FMDF cours 181011 - LEM3

13
11/10/2018 1 A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 1 In case there is no infiltration under the dam, the angle α is given by So that γ b =2 γ e From where In case with infiltration under the dam, the angle a is given by So that From where A B y x H α Sol O γ e γ b A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 2 The Airy stress function associated with this loading is : (, ) sin Ar cPr θ θ θ = Show that A(r,θ) is biharmonic. Determine the components of the stress tensor. Determine the constant c as a function of angle α. Calculate the stresses when α=π/2. Tutorial 1 (continued) : Semi infinite plane under point load

Transcript of FMDF cours 181011 - LEM3

Page 1: FMDF cours 181011 - LEM3

11/10/2018

1

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 1

In case there is no infiltration under the dam, the angle α is given by

So that

γb =2 γe

From where

In case with infiltration under the dam, the angle a is given by

So that

From where

A B

y

x

Sol

O

γ e γ b

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 2

The Airy stress function

associated with this

loading is :

( , ) sinA r cPrθ θ θ=

Show that A(r,θ) is biharmonic.

Determine the components of the stress tensor.

Determine the constant c as a function of angle α.

Calculate the stresses when α=π/2.

Tutorial 1 (continued) : Semi infinite plane under point load

Page 2: FMDF cours 181011 - LEM3

11/10/2018

2

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 3

2 2 2 2

2 2 2 2 2 2

1 1 1 1( )

A A AA

r r r r r r r rθ θ ∂ ∂ ∂ ∂ ∂ ∂∆ ∆ = + + + + ∂ ∂ ∂ ∂ ∂ ∂

( , ) sinA r cPrθ θ θ=

The stress function A(r,θ)

is well biharmonic

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 4

The stresses are defined by the following expressions

( , ) sinA r cPrθ θ θ=

The balance of forces is written to determine the constant c :

If α=π/2, the constant c is -1/πand the stress σr is the given by :

Page 3: FMDF cours 181011 - LEM3

11/10/2018

3

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 5

Tutorial 1 (continued) : Stress field in a plate loaded in tension

and pierced with a tiny hole

σ ∞

σ ∞

x

y

r θM

2 2

2( , ) ln cos 2

fA r br c r d er

rθ θ = + + + +

The Airy stress function

associated with this

loading is :

Show that ( , ) is biharmonic

Determine the stress , ,

( is the radius of the hole)

r r

A r

a

θ θ

θσ σ τ

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 6

2 2

2( , ) ln cos 2

fA r br c r d er

rθ θ = + + + +

σ ∞

σ ∞

x

y

r θM

infinite plate loaded in tension and pierced

by a circular hole of radius a

2 2

2 2 2

1 1A A AA

r r r r θ∂ ∂ ∂∆ = + +∂ ∂ ∂

3

22 2 cos 2

A c fbr er

r r rθ∂ = + + − ∂

2

2 2 4

62 2 cos 2

A c fb e

r r rθ∂ = − + + ∂

22

2 24 cos 2

A fd er

θ∂ = − + + ∂

2

44 cos 2

dA b

rθ∆ = −

3

8cos 2

A d

r rθ∂∆ =

∂2

2 4

24cos 2

A d

r rθ∂ ∆ = −

∂2

2 2

16cos 2

A d

θ∂ ∆ =∂

( ) 0A∆ ∆ =

( , ) is well bi-harmonicA r θ

Page 4: FMDF cours 181011 - LEM3

11/10/2018

4

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 7

, , , ,2

,

1 1 1r r rr r

r

A A A Ar r r

θθ θ θ θσ σ τ = + = = −

2 2

2( , ) ln cos 2

fA r br c r d er

rθ θ = + + + +

σ ∞

σ ∞

x

y

M

3

22 2 cos 2

A c fbr er

r r rθ∂ = + + − ∂

2

2 2 4

62 2 cos 2

A c fb e

r r rθ∂ = − + + ∂

22

2 24 cos 2

A fd er

θ∂ = − + + ∂

2 2 42 2 4 6 cos 2r

c d fb e

r r rσ θ = + − + +

2 4

62 2 cos 2

c fb e

r rθσ θ = − + +

2 4

62 2 sin 2r

d fe

r rθτ θ = − −

2

22 sin 2

A fd er

θ∂ − = + + ∂

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 8

Boundary conditions at ∞ , ie far from the hole

0 0 0

( , ) 0 0

0 0 0

x yσ σ ∞

=

( , ) ( , ) tr P x y Pσ θ σ= ⋅ ⋅cos sin 0

sin cos 0

0 0 1

P

θ θθ θ

= −

2

2

sin (1 cos 2 )2

cos (1 cos 2 )2

sin cos sin 22

r

r

θ

θ

σσ σ θ θ

σσ σ θ θ

στ σ θ θ θ

∞∞

∞∞

∞∞

= = −

= = +

= =

at ∞ r >> a2

2

22

b

e

σ

σ

=

=

σ ∞

σ ∞

x

y

M

Page 5: FMDF cours 181011 - LEM3

11/10/2018

5

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 9

Boundary conditions at r=a

( , ) ( , ) 0r a aσ θ τ θ θ= = ∀

2 2 44 6 cos 2

2 2r

c d f

a a a

σ σσ θ∞ ∞

= + − + +

2 4

62 sin 2

2r

d f

a aθ

στ θ∞

= − −

2

2 42

4

2 4

4 62 2

et2 6 3

2 62 2

d fd a

a ac a

d ff a

a a

σ σσ

σ σ

∞ ∞

∞ ∞

+ = − = −

= − + = =

σ ∞

σ ∞

x

y

M

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 10

2 2 4

2 2 4

2 4

2 4

2 4

2 4

1 1 4 3 cos 22 2

1 1 3 cos 22 2

1 2 3 sin 22

r

r

a a a

r r r

a a

r r

a a

r r

θ

θ

σ σσ θ

σ σσ θ

στ θ

∞ ∞

∞ ∞

= − − − +

= + + +

= + −

2 2 42 2 4 6 cos 2r

c d fb e

r r rσ θ = + − + +

2 4

62 2 cos 2

c fb e

r rθθσ θ = − + +

2 4

62 2 sin 2r

d fe

r rθτ θ = − −

22

22

b

e

σ

σ

=

=

( ,0) 3aθσ σ ∞=

3σ ∞

σ ∞

2

2c a

σ ∞

= −

2

4

2

36

2

d a

f a

σ

σ

= −

=

Page 6: FMDF cours 181011 - LEM3

11/10/2018

6

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 11

Airy stress function for few loadings (1)

, , ,x yy y xx xy xyA A Aσ σ σ= = = −

2( , ) Beam in tractionA x y ay=

( , ) Beam in shearA x y axy=

3Beam subjected to

( , )bending moment

A x y ay

=

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 12

Airy stress function for few loadings (2)

3( , )A x y axy bxy

= +

2 2 3 2 3 5( , )A x y ax bx y cy dx y ey

= + + + +

Page 7: FMDF cours 181011 - LEM3

11/10/2018

7

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 13

Airy stress function for few loadings (3)

Axisymmetric loading , ,

10r r rr rA A

rθ θσ σ τ= = =

2( , ) ( )A r A r Crθ = =

2( , ) ( ) lnA r A r a r crθ = = +

2 2( , ) ( ) ln lnA r A r a r br r crθ = = + +

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 14

Airy stress function for few loadings (4)

, , , ,2

,

1 1 1r r rr r

r

A A A Ar r r

θθ θ θ θσ σ τ = + = = −

( , ) sinA r crθ θ θ=

( , ) sin 2A r a bθ θ θ= +

( , ) cosA r crθ θ θ=

Page 8: FMDF cours 181011 - LEM3

11/10/2018

8

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 15

Complex formulation of the Airy stress function

- Holomorphic functions (or analytical functions)

z x iy

z x iy

= += −RST

M(x,y)

�x

�y

= +

= −

RS||

T||

xz z

yz z

i

2

2

( , ) ( , )x y Plan g x yg∈ → ( , ) ( , ) ( , )x y z z g z z

g → →

( )

( ), , ,

, , ,

1

2The derivation rules are

1

2

z x y

z x y

g g ig

g g ig

= − = +

g g g

g i g g

x z z

y z z

, , ,

, , ,( )

= += −

RST

P P x y

Q Q x y

==RST

( , )

( , )g P iQ= +

is holomorphic if 0g

gz

∂ =∂

g zg

xi

g

y' ( ) = ∂

∂= − ∂

E� ���� ����

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 16

* Properties oy analytic functions

g P iQdg

dz

g

xi

g

y= + = ∂

∂= − ∂

∂ avec

Cauchy conditions

P Q

x yP Q P Qi i

P Qx x y y

y x

∂ ∂∂ ∂∂ ∂ ∂ ∂∂ ∂∂ ∂ ∂ ∂∂ ∂

=+ = − + = −

∆ ∆P Q= =E

0� ��� ���The real or imaginary parts of an

analytic function, are harmonic

Conversely, if ( , ) and ( , ) is an analytic function

verify the Cauchy conditions

P x y Q x yg P iQ = +

- If g is an analytical function, its derivative and its integral are also

Page 9: FMDF cours 181011 - LEM3

11/10/2018

9

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 17

Examples of analytic functions

einz, zn and ln z are analytic functions. Their real and imaginary

parts that are harmonic, can be determined.

( )

( ) ( )

( ) (cos sin )

The associated harmonic fonctions are cos and sin

inz in x iy ny

inz in x iy in x iy

ny ny

f z e e e nx i nx

df f df f dfine ine ne i

dz x dz y dz

e nx e nx

+ −

+ +

− −

= = = +∂ ∂= = = = − =∂ ∂

i

Exchanging n by –n, it is seen that eny cosnx and eny sinnx are also

harmonics. It follows that sinhny sinnx, coshny sinnx, sinhny cosnx

and coshny cosnx, obtained by linear combination of the preceding

harmonic functions, are also harmonic.

The hyperbolic sine and hyperbolic cosine functions are defined by

sinh cosh2 2

ny ny ny nye e e eny ny

− −− += =

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 18

1 1 1

( ) ( ) ( ) (cos sin )

( ) ( )

The associated harmonic fonctions are cos and sin

n n ei n n

n n n

n n

f z z x iy r r n i n

df f df f dfnz n x iy in x iy i

dz x dz y dz

r n r n

θ θ θ

θ θ

− − −

= = + = = +∂ ∂= = + = = + =∂ ∂

i

( ) ln ln( ) ln( ) ln

1 1

The associated harmonic fonctions are ln and

if z z x iy re r i

df f df f i dfi

dz z x x iy dz y x iy dz

r

θ θ

θ

= = + = = +∂ ∂= = = = =∂ + ∂ +

i

Page 10: FMDF cours 181011 - LEM3

11/10/2018

10

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 19

Expressions of the Airy stress function

∆ ∆ Αb g = 0 If then 0 is harmonicP A P P= ∆ ∆ =

( ) is analytic with

P Q

x yf z P iQ

P Q

y x

∂ ∂∂ ∂∂ ∂∂ ∂

== + = −

Calculating the harmonic function ( , )Q x y

Q QdQ dx dy

x y

P PQ dQ dx dy

y x

∂ ∂∂ ∂

∂ ∂∂ ∂

= +

= = − +

( ) ( )1 is also analytic function 4 4

4

p qz f z dz p iq P

x y

∂ ∂ϕ∂ ∂

= = + = =

1 1 1 1If then 0 ( ) is analytic functionp px qy p z p iqχ= Α − − ∆ = = +

A px qy p

z z z

z z z z z z= + +

= +

= + + +

RS|T|

1 1

2

Α

Α

Re ϕ χ

ϕ χ ϕ χ

b g b gb g b g b g b g

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 20

Stresses expressions

σ σx xy yy xy x y y z y zz zzi i i i i+ = − = − + = − = −Α Α Α Α Α Α Α, , , , , , , ,d i c h c h2 2

,

,

,

x yy

y xx

xy xy

σσσ

= Α

= Α

= −Α

( ) ( ) ( ) ( )' ' '' ''x xyi z z z z zσ σ ϕ ϕ ϕ χ + = + − −

g g ig

g g ig

z x y

z x y

, , ,

, , ,

= −

= +

RS|

T|

1

21

2

d id i

g g g

g i g g

x z z

y z z

, , ,

, , ,( )

= += −

RST( ) ( )

Expression of the stress function

from the potential complex ( ) and ( )

1( ) ( )

2

z z

z z z z z z

ϕ χ

ϕ χ ϕ χ Α = + + +

σ σy xy xx xy x y x z x zz zzi i i− = + = + = = +Α Α Α Α Α Α Α, , , , , , , , ,d i c h c h2 2

( ) ( ) ( ) ( )' ' '' ''y xyi z z z z zσ σ ϕ ϕ ϕ χ − = + + +

σ σ ϕ ϕ ϕy x z z z+ = + =2 4' ' Re 'b g d ie j b gc h

( ) ( )( )2 2 '' ''y x xyi z z zσ σ σ ϕ χ− + = +

Page 11: FMDF cours 181011 - LEM3

11/10/2018

11

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 21

Displacements expressions

22

2

2

22

2

2

µ ε σ λλ µ

σ σ λ µλ µ

σ σ σ

µ ε σ λλ µ

σ σ λ µλ µ

σ σ σ

x x x y x y y

y y x y x y x

= −+

+ =++

+ −

= −+

+ =++

+ −

RS||

T||

b g d i b g d i

b g d i b g d i

= ++

= ++

RS||

T||

22

2

22

2

µ ε λ µλ µ

µ ε λ µλ µ

x xx

y yy

b g

b g

∆ Α Α

∆ Α Α

,

,

∆A Pp

x

q

y= = =4 4

∂∂

∂∂

( ) ( )

( ) ( )

,

,

22 2

22 2

x x

y y

u p y

u q x

λ µµ α

λ µλ µ

µ βλ µ

+= − Α + +

+ = − Α + +

avec αβ

y cy d

x cx d

b gb g

= += − +

RST1

2

( ) ( ) ( ), ,

22 2x y x yu iu p iq i

λ µµλ µ++ = + − Α + Α+

g g ig

g g ig

z x y

z x y

, , ,

, , ,

= −

= +

RS|

T|

1

21

2

d id i

+ = ∂∂

Α Α, ,x yiA

zd i 2

( ) ( ) ( ) ( ) ( ) ( )2 22 2 2 2 ' 'x yu iu z z z z z z

z

λ µ ∂ λ µµ ϕ ϕ ϕ ϕ χλ µ λ µ∂+ Α ++ = − = − − −+ +

( ) ( ) ( ) ( )2 ' 'x y

U iU z z z zµ κ ϕ ϕ χ+ = − −

33 4 for plane strain

with 3

for stress plane1

vλ µκλ µ

νκν

+= = −+

−=+

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 22

�eθ

�x

�er

θ

θ

�y

� � �

� � �e x y

e x y

r = += − +

RSTcos . sin .

sin . cos .

θ θθ θθ

�e

e

x

y

r

θ

θ θθ θ

FHGIKJ =FHGIKJ −

FHG

IKJP avec P :

cos sin

sin cos

u

u

u

u

u u

u u

r x

y

x y

x yθ

θ θθ θ

FHGIKJ =FHGIKJ =

+− +FHG

IKJP

cos sin

sin cos

u iu e u iur

i

x y+ = +−θ

θ ( ) ( ) ( ) ( ) ( )( )2 ' 'i

ru iu e z z z zθθµ κ ϕ ϕ χ−+ = − −

σ σθh h� � �

e e x y

t

r

P P, ,

= ( )22 2

r x y

i

r r y x xyi e i

θθ

θ θ

σ σ σ σσ σ σ σ σ σ

+ = + − + = − +

( ) ( )( )22 2 '' ''i

r ri e z z zθθ θσ σ σ ϕ χ− + = +

* System coordinates change

Because we will use of polar coordinates in the solution of many

problems in elasticity, the previous governing equations will now be

developed in this curvilinear system.

Page 12: FMDF cours 181011 - LEM3

11/10/2018

12

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 23

3 3Let ( ; , , ) denote the Cartesian coordinates system and ( ; , , )

a coordinate system associated with curvilinear coordinates , .

O x y x M xα βα β

��� � � �

The complex number is associated with the , coordinates and

the complex is associated with the curvilinear coordinates , .

z x iy x y

iζ α β α β= +

= +

As ( , ) and ( , ), then we have :

( ) and '( )

x x y y

dzz f f

d

α β α β

ζ ζζ

= =

= =

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 24

We easily show that '( ) | '( ) | , in other words that the argument

of the complex number is equal to , the angle between the two coordinate

systems respectively associated with , and , .

if f e

x y

θζ ζθ

α β

=

� arg '( ) arg arg arg , ,dz

f dz d u x ud

ζ ζ α θζ

= = − = − =�� � �

So we have '( ) | '( ) | and '( ) | '( ) | so thati if f e f f eθ θζ ζ ζ ζ −= =

2'( )=

'( )

ife

f

θζζ

( ) and '( )dz

z f fd

ζ ζζ

= =

Page 13: FMDF cours 181011 - LEM3

11/10/2018

13

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 25

Summary of key findings

The resolution of a plane elasticity problem comes down to the

search for a stress function, called the Airy function A, which is bi-

harmonic, that is to say ∆(∆A)=0.

The expression of this stress function, from the complex potentials ϕand χ which are analytical functions of the complex variable z, is

given by :

The search for the Airy stress function is therefore to find these

complex potentials. The components of the stress tensor and the

displacement vector are then determined by the following

relationships :

( ) ( ) ( ) ( ) ( ) ( )1Re

2z z z z z z z z zϕ χ ϕ χ ϕ χ Α = + = + + +

A. Zeghloul Fracture mechanics, damage and fatigue – Plane elasticity 26

In a Cartesian coordinates system (x,y)

In a curvilinear coordinates system associated to varaibles (α,β)

3 4 for plane strain

with 3 for stress plane

1

vκνκν

= −−=+