Angle between the quarks

)"cos(-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

)"cos(-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

angle between the top and antitop

Z’=350GeV

tspectator tZ’=1500GeV

tspectator tSM

(a)

)"cos(-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

)"cos(-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

angle between the top and antitop for M(Z’)=800GeV

no cut on the Z’800GeV<M(Z’)<1000GeV

900GeV<M(Z’)<1100GeV

no cut for the SM

)<1000GeVt800GeV<M(t

)<1100GeVt900GeV<M(t

(b)

Fig. 20 – distribution of the angle between the top and antitop quarks from the Z’, for the spectator tt̄and for the SM (a) and distribution of this angle for different cuts if M(Z’)=800GeV (b)

For low Z’ masses the quarks are emitted with low angles due to small values of the transverse momen-tum and for higher masses it is the contrary. For the SM we take the random combination. For this figurethe curves are normalized to 1.

14

for random combination

Page 12: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

) [GeV]tM(t400 600 800 1000 1200 1400 1600

Num

ber o

f eve

nts/

(12G

eV)

-210

-110

1

10

210

) [GeV]tM(t400 600 800 1000 1200 1400 1600

Num

ber o

f eve

nts/

(12G

eV)

-210

-110

1

10

210

=14TeVs and -1L=200pbMz’=350 GeVMz’=500 GeVMz’=800 GeVMz’=1200 GeVSM

3.3.2 Study of the invariant mass Mtt̄

) [GeV]tM(t

400 600 800 1000 1200 1400 1600

Nu

mb

er

of

even

ts/(

12

GeV

)

-210

-110

1

10

210

) [GeV]tM(t

400 600 800 1000 1200 1400 1600

Nu

mb

er

of

even

ts/(

12

GeV

)

-210

-110

1

10

210

=14TeVs and -1L=200pb

Mz’=350 GeV

Mz’=500 GeV

Mz’=800 GeV

Mz’=1200 GeV

SM

(a)

[GeV]T

with the highest pt for the t and tt

M

500 1000 1500 2000 2500

Nu

mb

er

of

eve

nts

/(12

Ge

V)

-210

-110

1

10

[GeV]T

with the highest pt for the t and tt

M

500 1000 1500 2000 2500

Nu

mb

er

of

eve

nts

/(12

Ge

V)

-210

-110

1

10

=14TeVs and -1L=200pb

Mz’=350 GeV

Mz’=500 GeV

Mz’=800 GeV

Mz’=1200 GeV

SM

(b)

Fig. 17 – distribution of the invariant mass Mtt̄ for different masses of the Z’ with a luminosity of 200pb−1

(a) and distribution of this mass for the highest top and the highest antitop (b)

The figure 17 represents the invariant mass Mtt̄ when the top/antitop comes from the Z’. This studyhas been done for different masses of the Z’ and for 14TeV in the COM. We see here that the maximum ofthe distribution depends on the mass of the Z’.For the SM we use a random combination corresponding to all possible combinations between the tops andantitops and we take the average of this mass.

) [GeV]tM(t

400 600 800 1000 1200 1400

Nu

mb

er

of

even

ts/(

13G

eV

)

0

2

4

6

8

10

12

14

16

18

) [GeV]tM(t

400 600 800 1000 1200 1400

Nu

mb

er

of

even

ts/(

13G

eV

)

0

2

4

6

8

10

12

14

16

18

) for M(Z’)=500 GeVtdistribution of M(t

=14TeVs and -1L=200pb

from the Z’tt

tspectator t

random combination

SM

(a)

) [GeV]tM(t

500 1000 1500 2000

Nu

mb

er

of

even

ts/(

13G

eV

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

) [GeV]tM(t

500 1000 1500 2000

Nu

mb

er

of

even

ts/(

13G

eV

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

) for M(Z’)=1.2TeVtdistribution of M(t

=14TeVs and -1L=200pb

from the Z’tt

tspectator t

random combination

SM

(b)

Fig. 18 – distribution of the mass Mtt̄ for the top/antitop which come from the Z’, for the spectator tt̄and for a random combination of the (anti-)top for m(Z’)=500 GeV (a) and m(Z’)=1.2TeV (b)

The figure 18 represents the distribution of the mass Mtt̄ for the tt̄ from the Z’ and the spectator tt̄

13

t t invariant mass versus MZ’-

for t t from Z’-

Page 13: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

3.3.4 top polarisation [4]

The polarisation of the top quarks is studied from the angular distribution of their decay products. Inthe decay channel t → W+b → l+ν the angular distribution of the particle X (X = W+, l+, ν) is given by :

1

Γ

d cos θX=

1

2(1 + αX cos θX) (6)

where θX is the angle between the direction of X and the top spin axis in the top rest frame.

The constants αX take the values [8] :– αl+ = αd̄ = 1– αν = αu = −0.32– αW+ = −αb = 0.41

From the equation 6 we obtain the top production differential cross-section :

1

σ

d cos θX= FR + FL =

A

2(1 + αX cos θX) +

1 − A

2(1 − αX cos θX) = (A −

1

2)αX cos θX +

1

2(7)

top production differential cross-section

We study here the distribution of cos θl+ for M(Z’)=800 GeV and 14 TeV in the COM. For the SM wetake the lepton coming from the top with the highest Pt.

)!cos(-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

)!cos(-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

Polarisation of the top

Z’ Model

SM

Z’ Model : A=0.78

SM : A=0.50

Fig. 21 – distribution of cos(θ) for the Exotic Model with a top right and for the SM

With a fit on the figure 21 thanks to the formula 7, we find :– A # 0.78 ± 0.18 for the exotic model with a right top– A # 0.50 ± 0.11 for the SM.

15

The value of the parameter A depends on the value of the mass of Z’. We can see this dependance onthe figure 22.

Z’M500 1000 1500 2000 2500

va

lue

of

A

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z’Value of the polarisation versus M

(a)

Z’M500 1000 1500 2000 2500

va

lue

of

A

0.55

0.6

0.65

0.7

0.75

0.8

0.85

top from Z’

spectator top 1

spectator top 2

Z’Value of the polarisation versus M

(b)

Fig. 22 – value of the parameter A versus the mass of the Z’ for the tops (from the Z’ and spectator) (a)and value of this parameter for the top from the Z’, the closest (anti)top from the Z’ (spectator top 1) andthe other spectator (anti)top (spectator top 2) (b)

The value of the parameter A decrease at low masses of the Z’ because at low transverse momentumthe spin of the lepton has time to flip. For high masses of the Z’, the maximum value at 0.8 is due the massof the top [9]. If the top was massless we can expect that A ∼ 1.

3.3.5 Spin correlation

We consider here the distribution

1

N

d2N

d cos θ1.d cos θ2=

1

4(1 − A cos θ1 cos θ2 + b1 cos θ1 + b2 cos θ2) (8)

where θx is the angle between the direction of the lepton x in the top frame and the direction of thetop.We study here the same sign dilepton decay (the explanation about the choice of this channel is given inthe chapter 6).The leptons 1 and 2 represent the 2 leptons of same sign in the final state.

This distribution doesn’t depends on the mass of the Z’ for the top-philic model. But the distriutionfor the SM is very different. We have here a discriminant variable.

After a fit on the figure 23 we find the coefficients A, b1 and b2 of the formula 8.

- Z’(500GeV) Z’(1TeV) Z’(1.5TeV) SMA -0.25 -0.23 -0.31 0.038b1 0.44 0.55 0.54 -0.0073b2 0.41 0.55 0.60 -0.03

Tab. 2 – Value of the coefficient A for the SM and the signal for differents masses of Z’

16

top polarization

The lightest mass eigenstate is identified as the top quark. It can have a large coupling to Z ′ through its

ψ component.

Four-top production arises via the diagrams shown in Fig. 3. Given that the Z ′ under consideration

has suppressed couplings to all SM fields (induced by the kinetic mixing χ) but the top quarks, constraintsare weak and a mass of a few hundreds of GeV is allowed, which can lead to large four-top signals at the

LHC. A detailed study is presented in [14] and compares with the non-resonant four-top events obtained

from the effective four-fermion interaction (tRγµtR)(tRγµtR)/Λ2 leading to the diagram 1(d). The

corresponding cross sections at LHC as a function of the Z ′ mass and Λ are shown in Fig. 2.

t

t

t

t−

−Z’

t

t

t

t

Z’

Fig. 3: Four-top production via Z ′

An interesting way to probe the properties of the top interactions relies on measuring the top

polarization. The SM four top production being dominated by parity invariant QCD processes, we expect

to generate an equal number of left and right-handed pairs. However, in the new physics models discussed

here, there is a strong bias towards RH tops. The angular distribution of the leptons from the top decays

enables to analyze the polarisation of the top quarks. The differential cross section can be written as

1

σ

d cos θ=

A

2(1 + cos θ) +

1 − A

2(1 − cos θ) (3)

where θ is the angle between the direction of the lepton in the top rest frame and the direction of the toppolarization. The corresponding distribution is illustrated in Fig. 4.

In Fig. 5, we show the invariant mass Mtt of the tt pair coming from the Z ′ for different MZ′

masses as well as Mtt from the SM four-top events. The latter peaks close to 600 GeV. We also display

the maximum of the tt pair transverse energy distribution as a function ofMZ′ . Fig. 6 compares theMtt

distributions of the tt pair emitted by a Z ′ withMZ′ = 1.2 TeV, the spectator tt pair, which peaks around500 GeV and the tt pair produced by the effective 4-fermion contact interaction.

3. RECONSTRUCTION

Reconstruction of four top events is a challenge to the detector and event reconstruction. The decay of the

top quarks gives rise to twelve fermions. To benefit from the same-sign lepton signature two W bosons

must decay to lepton-neutrino. The presence of two escaping neutrinos then prevents a complete recon-

struction of the twelve momenta. In the most abundantly produced final states, most of the remaining

fermions will be quarks, giving rise to a large jet multiplicity.

The minimal approach to reconstruction merely registers the scalar sum of the transverse energy

of all final state objects. The HT distribution for a 500 GeV and 1 TeV Z’ resonance as described in

the previous section are shown in Figure 7. For sufficiently large resonance mass, i.e. for mZ′ = 1

TeV in the central panel, the signal distribution clearly differs from that of some important (reducible)

backgrounds like tt̄W±+ jets and tt̄W+W−.

A further experimental signature of the four-top final states is the large b-jet multiplicity which

can be used as a powerful tool to extract the signal even coming from a heavy resonance as shown in

θ is the angle between the direction of the (highest pT) lepton in the top rest frame and the direction of the top polarisation

A: fraction of RH tops

In the models of interest, 4-top production yields an excess of right-handed tops

Page 14: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

angle_leptons

Entries 4849Mean x 0.1304Mean y 0.1412RMS x 0.5607RMS y 0.5543

angle_leptons

Entries 4849Mean x 0.1304Mean y 0.1412RMS x 0.5607RMS y 0.5543

for M(Z’)=500GeV)

2!).dcos(

1!dcos(

.N2d.

N1

(a)

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.005

0.01

0.015

0.02

0.025

angle_leptons

Entries 3825Mean x 0.1806

Mean y 0.1739

RMS x 0.5498RMS y 0.5491

angle_leptons

Entries 3825Mean x 0.1806

Mean y 0.1739

RMS x 0.5498RMS y 0.5491 for M(Z’)=1TeV

)2!).dcos(

1!dcos(

.N2d.

N1

(b)

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.005

0.01

0.015

0.02

0.025

0.03

angle_leptons

Entries 2478Mean x 0.1953Mean y 0.1798RMS x 0.5487RMS y 0.5535

angle_leptons

Entries 2478Mean x 0.1953Mean y 0.1798RMS x 0.5487RMS y 0.5535

for M(Z’)=1.5TeV)

2!).dcos(

1!dcos(

.N2d.

N1

(c)

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.006

0.008

0.01

0.012

0.014

0.016

0.018

angle_leptonsEntries 2126Mean x -0.007526Mean y -0.0007526RMS x 0.5736RMS y 0.5785

angle_leptonsEntries 2126Mean x -0.007526Mean y -0.0007526RMS x 0.5736RMS y 0.5785

for the SM)

2!).dcos(

1!dcos(

.N2d.

N1

(d)

Fig. 23 – distribution of d2Nd cos θ1.d cos θ2

for different masses of the Z’ (a) to (c) and for the SM (d)

3.3.6 Opening angle

The opening angle is the angle between the momentum of the lepton l+ in the top frame and themomentum of the lepton l− in the antitop frame.We see on the figure 24 that this variable is not discriminant.

)"cos(-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

)"

dco

s(

dN

.N1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

)"cos(-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

)"

dco

s(

dN

.N1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Opening angle

from the Z’ for m(Z’)=350GeVtt

for m(Z’)=350GeVtspectator t

from the Z’ for m(Z’)=2TeVtt

for m(Z’)=2TeVtspectator t

SM

Fig. 24 – distribution of the opening angle for the SM and the signal with : the tt̄ from the Z’ and thespectator tt̄

17

Spin correlations3.3.5 Spin correlation

We consider here the distribution

1

N

d2N

d cos θ1.d cos θ2=

1

4(1 − A cos θ1 cos θ2 + b1 cos θ1 + b2 cos θ2) (8)

where θx is the angle between the direction of the lepton x in the top frame and the direction of thetop.We study here the same sign dilepton decay (the explanation about the choice of this channel is given inthe chapter 6).The leptons 1 and 2 represent the 2 leptons of same sign in the final state.

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

angle_leptons

Entries 4849Mean x 0.1304Mean y 0.1412RMS x 0.5607RMS y 0.5543

angle_leptons

Entries 4849Mean x 0.1304Mean y 0.1412RMS x 0.5607RMS y 0.5543

for M(Z’)=500GeV)

2!).dcos(

1!dcos(

.N2d.

N1

(a)

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.005

0.01

0.015

0.02

0.025

angle_leptons

Entries 3825Mean x 0.1806

Mean y 0.1739

RMS x 0.5498RMS y 0.5491

angle_leptons

Entries 3825Mean x 0.1806

Mean y 0.1739

RMS x 0.5498RMS y 0.5491 for M(Z’)=1TeV

)2!).dcos(

1!dcos(

.N2d.

N1

(b)

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.005

0.01

0.015

0.02

0.025

0.03

angle_leptons

Entries 2478Mean x 0.1953Mean y 0.1798RMS x 0.5487RMS y 0.5535

angle_leptons

Entries 2478Mean x 0.1953Mean y 0.1798RMS x 0.5487RMS y 0.5535

for M(Z’)=1.5TeV)

2!).dcos(

1!dcos(

.N2d.

N1

(c)

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.006

0.008

0.01

0.012

0.014

0.016

0.018

angle_leptonsEntries 2126Mean x -0.007526Mean y -0.0007526RMS x 0.5736RMS y 0.5785

angle_leptonsEntries 2126Mean x -0.007526Mean y -0.0007526RMS x 0.5736RMS y 0.5785

for the SM)

2!).dcos(

1!dcos(

.N2d.

N1

(d)

Fig. 24 – distribution of d2Nd cos θ1.d cos θ2

for different masses of the Z’ (a) to (c) and for the SM (d)

This distribution doesn’t depends on the mass of the Z’ for the top-philic model. But the distriutionfor the SM is very different. We have here a discriminant variable.

After a fit on the figure 24 we find the coefficients A, b1 and b2 of the formula 8.

- Z’(500GeV) Z’(1TeV) Z’(1.5TeV) SMA -0.14±0.29 -0.22±0.27 -0.26±0.23 -0.11±0.3b1 0.43±0.32 0.56±0.32 0.64±0.29 -0.0051±0.29b2 0.53±0.32 0.61±0.31 0.57±0.33 -0.03±0.29

Tab. 2 – Value of the coefficient A, b1 and b2 for the SM and the signal for differents masses of Z’

17

3.3.5 Spin correlation

We consider here the distribution

1

N

d2N

d cos θ1.d cos θ2=

1

4(1 − A cos θ1 cos θ2 + b1 cos θ1 + b2 cos θ2) (8)

where θx is the angle between the direction of the lepton x in the top frame and the direction of thetop.We study here the same sign dilepton decay (the explanation about the choice of this channel is given inthe chapter 6).The leptons 1 and 2 represent the 2 leptons of same sign in the final state.

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

angle_leptons

Entries 4849Mean x 0.1304Mean y 0.1412RMS x 0.5607RMS y 0.5543

angle_leptons

Entries 4849Mean x 0.1304Mean y 0.1412RMS x 0.5607RMS y 0.5543

for M(Z’)=500GeV)

2!).dcos(

1!dcos(

.N2d.

N1

(a)

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.005

0.01

0.015

0.02

0.025

angle_leptons

Entries 3825Mean x 0.1806

Mean y 0.1739

RMS x 0.5498RMS y 0.5491

angle_leptons

Entries 3825Mean x 0.1806

Mean y 0.1739

RMS x 0.5498RMS y 0.5491 for M(Z’)=1TeV

)2!).dcos(

1!dcos(

.N2d.

N1

(b)

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.005

0.01

0.015

0.02

0.025

0.03

angle_leptons

Entries 2478Mean x 0.1953Mean y 0.1798RMS x 0.5487RMS y 0.5535

angle_leptons

Entries 2478Mean x 0.1953Mean y 0.1798RMS x 0.5487RMS y 0.5535

for M(Z’)=1.5TeV)

2!).dcos(

1!dcos(

.N2d.

N1

(c)

cos theta1-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1cos theta2

-1-0.8

-0.6-0.4

-0.20

0.20.4

0.60.81

0.006

0.008

0.01

0.012

0.014

0.016

0.018

angle_leptonsEntries 2126Mean x -0.007526Mean y -0.0007526RMS x 0.5736RMS y 0.5785

angle_leptonsEntries 2126Mean x -0.007526Mean y -0.0007526RMS x 0.5736RMS y 0.5785

for the SM)

2!).dcos(

1!dcos(

.N2d.

N1

(d)

Fig. 24 – distribution of d2Nd cos θ1.d cos θ2

for different masses of the Z’ (a) to (c) and for the SM (d)

This distribution doesn’t depends on the mass of the Z’ for the top-philic model. But the distriutionfor the SM is very different. We have here a discriminant variable.

After a fit on the figure 24 we find the coefficients A, b1 and b2 of the formula 8.

- Z’(500GeV) Z’(1TeV) Z’(1.5TeV) SMA -0.14±0.29 -0.22±0.27 -0.26±0.23 -0.11±0.3b1 0.43±0.32 0.56±0.32 0.64±0.29 -0.0051±0.29b2 0.53±0.32 0.61±0.31 0.57±0.33 -0.03±0.29

Tab. 2 – Value of the coefficient A, b1 and b2 for the SM and the signal for differents masses of Z’

17

Page 15: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

!"

Gauthier L – Servant G – Etienvre A.I GDR Terascale 31 mars 2010 10

Same sign dilepton channel (e or µ)

!"#$%&& '()*+, '-./012123()*+,

&45671(809:3(;(<==>%? @A@-B@ BC-<

&45671(809:3(;(B(D%? EB-BF B-A

GGGG C-<H =-B<

GGII BH=-@ <-B

GGI(J(0=KBKH3(L%G& <F< B@-M

III(J(0=KBKH3(L%G& E=A B@-C

II(J(0=KBKHKAKM3(L%G& AHM B<-<

The same sign dilepton channel eliminates the background tt ( = 800 pb! )

" We don't take into account the detector effect

similar final state studied in Contino-Servant' 08

background in same-sign dilepton channel @LHC

final state: l± l± + n jets + ET

(of which 4 are b-jets)

tt+jets with charge mis-ID not included here (but will be)-

Page 16: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

6.2 Study with the jets

We work here with a b-efficiency of 100% and no mistage for the light jets.

6.2.1 Study on the jets

>30GeVT

total number of jets if P0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

>30GeVT

total number of jets if P0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5signal

ttpp -> tt-

W+Wtpp -> t

+ jets±Wtpp -> t + jets±W

-W

+pp -> W

+ jets±W±pp -> W

(a)

>30GeVT

number of b-jets if P0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

>30GeVT

number of b-jets if P0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1 signal

ttpp -> tt-

W+

Wtpp -> t

+ jets±Wtpp -> t

+ jets±W-

W+

pp -> W

+ jets±W±pp -> W

(b)

>30GeVT

total number of jet if P2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

>30GeVT

total number of jet if P2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25m(Z’)=500GeV

m(Z’)=1TeV

m(Z’)=1.5TeV

(c)

Fig. 53 – Distribution of the total number of jets for Pt > 30GeV (a), distribution of the number of b jetsfor Pt > 15GeV (b) and distribution of the total number of jets for different masses of the Z’ (c). Thesedistributions are normalized to 1 and the jet cone size is ∆R = 0.4.

34

6.2 Study with the jets

We work here with a b-efficiency of 100% and no mistage for the light jets.

6.2.1 Study on the jets

>30GeVT

total number of jets if P0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

>30GeVT

total number of jets if P0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5signal

ttpp -> tt-

W+Wtpp -> t

+ jets±Wtpp -> t + jets±W

-W

+pp -> W

+ jets±W±pp -> W

(a)

>30GeVT

number of b-jets if P0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

>30GeVT

number of b-jets if P0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1 signal

ttpp -> tt-

W+

Wtpp -> t

+ jets±Wtpp -> t

+ jets±W-

W+

pp -> W

+ jets±W±pp -> W

(b)

>30GeVT

total number of jet if P2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25

>30GeVT

total number of jet if P2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

0.25m(Z’)=500GeV

m(Z’)=1TeV

m(Z’)=1.5TeV

(c)

Fig. 53 – Distribution of the total number of jets for Pt > 30GeV (a), distribution of the number of b jetsfor Pt > 15GeV (b) and distribution of the total number of jets for different masses of the Z’ (c). Thesedistributions are normalized to 1 and the jet cone size is ∆R = 0.4.

34

# of jets

Page 17: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

four-top events from a top-philic Z’ @LHC in same-sign dilepton channel

nb jets ! 3preliminary

) [GeV]tM(t

400 600 800 1000 1200 1400 1600 1800

]-1

[G

eV

)td

M(t !

d !1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

) [GeV]tM(t

400 600 800 1000 1200 1400 1600 1800

]-1

[G

eV

)td

M(t !

d !1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

)tdistribution of M(t

from the Z’ for M(Z’)=1.2TeVtt

for M(Z’)=1.2TeVtspectator t

random combination for M(Z’)=1.2TeV

SM

= 500GeV"effective model for

Fig. 6: Comparison of the different tt invariant mass distributions.

[GeV]TH

500 1000 1500 2000 2500

Nu

mb

er

of

ev

en

ts/(

50

Ge

V)

0

2

4

6

8

10

12

14

16

18

20

[GeV]TH

500 1000 1500 2000 2500

Nu

mb

er

of

ev

en

ts/(

50

Ge

V)

0

2

4

6

8

10

12

14

16

18

20=14TeVs, -1L = 10fb

= 500GeVZ’

signal M

ttpp -> tt-

W+

Wtpp -> t

+ jets±Wtpp -> t + jets±W

-W

+pp -> W

+ jets±W±pp -> W

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

ev

en

ts/(

50

Ge

V)

0

2

4

6

8

10

12

14

16

18

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

ev

en

ts/(

50

Ge

V)

0

2

4

6

8

10

12

14

16

18 =14TeVs, -1L = 100fb = 1TeV

Z’signal M

ttpp -> tt-

W+Wtpp -> t

+ jets±Wtpp -> t + jets±W

-W

+pp -> W

+ jets±W±pp -> W

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

ev

en

ts/(

50

Ge

V)

0

2

4

6

8

10

12

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

ev

en

ts/(

50

Ge

V)

0

2

4

6

8

10

12 =14TeVs, -1L = 100fb = 1TeV

Z’signal M

ttpp -> tt-

W+Wtpp -> t + jets±Wtpp -> t

+ jets±W-

W+pp -> W + jets±W±pp -> W

Fig. 7: Total transverse energy after demanding nj ≥ 6, pT > 30 GeV (first two plots) and in addition nb−jet ≥ 3

(third plot).

tt̄H topology. An alternative approach presents itself when one considers the reconstruction of tt̄ eventsoriginating in the decay of a heavy resonance. Due to the boost of the top quark, its decay products

are collimated in a narrow cone. This top mono-jet can be identified as such by techniques revealing

the jet substructure [15, 9, 16, 17, 18, 19]. Importantly, for sufficiently large resonance mass the decay

products of top and anti-top are cleanly separated. A simple assignment based on (geometrical) vicinity

is sufficient to find the correct assignment of jets to top candidates. Thus, the ambiguities found in

reconstruction of “tops at rest” disappear in regime of large top pT .

To quantify this statement a parton level simulation of pp → X → tt̄ has been analysed. Lep-ton+jets events are selected, where one of the W bosons decays to a lepton and a neutrino and the second

MZ′ = 500 GeV MZ′ = 1 TeV

) [GeV]tM(t

400 600 800 1000 1200 1400 1600 1800

]-1

[G

eV

)td

M(t !

d !1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

) [GeV]tM(t

400 600 800 1000 1200 1400 1600 1800

]-1

[G

eV

)td

M(t !

d !1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

)tdistribution of M(t

from the Z’ for M(Z’)=1.2TeVtt

for M(Z’)=1.2TeVtspectator t

random combination for M(Z’)=1.2TeV

SM

= 500GeV"effective model for

Fig. 6: Comparison of the different tt invariant mass distributions.

[GeV]TH

500 1000 1500 2000 2500

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12

14

16

18

20

[GeV]TH

500 1000 1500 2000 2500

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12

14

16

18

20=14TeVs, -1L = 10fb

= 500GeVZ’

signal M

ttpp -> tt-

W+

Wtpp -> t

+ jets±Wtpp -> t + jets±W

-W

+pp -> W

+ jets±W±pp -> W

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12

14

16

18

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12

14

16

18 =14TeVs, -1L = 100fb = 1TeV

Z’signal M

ttpp -> tt-

W+Wtpp -> t

+ jets±Wtpp -> t + jets±W

-W

+pp -> W

+ jets±W±pp -> W

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12 =14TeVs, -1L = 100fb = 1TeV

Z’signal M

ttpp -> tt-

W+Wtpp -> t + jets±Wtpp -> t

+ jets±W-

W+pp -> W + jets±W±pp -> W

Fig. 7: Total transverse energy after demanding nj ≥ 6, pT > 30 GeV (first two plots) and in addition nb−jet ≥ 3

(third plot).

tt̄H topology. An alternative approach presents itself when one considers the reconstruction of tt̄ eventsoriginating in the decay of a heavy resonance. Due to the boost of the top quark, its decay products

are collimated in a narrow cone. This top mono-jet can be identified as such by techniques revealing

the jet substructure [15, 9, 16, 17, 18, 19]. Importantly, for sufficiently large resonance mass the decay

products of top and anti-top are cleanly separated. A simple assignment based on (geometrical) vicinity

is sufficient to find the correct assignment of jets to top candidates. Thus, the ambiguities found in

reconstruction of “tops at rest” disappear in regime of large top pT .

To quantify this statement a parton level simulation of pp → X → tt̄ has been analysed. Lep-ton+jets events are selected, where one of the W bosons decays to a lepton and a neutrino and the second

with b-tagging efficiency=1

Page 18: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

6.3 Study with a b-efficiency of 60% (extrapolation).

In order to extrapolate the results for an efficiency of 60%, we renormalize the distributions with nb-jets by 0.6n.In the figure ?? the distributions for one b-efficiency are added.

[GeV] TH

500 1000 1500 2000

Nu

mb

er

of

eve

nts

/(50

GeV

)

0

2

4

6

8

10

12

14

16

18

20

[GeV] TH

500 1000 1500 2000

Nu

mb

er

of

eve

nts

/(50

GeV

)

0

2

4

6

8

10

12

14

16

18

20=500GeV

Z’=14TeV, Ms,

-1L = 10fb

signal, b-efficiency=1

background, b-efficiency=1

signal, b-efficiency=0.6

background, b-efficiency=0.6

[GeV] TH

500 1000 1500 2000 2500

Nu

mb

er

of

ev

en

ts/(

50

GeV

)

0

2

4

6

8

10

12

14

[GeV] TH

500 1000 1500 2000 2500

Nu

mb

er

of

ev

en

ts/(

50

GeV

)

0

2

4

6

8

10

12

14=1TeV

Z’=14TeV, Ms, -1L = 100fb

signal, b-efficiency=1

background, b-efficiency=1

signal, b-efficiency=0.6

background, b-efficiency=0.6

Fig. 69 – Distribution of HT for b-efficiency=100% and b-efficiency=60% for nb total jets ≥ 6, nb b jets≥3 and pT > 30GeV

[GeV] TH

500 1000 1500 2000

Nu

mb

er

of

even

ts/(

50G

eV

)

0

0.5

1

1.5

2

2.5

3

3.5

[GeV] TH

500 1000 1500 2000

Nu

mb

er

of

even

ts/(

50G

eV

)

0

0.5

1

1.5

2

2.5

3

3.5

=500GeVZ’

=14TeV, Ms, -1L = 10fb

signal, b-efficiency=0.6

background, b-efficiency=0.6

[GeV] TH

500 1000 1500 2000 2500

Nu

mb

er

of

even

ts/(

50G

eV

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

[GeV] TH

500 1000 1500 2000 2500

Nu

mb

er

of

even

ts/(

50G

eV

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4=1TeV

Z’=14TeV, Ms, -1L = 100fb

signal, b-efficiency=0.6

background, b-efficiency=0.6

Fig. 70 – Distribution of HT if b-efficiency=60% for nb total jets ≥ 6, nb b jets ≥3 and pT > 30GeV

In the table ?? are reported the number of events and background extrapolated for a b-efficiency of60% :

44

with b-tagging efficiency of 60%

Page 19: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

MZ’ =500 GeV 5σ excess luminosity~ 150 pb-1

MZ’ =1 TeV 5σ excess luminosity~ 25 fb-1

Λ = 500 GeV 5σ excess luminosity~ 15 fb-1

preliminary

) [GeV]tM(t

400 600 800 1000 1200 1400 1600 1800

]-1

[G

eV

)td

M(t !

d !1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

) [GeV]tM(t

400 600 800 1000 1200 1400 1600 1800

]-1

[G

eV

)td

M(t !

d !1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

)tdistribution of M(t

from the Z’ for M(Z’)=1.2TeVtt

for M(Z’)=1.2TeVtspectator t

random combination for M(Z’)=1.2TeV

SM

= 500GeV"effective model for

Fig. 6: Comparison of the different tt invariant mass distributions.

[GeV]TH

500 1000 1500 2000 2500

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12

14

16

18

20

[GeV]TH

500 1000 1500 2000 2500

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12

14

16

18

20=14TeVs, -1L = 10fb

= 500GeVZ’

signal M

ttpp -> tt-

W+

Wtpp -> t

+ jets±Wtpp -> t + jets±W

-W

+pp -> W

+ jets±W±pp -> W

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12

14

16

18

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12

14

16

18 =14TeVs, -1L = 100fb = 1TeV

Z’signal M

ttpp -> tt-

W+Wtpp -> t

+ jets±Wtpp -> t + jets±W

-W

+pp -> W

+ jets±W±pp -> W

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12

[GeV]TH

500 1000 1500 2000 2500 3000

Nu

mb

er

of

even

ts/(

50G

eV

)

0

2

4

6

8

10

12 =14TeVs, -1L = 100fb = 1TeV

Z’signal M

ttpp -> tt-

W+Wtpp -> t + jets±Wtpp -> t

+ jets±W-

W+pp -> W + jets±W±pp -> W

Fig. 7: Total transverse energy after demanding nj ≥ 6, pT > 30 GeV (first two plots) and in addition nb−jet ≥ 3

(third plot).

tt̄H topology. An alternative approach presents itself when one considers the reconstruction of tt̄ eventsoriginating in the decay of a heavy resonance. Due to the boost of the top quark, its decay products

are collimated in a narrow cone. This top mono-jet can be identified as such by techniques revealing

the jet substructure [15, 9, 16, 17, 18, 19]. Importantly, for sufficiently large resonance mass the decay

products of top and anti-top are cleanly separated. A simple assignment based on (geometrical) vicinity

is sufficient to find the correct assignment of jets to top candidates. Thus, the ambiguities found in

reconstruction of “tops at rest” disappear in regime of large top pT .

To quantify this statement a parton level simulation of pp → X → tt̄ has been analysed. Lep-ton+jets events are selected, where one of the W bosons decays to a lepton and a neutrino and the second

nb jets ! 3with only the very simple cuts:

,

(gZ′

tR= 3)

Page 20: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

[GeV]T,missE

0 100 200 300 400 500 600 700 800 900 1000

Nu

mb

er

of

ev

en

ts/(

20

Ge

V)

0

0.5

1

1.5

2

2.5

[GeV]T,missE

0 100 200 300 400 500 600 700 800 900 1000

Nu

mb

er

of

ev

en

ts/(

20

Ge

V)

0

0.5

1

1.5

2

2.5

=14TeVs, -1L = 100fb

m(Z’)=800GeV

m(Z’)=1TeV

m(Z’)=1.2TeV

SM

(a)

[GeV]TH

500 1000 1500 2000 2500

Nu

mb

er

of

ev

en

ts/(

50

Ge

V)

0

0.5

1

1.5

2

2.5

[GeV]TH

500 1000 1500 2000 2500

Nu

mb

er

of

ev

en

ts/(

50

Ge

V)

0

0.5

1

1.5

2

2.5

=14TeVs, -1L = 100fb

m(Z’)=800GeV

m(Z’)=1TeV

m(Z’)=1.2TeV

SM

(b)

Fig. 43 – Distribution of the transverse missing energy (a) and the total transverse energy for differentmasses of the Z’ and the SM

It seems that the maximum of the total transverse energy depends on the mass of the Z’. We plot thetotal transverse energy versus the mass of the Z’.

M(Z’) [GeV]400 600 800 1000 1200 1400 1600

Tm

axim

um

of

H

700

800

900

1000

1100

1200

1300

1400

1500 / ndf 2! 2.041 / 5

origine (signal) 77.68± 598.9

slope (signal) 0.1163± 0.5555

/ ndf 2! 2.041 / 5

origine (signal) 77.68± 598.9

slope (signal) 0.1163± 0.5555

versus M(Z’)TH

Fig. 44 – total transverse energy versus the mass of the Z’

Thanks to a fit on the figure 5.3, we find :– slope of the curve : 0.55551 ± 0.12– origin of the curve : 598.941 ± 77.68

27

Max of

Page 21: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

Mtt (GeV)0 500 1000 1500 2000 2500

Fra

ction o

f events

0

0.2

0.4

0.6

0.8

1

(a)

mass (GeV)tt

0 500 1000 1500 2000 2500

-1events

/50 G

eV

/100 fb

0

1

2

3

4

5

6

7

(b)

reconstructed mass (GeV)0 500 1000 1500 2000 2500

-1events

/50 G

eV

/100 fb

0

1

2

3

4

5

6

7

(c)

Fig. 8: The probability as a function of resonance mass that final state fermions are correctly assigned to top and anti-top

quarks in tt̄ production (open circles) and tt̄tt̄ production. The filled circles (triangles) indicate the probability to find two

(four) correctly paired top quarks. The central panel shows the invariant mass distribution of the two top quarks with highest

pT in SM tt̄tt̄ production (filled histogram) and for production through a 1.5 TeV KK gluon. The rightmost panel shows the

invariant mass of the two reconstructed clusters with highest pT .

W boson decay to two jets. The neutrino is discarded and the momenta of the remaining five fermions

is presented to the kT algorithm [20, 21] for clustering 3. Clustering is considered correct whenever

all decay products from the top (and anti-top) quark are clustered together in a single jet. The result is

represented with open circles in the leftmost plot of figure 8. For tops produced at rest the probability

of correctly clustering the event is essentially equal to 0. For resonant tt̄ production the probability tofind the correct assignment increases rapidly as the resonance mass is increased. The decay products of

the top and anti-top quark are collimated more and more in a narrow cone, while the top anti-top are

emitted essentially back-to-back. Indeed, for a resonance mass of 1 TeV, the correct assignment is found

in nearly eighty percent of events. For a more exhaustive discussion, and results including a complete

detector simulation the reader is referred to reference [23].

When repeating the exercise for tt̄tt̄ production, the simple clustering has to deal with a muchdenser topology and is much less successful. As shown with blue triangles in figure 8 the probability to

find a perfectly clustered event is less than 10 % over the entire mass range studied here. Of course, the

decay of a heavy resonance leads to only one pair of strongly boosted top quarks, while the pT of the

associated (spectator) top quarks remains relatively small. The third curve (filled circles) in 8 represents

the probability that at least two tops out of four are clustered correctly. This probability is quite large

even for relatively small resonance mass, reaching approximately 60 % for a 1 TeV resonance.

The mass of the resonance is reconstructed as the invariant mass of the two objects with highest

pT in the event. At the parton level this yields good results: the combination of the two top quarks

with highest pT yields the distribution of the central panel of figure 8. The resonance clearly stands out

on top of the SM four top production (black). Applying the same criterion to the top quark candidates

reconstructed by the clustering algorithm, the distribution in the rightmost panel is obtained. Obviously,

the resonant signature is washed out by false combinations and the energy carried away by the escaping

neutrinos. Still, the signal and background distributions can clearly be distinguished.

The additional handle of highly boosted top quarks is found to be quite useful to reduce the com-

binatoric problem of four top events. Reconstruction of a resonant signature may well be feasible, thus

turning the counting experiment into a resonance search. Given the simple-minded nature of this attempt

3The implementation in FastJet [22] was used, with E-scheme recombination. The algorithms was used in exclusive mode,

forcing it to return exactly two jets. The R-parameter was set to 2.5. For this, somewhat unusual, choice nearly all input objects

are clustered into jets (rather than included in the “beam jets”).

Top reconstruction

Mtt (GeV)0 500 1000 1500 2000 2500

Fra

ctio

n o

f e

ve

nts

0

0.2

0.4

0.6

0.8

1

(a)

mass (GeV)tt

0 500 1000 1500 2000 2500

-1eve

nts

/50

GeV

/100

fb

0

1

2

3

4

5

6

7

(b)

reconstructed mass (GeV)0 500 1000 1500 2000 2500

-1e

ve

nts

/50

Ge

V/1

00

fb

0

1

2

3

4

5

6

7

(c)

Fig. 8: The probability as a function of resonance mass that final state fermions are correctly assigned to top and anti-top

quarks in tt̄ production (open circles) and tt̄tt̄ production. The filled circles (triangles) indicate the probability to find two

(four) correctly paired top quarks. The central panel shows the invariant mass distribution of the two top quarks with highest

pT in SM tt̄tt̄ production (filled histogram) and for production through a 1.5 TeV KK gluon. The rightmost panel shows the

invariant mass of the two reconstructed clusters with highest pT .

W boson decay to two jets. The neutrino is discarded and the momenta of the remaining five fermions

is presented to the kT algorithm [20, 21] for clustering 3. Clustering is considered correct whenever

all decay products from the top (and anti-top) quark are clustered together in a single jet. The result is

represented with open circles in the leftmost plot of figure 8. For tops produced at rest the probability

of correctly clustering the event is essentially equal to 0. For resonant tt̄ production the probability tofind the correct assignment increases rapidly as the resonance mass is increased. The decay products of

the top and anti-top quark are collimated more and more in a narrow cone, while the top anti-top are

emitted essentially back-to-back. Indeed, for a resonance mass of 1 TeV, the correct assignment is found

in nearly eighty percent of events. For a more exhaustive discussion, and results including a complete

detector simulation the reader is referred to reference [23].

When repeating the exercise for tt̄tt̄ production, the simple clustering has to deal with a muchdenser topology and is much less successful. As shown with blue triangles in figure 8 the probability to

find a perfectly clustered event is less than 10 % over the entire mass range studied here. Of course, the

decay of a heavy resonance leads to only one pair of strongly boosted top quarks, while the pT of the

associated (spectator) top quarks remains relatively small. The third curve (filled circles) in 8 represents

the probability that at least two tops out of four are clustered correctly. This probability is quite large

even for relatively small resonance mass, reaching approximately 60 % for a 1 TeV resonance.

The mass of the resonance is reconstructed as the invariant mass of the two objects with highest

pT in the event. At the parton level this yields good results: the combination of the two top quarks

with highest pT yields the distribution of the central panel of figure 8. The resonance clearly stands out

on top of the SM four top production (black). Applying the same criterion to the top quark candidates

reconstructed by the clustering algorithm, the distribution in the rightmost panel is obtained. Obviously,

the resonant signature is washed out by false combinations and the energy carried away by the escaping

neutrinos. Still, the signal and background distributions can clearly be distinguished.

The additional handle of highly boosted top quarks is found to be quite useful to reduce the com-

binatoric problem of four top events. Reconstruction of a resonant signature may well be feasible, thus

turning the counting experiment into a resonance search. Given the simple-minded nature of this attempt

3The implementation in FastJet [22] was used, with E-scheme recombination. The algorithms was used in exclusive mode,

forcing it to return exactly two jets. The R-parameter was set to 2.5. For this, somewhat unusual, choice nearly all input objects

are clustered into jets (rather than included in the “beam jets”).

[figures from Marcel Vos]

challenge of assigning 12 final state fermion particles to the 4 top candidates.

(from 1005.1229)

Page 22: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

$e top quark-Dark Ma%er connection

Z, Z’

!

h

t

"

"

~ O(1) couplings

Dirac Dark Matter annihilation into γ H

Jackson, Servant, Shaughnessy,Tait, Taoso,’09

Page 23: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

NFW profile adiabaticallycontracted

γ-ray lines from the Galactic Center ΔΩ= 10-5 sr

Spectra for parameters leading to correct relic density and satisfying

direct detection constraints

MΝ"149 GeV !gΝZ'"gtZ'"3" MΝ"162 GeV !gΝZ'"gtZ'"1"Γ h$ Mh"170 GeVΓ Z %$ MZ'"220 GeV Γ Z

HESS

EGRET

FERMI

1 10 10210!1610!1510!1410!1310!1210!1110!1010!910!810!710!610!510!4

EΓ !GeV"

E2d##dE!G

eVcm!2 s!1 "

Jackson, Servant, Shaughnessy,Tait, Taoso,’09

Higgs in Space!

Z’ H Z

Page 24: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

ff → Z ′ → tt

ff → Z ′ → γH

gg → tt + Z ′

tt + ET

tttt

Z′ →

νν

Z ′→tt

light tt resonances

energetic monochromatic γ

Z, Z’

!

h

t

"

"e−

e+

q

q

ν ν t

t -- or

-t

t Z’

Collider signatures of a top (and DM)-philic Z’

Page 25: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

four-top events at Multi-TeV e+e- colliders

Σee" ttZ' # !1.5$1.5" TeVgtRZ' % 3

100 200 300 400 500 6000

10

20

30

40

MZ' !GeV"

fb

e

e

+

t

t−

− −

Z’

t, N

t, N

Battaglia-Servant 1005.4632

Page 26: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

0.2 ab-1

e+ e- → t t + ET @ 3 TeV CLIC - σttνeνe = 4.1 fb σ4t in SM = 0.03 fb

tt Invariant Mass (GeV)0 500 1000 1500 2000 2500 3000

-1En

tries

/ 0.

2 ab

0

10

20

30

40

50

60

70

80Full Sim + Reco M(Z’)=200 GeV

Generated M(Z’)=200 GeV

Generated M(Z’)=320 GeV

! !tt

(GeV)t2 - Et1E0 200 400 600 800 1000 1200 1400

-1Ev

ents

/ 20

0 fb

0

10

20

30

40

50

60

70 t t Z’

! !t t

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 14000

10

20

30

40

50

60

70

Missing Energy (GeV)0 1000 2000 3000

-1Ev

ents

/ 20

0 fb

0

10

20

30

40

50

MZ’ =200 GeV

(gZ′

tR= gZ′

DM = 3)

Page 27: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

MZ’ =360 GeV

e+ e- → t t t t @ 3 TeV CLIC -

Di-Jet Invariant Mass (GeV)500 1000

-1Di

-Jet

s / 1

ab

0

10

20

30

40

50

60

70

h9105Entries 430Mean 529.8RMS 198.3Underflow 0Overflow 28.44Integral 436.1

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70SignalZZWWZZZWWZttbbbb

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

-

(gZ′

tR= 3)

Page 28: Fr -top e ve n ts a t LHC f rom top- i li c n ew ys ics · 2018. 11. 1. · F!r -top e ve n ts a t " LHC f rom top-#i li c n ew #ys ics Géraldine SERVANT, CERN-THLéa Gauthier, Anne-Isabelle

Summary

four-tops: key channel to probe top compositeness (although not at 7 TeV)

we found good prospects in the very clean 2 same-sign dilepton channel

b-tagging crucial to probe the O(10 fb) cross sections

future plans: full ATLAS simulation (events already generated at 7 TeV)

four-top events: in a large class of BSM models (susy, top composite models, top-philic resonances )

so far, there was no detailed study