Four lectures of solitonsin Classical Field Theory · 2019. 12. 5. · 3 →SU(2) ~ S 3 The idea of...

38
1 Four lectures of Four lectures of solitons solitons in in Classical Field Theory Classical Field Theory Kitasato Kitasato University, 4 University, 4 - - 5 5 December December 2019 2019 Ya Ya Shnir Shnir BLTP, JINR BLTP, JINR

Transcript of Four lectures of solitonsin Classical Field Theory · 2019. 12. 5. · 3 →SU(2) ~ S 3 The idea of...

  • 1

    Four lectures of Four lectures of solitonssolitons in in

    Classical Field TheoryClassical Field Theory

    KitasatoKitasato University, 4University, 4--5 5 DecemberDecember 20192019

    YaYa ShnirShnir

    BLTP, JINRBLTP, JINR

  • SkyrmeSkyrme modelmodel

    Tony Hilton Royle Skyrme

    QCD:QCD: LL == −− 1144FF aaµµννFF

    aaµµνν ++ ¯̄ψψii[[iiγγµµDDµµ −−mmδδiijj ]]ψψjj

    Low energy meson theory:Low energy meson theory:

    LL ==ff 22ππ44TTrr ((∂∂µµUU∂∂

    µµUU )) ++ .. .. ..

    ●● The idea of unifying bosons and fermions in a common framework

    ●● Consideration of localised field configurations instead of point-like particles

    ●● The desire to eliminate fermions from a fundamental formulation of theory

    Skyrmes’ motivations (1962):SkyrmesSkyrmes’’ motivations (1962):motivations (1962):

  • Low energy QCD ($ 1000000 Problem) Low energy QCD ($ 1000000 Problem)

    ΛQSB ~ 1 GeV

    Perturbative QCD(Quarks & gluons)

    Low-energy effective theory Hadrons

    ΛQCD ~ 180 MeV

    Weak definition of the confinement: There are no color states in physical spectrum

    Strong definition of the confinement: The quarks in hadrons are binded by a linear potential

  • SkyrmeSkyrme modelmodel

    The The SkyrmeSkyrme field:field:

    Sigma-model term Skyrme term Potential term

    = 186 MeV, = 136 MeVffππ mmππ

    The topological charge:The topological charge: QQ ==11

    2244ππ22εεiijjkk

    ��dd33xxTTrr

    ��((UU ††∂∂iiUU ))((UU ††∂∂jjUU ))((UU ††∂∂kkUU ))

    ��

    Ri = (∂iU)U†The su(2) current:The su(2) current: QQ == −− 11

    2244ππ22εεiijjkk

    ��dd33xxTTrr((RRiiRRjjRRkk))

    Rescaling:

    LL ==ff 22ππ44TTrr

    ��∂∂µµUU∂∂

    µµUU ††��++

    11

    3322ee22TTrr

    ����UU ††∂∂µµUU,, UU

    ††∂∂ννUU��22��

    ++mm22ππff

    22ππ

    88TTrr ((UU −− II))

    EE ==ffππ44ee

    ��dd33xx

    ��−− 1122TTrr ((RRiiRR

    ii)) −− 111166

    TTrr (([[RRii ,, RRjj ]]))22 ++mm22TTrr((UU −− II))

    xxµµ →→ 22xxµµ//((eeffππ));; mm == 22mmππ//((ffππee))

    UU :: SS33 →→ SS33UU ((��rr,, tt)) −−−−−−→→rr→→∞∞ II

  • SkyrmeSkyrme modelmodel

    QQ ==11

    ππ

    FF ((rr)) −− ssiinn 22FF ((rr))

    22

    ��∞∞

    00

    The boundary conditionsThe boundary conditions

    FF ((00)) == ππ,, FF ((∞∞)) == 00 QQ == 11

    LL == −−��dd33xx

    1122 ((∂∂µµφφ

    aa))22 −− 1144 [[((∂∂µµφφaa∂∂ννφφaa))22 −− ((∂∂µµφφaa))44 ]] ++mm22 ((11 −− φφ33))��

    φφaa == ((σσ,, ππ11 ,, ππ22 ,, ππ33))UU ((rr)) == σσ ++ ππaa ·· ττ aa == ccooss FF ((rr)) ++ ii ˆ̂nn ·· ττ ssiinn FF ((rr))

    Spherically symmetric Spherically symmetric skyrmionskyrmion::

    (Hedgehog ansatz)UU ((rr)) == eexxpp [[iiττ aa ˆ̂rraaFF ((rr))]]

  • SkyrmionsSkyrmions

    Q=1 Q=2 Q=3 Q=4

    Q=5 Q=6 Q=7 Q=8

  • Rational map Rational map SkyrmionsSkyrmions

    TheThe SkyrmeSkyrme fieldfield isis effectivelyeffectively a a mapmap UU: : SS33 →→ SU(2) ~ SSU(2) ~ S33

    TheThe ideaidea of of thethe rational rational mapmap ansatzansatz: :

    Separate the radial and the angular

    dependence of the Skyrme field as as

    Identify spheres SS22 with concentric

    spheres in compactified RR33

    Identify target space SS22with spheres

    of latitude on SS33(N.S. Manton, (N.S. Manton, C.HoughtonC.Houghton && P.SutcliffeP.Sutcliffe, 1998), 1998)

    zz == ttaann((θθ//22))eeiiϕϕStereographic Projection:

    ˆ̂nnzz ==11

    11 ++ ||zz||22��zz ++ ¯̄zz

    11 ++ zz ¯̄zz,, ii

    zz∗∗ −− zz11 ++ zz ¯̄zz

    ,,11 −− zz ¯̄zz11 ++ ¯̄zz

    ��

    == ((ssiinn θθ ccooss φφ,, ssiinn θθ ssiinn φφ,, ccooss θθ))

    Domain space Target space

    ˆ̂nnZZ ==

    ��ZZ ++ ¯̄ZZ

    11++ZZ ¯̄ZZ,, ii

    ¯̄ZZ −−ZZ11 ++ZZ ¯̄ZZ

    ,,11−−ZZ ¯̄ZZ11++ZZ ¯̄ZZ

    ��

    UU == eexxpp {{iiff ((rr)) ˆ̂nnZZ ·· σσ}}

    ZZ == PP ((zz))//QQ((zz))

  • Rational map approximation Rational map approximation

    Static energy:Static energy: EE == 44ππ

    �� ��rr22ff ′′

    22++ 22QQ((ff ′′

    22++ 11)) ssiinn22 ff ++WW

    ssiinn44 ff

    rr

    ��ddrr

    4πQ=

    � �1+|z|21+|Z|2

    ����dZ

    dz

    �����2

    dzdz̄

    (1+|z|2)2 WW==11

    44ππ

    �� ��11++ ||zz||2211++ ||ZZ||22

    ��������ddZZ

    ddzz

    ����������44

    ddzzdd¯̄zz

    ((11++ ||zz||22))22

    The The holomorphicholomorphic maps of degree Q:maps of degree Q:

    Q= 4:Q= 4:

    Q= 7:Q= 7:

    (Octahedral (Octahedral SkyrmionsSkyrmions))

    ((IcosahedralIcosahedral SkyrmionsSkyrmions))

    ZZ((zz)) == zz44++22ii

    √√33zz22++11

    zz44−−22ii√√33zz22++11

    Z(z) = z7−7z5−7z2−1z7+7z5−7z2+1

  • SkyrmionsSkyrmions

    (N.Manton et al)

  • SkyrmeSkyrme crystalscrystals (Klebanov, Kugler, Shtrikman, Manton..)

    Simple cubic BCC

    FCC

    ½ Simple cubic

  • Knots and linksKnots and links

    If there is a physical realisation?If there is a physical realisation?

    Lord Kelvin: 1867: ”Vortex Atoms”

  • Construction of the Construction of the HopfionHopfion

    d=3+1 d=3+1 φφaaφφaa == 11 φφ

    aa == ((φφ11,, φφ22 ,, φφ33)) ∈∈ SS22 φφvvaacc == ((00,, 00,, 11))

    φφ11 ++ iiφφ22 →→ ((φφ11 ++ iiφφ22))eeiiαα Residual SO(2) symmetry

    Loops in domain space S3

    ��φφ :: SS33 →→ SS22

    z

    ϕρ

    HomotopyHomotopy classclass pp33((SS22) = ) = ��

    FFµµνν ==11

    22εεµµννρρφφ

    aa∂∂µµφφbb∂∂ννφφ

    cc == ∂∂µµAAνν −− ∂∂ννAAµµ

    φ1 + iφ2 = sinF (ρ, z)einϕ+iG(ρ,z)z; φ3 = cosF (ρ, z)

    Target space S2

    Topological charge:Topological charge:

    (Linking number)(Linking number)QQ ==

    11

    88ππ22

    ��εεiijjkkAAiiFFjjkkdd

    33xx

    FF == 1122FFµµννddxx

    µµ ∧∧ ddxxνν ;; ddFF == 00;; FF == ddAA

  • SolitonsSolitons of the of the FaddeevFaddeev--SkyrmeSkyrme modelmodel

    Q=1 Q=2 Q=3

    Q=4 Q=4 Q=4

    1A1,1 2A2,1 33 ��AA33,,11

    4 �A4,1 4L1,11,144AA22,,22

    LL == 1122 ((∂∂iiφφaa))22 −− κκ2244

    ��εεaabbcc φφ

    aa∂∂iiφφbb∂∂jjφφ

    cc��22

  • SolitonsSolitons of the of the FaddeevFaddeev--SkyrmeSkyrme modelmodel

    Q=5 5 �A5,1 Q=5 5L1,21,1 Q=6 6L

    2,21,1 Q=6 6L3,11,1

    Q=7 7K3,2 8L3,31,1Q=8Q=8 8 �A4,2 Q=8 8K3,2

  • Elastic rod approximationElastic rod approximation

    D. Harland, J.M. Speight and P.M. SutcliffePhys. Rev.D83 (2011) 065008

    Position curve

    γγ((ss)) ∈∈ RR33

    α(L) = α(0) + 2πN

    Torsion Curvature κ(s)ττ ((ss))

    Tubular coordinates:• Arclength parameter

    • Polar coordinates in the diskss ∈∈ [[00,, LL]]

    ρ, θ

    FrenetFrenet frameframe

    Preimage of

    φ = (0, 0, 1)

    Tangent vector �t(s)

    frame vector �m(s)

    Twisting function: αα((ss)) == ��tt ·· ��mm′′ ×× ��mm

    Faddeev-Skyrme effective energy functional:

    �m(s) = �n(s)sinα(s)+�b(s)cosα(s)

    E =

    � �A+Bκ2 + C(α′ − τ)2

    �ds

    d

    ds

    �t(s)�n(s)�b(s)

    =

    0 κ(s) 0

    −κ(s) 0 τ(s)0 −τ (s) 0

    �t(s)�n(s)(s)

  • SUSY

    Branes and extra dims

    Particle physics

    Condensed matter

    QCDComfinement

    Topology

    Differential Geometry

    Astrophysics & Cosmology

    QFTBlack holes

    gg ????

    MonopolesMonopoles

  • Petrus Peregrinus Petrus Peregrinus PolesPoles of a of a magnetmagnet 12691269

    H. H. PoincarPoincaréé ClassicalClassical ee--g g interactioninteraction 18961896

    P.A.M. P.A.M. DiracDirac Charge Charge quantizationquantization 19311931

    H. HopfH. Hopf HopfHopf bundlebundle 19311931

    P.A.M.DiracP.A.M.Dirac et alet al QEMDQEMD 19481948

    G `t G `t HooftHooft, , A.PolyakovA.Polyakov NonNon--AbelianAbelian MonopolesMonopoles 19741974

    T.T.WuT.T.Wu, , C.N.YangC.N.Yang Geometry & MonopolesGeometry & Monopoles 19751975

    E.BogomolnyE.Bogomolny et alet al BPS MonopolesBPS Monopoles 19761976

    C.MontonenC.Montonen and and D.OliveD.Olive Duality revisedDuality revised 19781978

    S.MandelstamS.Mandelstam, , G`tG`t HooftHooft Dual Dual MeissnerMeissner effecteffect 1970s1970s

    V.RubakovV.Rubakov, , C.CallanC.Callan Monopole catalysisMonopole catalysis 19811981

    N.MantonN.Manton, , M.AtiyahM.Atiyah ModuliModuli spacespace 19821982

    N.SeibergN.Seiberg and and E.WittenE.Witten N=2 SUSYN=2 SUSY 19941994

    Magnetic Magnetic MonopolesMonopoles: Historical remarks: Historical remarks

  • Electromagnetic duality and Dirac monopoleElectromagnetic duality and Dirac monopole

    System of generalized Maxwell equations System of generalized Maxwell equations

    is invariant with respect to the transformations of electromagnis invariant with respect to the transformations of electromagnetic duality:etic duality:

    Classical motion in the monopole Coulomb magnetic field: Classical motion in the monopole Coulomb magnetic field:

    Generalized angular momentum is conserved:Generalized angular momentum is conserved:

    ϑϑϑϑ

    cossin

    ;coscos

    BEB

    BEE

    +→−→

    ϑϑϑϑ

    cossin

    ;coscos

    geg

    gee

    +→−→

    ∇∇ ·· ��EE == 44ππee;;

    ∇∇ ×× ��EE ++ ∂∂ ��BB∂∂tt

    == jjgg

    ∇∇ ·· ��BB == 44ππgg;;

    ∇∇ ×× ��BB −− ∂∂ ��EE∂∂tt

    == jjee

    mm dd22��rrddtt22

    == ee[[��vv ×× ��BB]] == eeggrr33

    ��dd��rrddtt×× ��rr��

    ��JJ == [[��rr ××mm��vv]] −− eegg ��rrrr== ��LL −− eegg ˆ̂rr

    L J

  • DiracDirac’’s monopole: Charge quantizations monopole: Charge quantization

    ��BB == gg ��rrrr33

    == ∇∇ ×× ��AA;; ∇∇ ·· ��BB == 44ππgg ??��AA == gg

    rr��rr××��nnrr−−((��rr··��nn))

    - Dirac monopole potential

    DiracDirac’’s string is invisible if the charge s string is invisible if the charge

    quantization condition is imposed:quantization condition is imposed:

    ��BB == ��BBgg ++ ��BBssttrriinngg == gg��rr

    rr33−− 44ππgg ��nn θθ((zz))δδ((xx))δδ((yy))

    GGaauuggee iinnvvaarriiaannccee:: ��AA −−→→ ��AA ++∇∇λλ((��nn,, ��nn′′))

    eegg == nn

  • Charge quantization for Charge quantization for dyonsdyons

    Pair of Pair of dyonsdyons: : (e(e11,g,g11), (e), (e22,g,g22):): ee11gg22 −− ee22gg11 == nn,, nn ∈∈ ZZ

    Electron Electron –– monopole pair (monopole pair (e,ge,g) )

    There is an elementary electric charge

    There is an elementary magnetic charge

    ((ee00,, 00)) ++ ((ee,, gg)) ==⇒⇒ ee00gg == nn

    Pair of Pair of dyonsdyons: : (e(e11,g,g00), (e), (e22,g,g00):):

    eg = n n ∈ Z

    ee00 ==11

    gg,, ee == nnee00

    g =n

    e0=

    n

    n0g0

    ee11 −− ee22 ==nn

    gg00==

    nn

    nn00ee00 == mmee00

    eeii == ee00

    ��nnii ++

    θθ

    22ππ

    ��,, θθ ∈∈ [[00..22ππ]]

  • Most general charge quantization condition:

    ee ++ iigg == ee00

    ��nn ++mm

    θθ

    22ππ

    ��++ ii

    mm

    ee00== ee00((mmττ ++ nn)) ττ ==

    θθ

    22ππ++

    ii

    ee2200

    Charge quantization and SL(2,Charge quantization and SL(2,��) group) group

    Transformations of SL(2,�): ττ →→aaττ ++ bb

    ccττ ++ dd

    Generators:

    T : τ → τ + 1; S : τ → −1τ

  • NonNon--AbelianAbelian monopolesmonopoles

    BreakBreak--through of 1974:through of 1974:`̀t t HooftHooft--PolyakovPolyakov monopole solutionmonopole solution

    While a Dirac monopole could becould beincorporated in an Abelian theory, some

    non-Abelian models inevitably containinevitably contain

    monopole solutions

    Non-Abelian monopole is a non-linear system of coupled gauge and scalar (Higgs)fields, its energy is finite and the fields areregular everywhere in space. The gauge symmetry is spontaneously broken via Higgs mechanism

    LL == 1122 TTrr FF22µµνν ++ TTrr ((DDµµΦΦ))

    22 ++ VV ((||ΦΦ||))

  • MagneticMagnetic monopolesmonopoles

    A.M.PolyakovA.M.Polyakov

    *1945*1945

    Gerard 't Gerard 't HooftHooft

    *1946*1946

    P.A.M.DiracP.A.M.Dirac

    19021902--19841984DiracDirac monopolemonopole (1931)(1931) NonNon--AbelianAbelian monopolemonopole

    WuWu--YangYang monopolemonopole (1975)(1975)

    AANN == gg

    11 −− ccooss θθrr ssiinn θθ

    ˆ̂ee

    AASS == −−gg 11 ++ ccooss θθ

    rr ssiinn θθˆ̂ee

    RegularRegular staticstatic configurationconfiguration

    GaugeGauge groupgroup SU(2)SU(2)

    MagneticMagnetic chargecharge isis thethe

    topologicaltopological numbernumber: : Qg=n/2 Qg=n/2

    TheThe monopolemonopole isis veryvery heavyheavy,,

    M~m_vM~m_v/e/e

    ��BB == gg ��rrrr33,, ��EE == QQ ��rr

    rr33

  • Properties of nonProperties of non--AbelianAbelian monopoles [SU(5)]monopoles [SU(5)]

    Monopole has a Monopole has a corecore of of radiusradius rrmm ~ ~ mmxx--11 ~~ 1010--29 29 cm cm

    Monopole Monopole isis superheavysuperheavy: : M M ~ ~ mmxx//α α ~ ~ 101017 17 GeVGeV ~~ 1010--7 7 gg

    MagneticMagnetic chargecharge of of thethe monopolemonopole has has topologicaltopological rootsroots::

    Electromagnetic subgroup is associated with rotations about Electromagnetic subgroup is associated with rotations about

    direction of the Higgs fielddirection of the Higgs field

    Monopole solution mixes the Monopole solution mixes the spacialspacial and group rotations:and group rotations:

    ��ΦΦ →→ vv��rr

    SS22 →→ SS22

    ��JJ == ��LL ++ ��TT ++ ��SS

  • DyonsDyons

    Monopole has 4 collective coordinates: Monopole has 4 collective coordinates: RRkk aanndd χχ((tt))

    Electric charge of a Electric charge of a dyondyon is is QQ == 44ππ ˙̇χχ

    Charge quantization condition for a pair of Charge quantization condition for a pair of dyonsdyons::

    Consequence:Consequence: SpinSpin--statistic theorem admits both Bosestatistic theorem admits both Bose--Einstein and Einstein and

    FermiFermi--Dirac statistics.Dirac statistics.

    QQ11gg22 −− QQ22gg11 == nn22

  • Relic MonopolesRelic Monopoles

    Monopoles should have been produced in the very early Universe:

    SSUU ((55)) →→ SSUU ((33)) ×× SSUU ((22)) ×× UU ((11)) →→ SSUU ((33)) ×× UU ((11))eemm

    As T < As T < TTcc ~ 10~ 1015 15 GeVGeV the Higgs field acquires a nonthe Higgs field acquires a non--zero zero v.e.vv.e.v..

    V(V(ΦΦ)) V(V(ΦΦ)) Predictions of the Big Bang scenario (adiabatic expansion)

    1 monopole per 101 monopole per 1044 nucleons!nucleons!

    Inflation scenario: The potential is suffucientlyflat at Φ=0, the phase transition occurs at TTcc ~ 10~ 109 9 GeVGeV-- only a few monopoles may survive the inflation!only a few monopoles may survive the inflation!

    V(V(ΦΦ))

  • Experimental Experimental searchsearch forfor monopolesmonopoles

    Accelerator Accelerator searchsearch

    ((FermilabFermilab, CERN, DESY, CERN, DESY……))

    SuperconductingSuperconducting coilscoils

    IndirectIndirect limits (limits (ParkerParker‘‘ss boundbound, ,

    neutronneutron starsstars……))

    SearchSearch forfor monopolemonopole catalysiscatalysis

    ((IceCubeIceCube, Berkeley, Stanford, IBM, Berkeley, Stanford, IBM……))

    MonopolesMonopoles in in cosmiccosmic raysrays

    ((ScintillatorsScintillators and ionization detectors)and ionization detectors)

    No No monopolemonopole detecteddetected yetyet!!((©©Picture by courtesyPicture by courtesy G.GiacomelliG.Giacomelli))

  • Fake monopolesFake monopoles

    ● „Monopoles“ in spin-ice crystal structures

    (Castelnovo, C., R. Moessner, and S. L. Sondhi,

    Magnetic monopoles in spin ice, Nature, Vol. 451, 42-45, 2008;D.J.P. Morris et al, Dirac Strings and Magnetic Monopoles

    in the Spin Ice; Science, Vol. 326, 411-414, 2009)

    ● „Monopoles“ in spin-ice crystal structures

    (Castelnovo, C., R. Moessner, and S. L. Sondhi,

    Magnetic monopoles in spin ice, Nature, Vol. 451, 42-45, 2008;D.J.P. Morris et al, Dirac Strings and Magnetic Monopoles

    in the Spin Ice; Science, Vol. 326, 411-414, 2009)

    A sum of nearest-neighbor Ising model term and long range dipolar interactions

    HH == JJ��iijj

    SSiiSSJJ ++ σσ��iijj

    33((ˆ̂eeii·· ˆ̂rriijj ))((ˆ̂eejj ·· ˆ̂rriijj ))−−((eeii··eejj ))rr33iijj

    (Mengotti et al, Nature Physics , 7 (2011) 68)

    Where is the cheat?

    Each dipole is replaced by a pair of Each dipole is replaced by a pair of

    equal and opposite magnetic chargesequal and opposite magnetic charges

  • Fake monopolesFake monopoles

    ● „Monopoles“ and low energy QCD ● „Monopoles“ and low energy QCD

    QCD confinement as dual Meissner effect: monopole condencation as a reason of

    formation of the chromoelectric flux tube and QCD is taking a form of the dual

    Ginzburg-Landau model (S.Mandelstam, G `t Hooft et al (1970s))

    Where is the cheat?

    There is no monopoles in QCD!There is no monopoles in QCD!

    Perturbative QCD Low energy effective theory Hadrons

    (Quarks & gluons) (Pions and quarks)

    ΛΛχ χ ~ 1 ~ 1 GeVGeV ΛΛQCDQCD ~ 180 ~ 180 MeVMeV

  • HereHere wewe areare: : YangYang--MillsMills--HiggsHiggs TheoryTheory

    ´́t t HooftHooft--PolyakovPolyakov staticstatic sphericallyspherically symmetricsymmetric solutionsolution

    SS == 1122��dd44xx {{ FFµµννFF µµνν ++ ((DDµµΦΦ))((DDµµΦΦ)) −− VV ((ΦΦ))}}

    FFµµνν == ∂∂µµAAνν −− ∂∂ννAAµµ ++ iiee[[AAµµ ,, AAνν ]]DDµµΦΦ == ∂∂µµΦΦ ++ iiee[[AAµµ ,,ΦΦ]]

    VV ((ΦΦ)) == λλ ((ΦΦ22 −− aa22))22

    φφaa == rraa

    eerr22HH ((eeaarr))

    AAaann == εεaammnnrrmm

    eerr22((11 −− KK ((eeaarr))))

  • ‘‘t t HooftHooft--PolyakovPolyakov solutionsolution

    “The fox knows many things, but

    the hedgehog knows one big thing”

    Archiolus

    Topologically nontrivial asymptotic

    φφaa −−→→rr→→∞∞

    vvrraa

    rr

    Vacuum: ||φφ|| == aa

    φφ :: SS22 →→ SS22

    DDnnφφaa →→ 00 ∂∂nn

    ��rraa

    rr

    ��−− eeεεaabbccAAbbnn

    rrcc

    rr== 00

    AAaakk((rr)) −−→→rr→→∞∞

    11

    eeεεaannkk

    rrnnrr22

    ;; BBaann −−→→rr→→∞∞

    rraarrnneerr44

    U(1) ‘t Hooft tensor:U(1) U(1) ‘‘t t HooftHooft tensortensor:: FFµµνν == ˆ̂φφaaFF aaµµνν ++11

    eeǫǫaabbcc ˆ̂φφ

    aaDDµµ ˆ̂φφbbDDνν ˆ̂φφ

    cc

    ∂µ �Fµν = kν ; kµ =1

    2εµνρσ∂

    νF ρσ =1

    2v3eεµνρσεabc∂

    νφa∂ρφb∂σφc

    ∂∂µµkkµµ ≡≡ 00Topological current:Topological current:Topological current:

  • ‘‘t t HooftHooft--PolyakovPolyakov ansatzansatz::

    ‘‘t t HooftHooft--PolyakovPolyakov solutionsolution

    Magnetic charge:Magnetic chargeMagnetic charge:: gg ==

    ��dd33xx kk00 == −−

    11

    22eevv33

    ��dd22SSnn εεaabbccεεmmnnkk φφ

    aa∂∂nnφφbb∂∂kkφφ

    cc

    local coordinates on S2 determinant of metric tensor on S2

    ==11

    ee

    ��dd22ξξ√√gg ==

    44ππnn

    ee,, nn ∈∈ ZZ

    φφaa ==rraa

    eerr22HH((ξξ)) ,, AAaann == εεaammnn

    rrmm

    eerr22[[11 −−KK((ξξ))]] ,, AAaa00 == 00

    Field equations:

    ξ = aer

    ξξ22dd22KK

    ddξξ22== KKHH22 ++KK((KK22 −− 11)) ,, ξξ22 dd

    22HH

    ddξξ22== 22KK22HH ++

    λλ

    ee22HH((HH22 −− ξξ22))

  • DyonsDyons

    AAaa00 ==rraa

    eerr22JJ ((rr)) qq ==

    11

    vv

    ��ddSSnnEEnn ==

    11

    vv

    ��ddSSnnEE

    aannφφaa ==

    11

    vv

    ��dd33xxEEaannDDnnφφ

    aa

    JJ ((rr)) →→ CCrr aass rr →→ ∞∞qq ==

    44ππ

    ee

    ∞∞��

    00

    ddξξdd

    ddξξ

    ��ξξHH

    dd

    ddξξ

    ��JJHH

    ξξ

    ��==

    44ππCC

    ee== CCgg

    φφaa �� AAaa00

    EE ==

    ��dd33xx

    ��11

    22[[BBaannBB

    aann ++ ((DDnnφφ

    aa))((DDnnφφaa))]] ++ VV ((φφ))

    ==11

    22

    ��dd33xx

    11

    22

    ��dd33xx ((BBaann −− DDnnφφaa))2

    2++

    ��dd33xx BBaannDDnnφφ

    aa ++

    ��dd33xx VV ((φφ))

    Magnetic chargeNote:Note: The energy is minimal if

    11 Ban = Dnφa

    22 λλ == 00 ((VV ((φφ)) == 00))

    Bogomol’nui-Prasad-Zommerfield equation

    EE == QQ

  • BPS monopoleBPS monopole

    Ban = Dnφa ξξ

    ddKK

    ddξξ== −−KKHH ,, ξξ ddHH

    ddξξ== HH ++ ((11 −−KK22))

    Note:Note: This system has an analytical solution:

    KK ==ξξ

    ssiinnhh ξξ,, HH == ξξ ccootthh ξξ −− 11

    The BPS equation + Bianchi identity DDnnDDnnφφaa == 00

    Homework: Prove it!

    Long range asymptotic tail of the scalar field: φa → vr̂a − ra

    er2

    The energy is completely defined by the scalar field:

    DDnnφφaaDDnnφφ

    aa == ((∂∂nnφφaa))((∂∂nnφφ

    aa)) ++ φφaa((∂∂nn∂∂nnφφaa)) ==

    11

    22∂∂nn∂∂nn((φφ

    aaφφaa))

    EE ==11

    22

    ��dd33xx∂∂nn∂∂nn((φφ

    aaφφaa)) ==44ππvv

    ee

    ��ccootthh ξξ −− 11

    ξξ

    ����11 −− ξξ

    22

    ssiinnhh22 ξξ

    �� ������∞∞

    00==

    44ππvv

    ee

  • Monopole catalysis of proton decayMonopole catalysis of proton decay

    ThereThere areare zerozero--energyenergy solutionssolutions of of thethe DiracDirac equationequation forfor a a masslessmassless fermionfermion

    coupledcoupled to a to a monopolemonopole; ;

    Naive question:Naive question: What happened when a fermion collides with a monopole?

    = + ?

    SpinSpin--flip? Charge conjugation? flip? Charge conjugation? ChiralityChirality??

    The ground state of a monopole becomes twoThe ground state of a monopole becomes two--fold degenerated:fold degenerated:

    (i) (i) |Ω> |Ω> (no fermions; Q(no fermions; QFF= = --1/2)1/2) (ii)(ii) aa††|Ω|Ω> > (zero mode); Q(zero mode); QFF= 1/2)= 1/2)

    There are nonThere are non--suppressed suppressed fermionicfermionic condensates on the monopole background:condensates on the monopole background:

    ��((ee++ee−− −− dd33 ¯̄dd33))(( ¯̄uu11uu11 −− ¯̄uu22uu22))))�� ∼∼ rr−−66

    γγµµ((∂∂µµ ++ eeAAµµ))ψψ == 00;; ��JJ == ��LL ++ ��TT ++ ��SS ;; ��LL == 00,, ��TT ++ ��SS == 00

  • RubakovRubakov--CallanCallan effecteffect

    Monopole could Monopole could catalysecatalyse

    baryon number violating baryon number violating

    processes like processes like

    P + monopoleP + monopole →→ ee++ + mesons + monopole+ mesons + monopole

    SU(5) model with SU(5) model with masslessmassless

    fermions in sfermions in s--wavewave

    Caution:Caution: the effect is modelthe effect is model--dependent! dependent!

  • Topology is power!

    Even Abelian Dirac monopole has topological roots.

    There are various monopoles in many theories.

    Consistent description of monopoles is related with

    topological arguments, it needs a non-Abelian theory

    with spontaneousy broken symmetry.

    Rubakov-Callan effect is strongly model-dependent.

    Fake monopoles are just fakes

    A monopole beyond the horizon?

    To conclude:To conclude:

  • AcknowledgmentsAcknowledgments

    Work done in collaboration withWork done in collaboration with::

    C.Adam, P.Dorey, J.Kunz,

    B.Kleihaus, U.Neemann, E.Radu

    T.Romanzukiewicz, D.H.Tchrakian

    and A. Wereszczynski

    Other thanks toOther thanks to::

    L.Ferreira, P. Forgacs,

    T. Ioannidou, D.Harland,

    B.Hartmann, O.Lechterfeld,

    M.Speight, P.M.Sutcliffe

    W.Zakrzewski and M.Volkov

    Work in progress!Work in progress!