Formula Sheet: First midterm 2203, Fall 2012 Formula Sheet: First midterm 2203, Fall 2012 1)...

4
1 Formula Sheet: First midterm 2203, Fall 2012 1) Relativity: space and time Transforms from S to S:: γ = 1/(1- vo 2 /c 2 ) 1/2 vo in along the x axis. x= γ(x – vot) v’ x = (vx –vo)/(1 – vxvo/c 2 ) y=y v’ y = vy/γ (1 – vxvo/c 2 ) z=z v’ z = vz/γ (1 – vxvo/c 2 ) z=z t= γ (t – (vo/c 2 )x) Change sign to go from S’ to S: Time dilation Δt=γΔt0: Δt0 Proper measurement of time. Length contraction Λ=ΔL0/γ :L0 proper measurement of length. 2) Relativistic Mechanics E= γ [E – (vo/c)(pc)] p= γ [p – (vo/c 2 )/E] p= γ mv pc= γ mc 2 (v/c) EK(kinetic energy) = mc 2 (γ –1) F=dp/dt E (total energy) = γ mc 2 E 2 =p 2 c 2 + (mc 2 ) 2 : E 2 mc 2 ( ) 2 E=pc for massless particle v = pc 2 /E E=EK + mc 2 Relativistic Doppler shift f/f = γ [1 – (v/c)cosθ] or f/f = [(1‐v/c)/(1+v/c)] 1/2 (for θ =0 o ) 3) Atoms Notation Z A Z N Where A=Z+N with Z being the number of protons and N the number of neutrons. An example is Carbon with 6 neutrons and 6 protons 6 12 C 6 Kinetic theory pV=nRT or pV=NkBT, with kB the Boltzmann’s constant and R the universal gas constant. kB=R/NA NA is Avogadro’s number average kinetic energy 1 2 mv 2 = 3 2 k B T 4) Quantization of light: Photon has energy hf E = hf, E = ω , with ω = 2πf E = hc/λ = 1240/λ eV nm E=pc Photoelectic effect Compton Scattering Kmax = hf –eφ λλ = λc(1 – cos θ) eφ is work function λc = h/mec = 0.00246 nm Group velocity v g = dω dk , Phase velocity v p = c 2 v and v = v g

Transcript of Formula Sheet: First midterm 2203, Fall 2012 Formula Sheet: First midterm 2203, Fall 2012 1)...

Page 1: Formula Sheet: First midterm 2203, Fall 2012 Formula Sheet: First midterm 2203, Fall 2012 1) Relativity: space and time Transforms from S to S’: : γ = 1/(1 v o 2 /c)1/2 v o in along

1

FormulaSheet:Firstmidterm2203,Fall2012

1) Relativity:spaceandtimeTransformsfromStoS’::γ =1/(1­vo2/c2)1/2voinalongthexaxis.x’=γ(x–vot) v’x=(vx–vo)/(1–vxvo/c2)y’=y v’y= vy/γ(1–vxvo/c2)z’=z v’z= vz/γ(1–vxvo/c2)z’=zt’=γ(t–(vo/c2)x)ChangesigntogofromS’toS:TimedilationΔt=γΔt0:Δt0Propermeasurementoftime.LengthcontractionΛ=ΔL0/γ :L0propermeasurementoflength.2) RelativisticMechanics

E’ =γ [E–(vo/c)(pc)] p’=γ[p–(vo/c2)/E]p=γmvpc=γmc2(v/c) EK(kineticenergy)=mc2(γ–1)F=dp/dt E(totalenergy)=γmc2

E2=p2c2+(mc2)2: E2 − mc2( )2 E=pcformasslessparticle

v=pc2/E E=EK+mc2

RelativisticDopplershiftf’/f=γ[1–(v/c)cosθ] orf’/f=[(1‐v/c)/(1+v/c)]1/2(forθ=0o)

3) AtomsNotation

ZAZN WhereA=Z+NwithZbeingthenumberofprotonsandNthenumberof

neutrons.AnexampleisCarbonwith6neutronsand6protons

612C6

KinetictheorypV=nRTorpV=NkBT,withkBtheBoltzmann’sconstantandRtheuniversalgasconstant. kB=R/NANAisAvogadro’snumber

averagekineticenergy

12m v 2 =

32kBT

4) Quantizationoflight:

PhotonhasenergyhfE=hf,

E = ω ,with

ω = 2πf E=hc/λ =1240/λeVnm E=pc Photoelecticeffect ComptonScatteringKmax=hf–eφ λ’‐ λ=λc(1–cosθ) eφisworkfunction λc=h/mec=0.00246nm

Groupvelocity

vg =dωdk

,Phasevelocity

v p =c 2

vand

v = vg

Page 2: Formula Sheet: First midterm 2203, Fall 2012 Formula Sheet: First midterm 2203, Fall 2012 1) Relativity: space and time Transforms from S to S’: : γ = 1/(1 v o 2 /c)1/2 v o in along

2

BraggScattering2dsinθ=nλ 5) QuantizationofAtomicEnergylevels:BohrAtom

Rydbergseriesseries

= R[ 1n2 f

−1n2i] ,iistheinitialstateandfthefinalstate:Ris

Rydbergconstant.BohrModel:Theangularmomentumisquantized

L = mvr = n or

2πrn = nλ yieldingthefollowingequations:

rn =n22

ke2mwheretheBohrorbitradiusisdefined

a0 =2

ke2m= 0.05292nm

En = −m2n2

(ke2

)2 giving

En = −13.6eVn2

velocity:

vn =ke2

n

Forarealsystemmshouldbethecenterofmassm’where

m'=mMm +M

=M

1+ M /m

Then

r'n =n22

ke 2m'= n2

me

m'a0 and

E 'n = −m'2n2

( ke2

)2 = −

m'me

E1n2

Hydrogenlikeions:oneelectronboundtoZenucleus:

vn =ke2

n,

En = −mZ 2

2n2(ke

2

)2 ,

rn =n22

kZe2m

6) Particlesaswaves

p=h/λ orλ=h/p

ke2 =1.44nm(eV )

λ =hc2mc2K

=1240eV inm2mc2K

deBrogliewavelengthλ=h/p

Uncertaintyprinciple

ΔkΔx ≥1/2 and

ΔωΔt ≥1/2 whichcanalsobewrittenas

ΔpΔx ≥ /2 and

ΔEΔt ≥ /2

7) SchrödingerEquationinoneDimensionGeneralpropertiesofSchrödinger’sEquation:QuantumMechanics

SchrödingerEquation(timedependent)

−2

2m∂ 2Ψ∂x 2

+UΨ = i∂Ψ∂t

Standingwave

Ψ(x, t) = Ψ(x)e−iωt

SchrödingerEquation(timeindependent)

−2

2m∂ 2ψ∂x2

+Uψ = Eψ

Page 3: Formula Sheet: First midterm 2203, Fall 2012 Formula Sheet: First midterm 2203, Fall 2012 1) Relativity: space and time Transforms from S to S’: : γ = 1/(1 v o 2 /c)1/2 v o in along

3

Normalization(onedimensional) Ψ * (x,t)Ψ(x,t)dx =1−∞

+∞

ForaconstantpotentialE>U

ψ(x) = Ae−ikx + Be+ikx with

k =2m(E −U)2

E<U

ψ(x) = Ae−ηx + Be+ηx with

η =2m(U − E)2

Operators:

p =−i ∂∂x,

E = −i ∂

∂t,

K = −

2

2m∂ 2

∂x2,

H = −

2

2m∂ 2

∂x 2+U

EigenfunctionsandEigenvalues:

p Ψ = pψ thenpistheeigenvalueandΨ isaneigenfunction.

7­1)OneDimensionalQuantumSystems

a)Particleinaone‐dimensionalbox,withU=0for0<x<L;

Wavefunctions

ψ(x) =2Lsin(nπx /L) withn=1,2,3,‐‐‐‐

Energies

En =n2π22

2mL2

b) SimpleHarmonicOscillator:U=kx2/2

AllowedEnergies

En = n +1/2( )ωc with

ωc =km

Firstfewwavefunctions

Ψ0(x) = A0e−x 2

2b

Ψ1(x) = A1

xbe−x 2

2b

Ψ2(x) = A21− 2x

2

b2

e

−x 2

2b

with

b =

mωc

c) Tunneling:BarrierofheightU0withKineticEnergyE,wherewithinthebarrierE<U0 Withintheclassicallyforbiddenregionthewavefunctionis

Ψ(x) = Ae+αx + Be−αx

where

α =2m(U0 − E)2

TheTunnelingprobability

T ≈ e−αL d) Generalpropertiesofwavefunctions Thewavefunctionanditsderivativemustbecontinuous. Intheclassicallyforbiddenregion(E<U)thewavefunctioncurvesawayfromtheaxis,

exponentiallyaswavepenetratestheclassicallyforbiddenregion. Intheclassicallyallowedregion(E<U)thewavefunctioncurvestowardaxisand

oscillates

!

"# 0

Page 4: Formula Sheet: First midterm 2203, Fall 2012 Formula Sheet: First midterm 2203, Fall 2012 1) Relativity: space and time Transforms from S to S’: : γ = 1/(1 v o 2 /c)1/2 v o in along

4

Constants

c=2.998x10+8m/s h=6.626x10‐34J.sec=4.136x10‐15eV.sec

=1.055x10−34 J.s = 6.582x10−16eV .s

k =14πε0

= 8.988x109N .m 2 /C2

me=9.109xx10‐31kg mec2=0.511MeVmp=1.673x10‐27kg mpc2=938.28MeVmn=1.675x10‐27kg mnc2=939.57MeVmp= 1836me mn=1839me

1u=931.5MeV/c2 nm=10‐9me=1.6x10‐19coul kB=8.617x10‐5eV/KeV=1.6x10‐19J NA=6.022x1023objects/molebinomialexpansion:(1+x)n=1+nx+n(n‐1)x2/2!+n(n‐1)(n‐2)x3/3!µm=10‐6m,nm=10‐9m,pm=10‐12m,fm=10‐15m

K=103,M=106,G=109

Usefulrelationships:

hc = 1240eV inmc = 197eV inmke2 = 1.44eV inmke2

c=1137

R=m kee( )2

4πc3=mc2 kee( )2

4π c( )3

R = 0.011nm−1