FM- Frequency Modulation PM - Phase Modulation...PM: instantaneous phase deviation of the carrier...
Embed Size (px)
Transcript of FM- Frequency Modulation PM - Phase Modulation...PM: instantaneous phase deviation of the carrier...

1
1
FM- Frequency ModulationPM - Phase Modulation
EELE445-14Lecture 30
DSB-SC, AM, FM and PM
( )
[ ]
∫ ∞−=
=
±=
+=
=
tf
p
dmjDc
tmjDc
c
c
c
eAtg
eAtg
tmjtmAtg
tmAtg
tmAtg
σσ )(
)(
)(
)(
)(ˆ)()(
)(1)(
)()(
:EnvelopeComplex FM
:EnvelopeComplex PM
:EnvelopeComplex SC-SSB
:EnvelopeComplex AM
:EnvelopeComplex SC-DSB

2
FM and PM
[ ] [ ])(cos)(Re)(
)()(
)()( )()(
ttAetgts
AtgtR
eAetRtg
cctj
c
tjc
tj
c θωω
θθ
+==
→
==
==
:signal modulated-angle dTransmitte
constantis power constant ais envelope real the
EnvelopeComplex
FM and PM
[ ] [ ]
voltHzD
voltradD
dmDt
voltradD
tmDtttAetgts
f
f
t
f
p
p
cctj c
π
σσθ
θθωω
2
sec
)()(
)()()(cos)(Re)(
=
−≡
=
≡
=+==
∫ ∞−
constant modulation or deviation frequency
:FM for
constant modulation or ysensitivit phase
:PM for
:signal modulated-angle dTransmitte

3
FM and PM
Relationship between mf(t) and mp(t):
σσ dmDD
tm
dttdm
DD
tm
t
fp
fp
p
f
pf
∫ ∞−=
⎥⎦
⎤⎢⎣
⎡=
)()(
)()(
Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0
Figure 5–8 Angle modulator circuits. RFC = radio-frequency choke.

4
Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0
Figure 5–8 Angle modulator circuits. RFC = radio-frequency choke.
Instantaneous Frequency
πθ
πω
π
θωψψ
2)()(
21)(
21)(
))(cos()(cos)(cos)()(
tfdt
tdψttf
ttAPMorFMtA
ttRts
cii
cc
c
•
+=⎥⎦⎤
⎢⎣⎡==
+===
:is Hz in frequencyous instantane The

5
FM and PM differences
radianstmDt p )()( =θ
PM: instantaneous phase deviation of the carrier phase is proportional to the amplitude of m(t)
voltradiansinDp
•Modulation Constant• Modulation sensitivity• Phase sensitivity
ππθ
πψ
ωθωψ
2)(
2)(
2)()(
)()()(
tmDftf
dttdtf
tmDtttt
pcci
pcc
••
+=+==
+=+=
: Hz in frequencyous Instantane
:radians in phaseous Instantane
FM and PM differencesFM: instantaneous frequency deviation from the carrier frequency is proportional to m(t)
radiansdmDtt
f ∫ ∞−= ααθ )()(
ππθ
πψ
ααωθωψ
2)(
2)(
2)()(
)()()(
tmDftf
dttdtf
dmDtttt
fcci
t
fcc
+=+==
+=+=
•
∞−∫
: Hz in frequencyous instantane The
:radians in phaseous instantane The
sec−voltradiansinD f

6
FM and PM differencesFM: instantaneous frequency deviation from the carrier frequency is proportional to m(t)
)(21)(
21)()( tmDtftftf fcid πθ
π==−≡
•
voltHz
voltradKD
voltradiansKD
ff
pp
π2sec
=−
⇒=
⇒=Modulation Constants
FM
[ ]
m(t) of bandwidth the is indexmodulationfrequency
deviationfrequencypeak
deviationfrequency
BBF
tmV
VDdt
tdF
dttdftftf
f
p
pf
cid
Δ=≡
=
=⎭⎬⎫
⎩⎨⎧
⎥⎦⎤
⎢⎣⎡=Δ≡
⎥⎦⎤
⎢⎣⎡=−=≡
β
πθ
π
θπ
)(max21)(
21max
)(21)()(

7
PM and digital modulation
[ ][ ]
s
p
T duration, symbol one in change phase pk-pk the is 2 where
:index modulation the signals Digital For
then deviation, frequency peak same the have signals FM and PM the that such set signal sinusoidal a is m(t) when
:note
index modulation phase
deviationphasepeak deviation phase
θπθ
ββ
θβ
θθθ
Δ
Δ≡
=
Δ=≡
=
==Δ≡≡
2
)(max
)(max)(
h
tmV
VDtt
fp
p
pp
Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0
Figure 5–9 FM with a sinusoidal baseband modulating signal.

8
Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0
Figure 5–9 FM with a sinusoidal baseband modulating signal.
FM from PM and PM from FM

9
FM/PM s(t) waveforms
FM and PM with m(t)=cos(2πfmLet
For PM
For FM
Define the modulation indices:

10
FM and PM Signals
Define the modulation indices:
FM and PM SignalsThen

11
Spectrum Characteristics of FM
• FM/PM is exponential modulationLet
( )))2sin(2(Re
))2sin(2cos()(tftfj
c
mcc
mceA
tftfAtuπβπ
πβπ+=
+=
)2sin()( tft mπβφ =
u(t) is periodic in fmwe may therefore use the Fourier series
Spectrum Characteristics of FM
• FM/PM is exponential modulation
( )))2sin(2(Re
))2sin(2cos()(tftfj
c
mcc
mceA
tftfAtuπβπ
πβπ+=
+=
u(t) is periodic in fmwe may therefore use the Fourier series

12
Spectrum with Sinusoidal Modulation
u(t) is periodic in fmwe may therefore use the Fourier series
)2sin()( tfj metg πβ=
Jn Bessel Function

13
Jn Bessel Function
TABLE 5–2 FOUR-PLACE VALUES OF THE BESSEL FUNCTIONS Jn (β)

14
TABLE 5–3 ZEROS OF BESSEL FUNCTIONS: VALUES FOR β WHEN Jn(β) = 0
Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0
Figure 5–11 Magnitude spectra for FM or PM with sinusoidal modulation for various modulation indexes.
))1(2cos()1()2cos()1(
))1(2cos()1(
11
0
11
tffJAtfJA
tffJA
cc
cc
cc
−==
+=
− πβπβπβ

15
Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0
Figure 5–11 Magnitude spectra for FM or PM with sinusoidal modulation forvarious modulation indexes.
30
NBFM- Narrowband Frequency ModulationWBFM - Wideband FrequencyModulation Carson’s Bandwidth Rule
EELE445-14Lecture 31

16
Narrowband FM•Only the Jo and J1 terms are significant•Same Bandwidth as AM•Using Eulers identity, and φ(t)<<1:
Notice the sidebands are “sin”, not “cos” as in AM
Narrowband FM as a Phaser
AM
NBFM

17
Frequency Multiplication:Wideband FM from Narrowband FM
(s(t))nsi(t)ωcβFM
so(t)n x ωcn x βFM
•The Output Carrier frequency = n x fc•The output modulation index = n x βfm•The output bandwidth increases according to Carson’s Rule
min
2)(2)(
)()(
)Re()Re()(
ffmout
t
f
tnfjtjnntfjtjo
n
dmnDtn
eeeets cc
ββ
λλφ
πφπφ
=
=
==
∫∞−
Effective Bandwidth- Carson’s Rule for Sine Wave ModulationWhere β is the modulation
index fm is the sinusoidalmodulation frequency
•Notice for FM, if kfa>> fm, increasing fm does not increase Bc much•Bc is linear with fm for PM

18
Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0
Figure 5–11 Magnitude spectra for FM or PM with sinusoidal modulation forvarious modulation indexes.
Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0
Figure 5–11 Magnitude spectra for FM or PM with sinusoidal modulation forvarious modulation indexes.

19
Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0
Figure 5–11 Magnitude spectra for FM or PM with sinusoidal modulation for Various modulation indexes.
When m(t) is a sum of sine waves

20
When m(t) is a sum of sine waves
Sideband PowerSignal Amplitude: Ac 1V:=
Modulating frequency: fm 1KHz:=
Carrier peak deveation: Δf 2.4KHz:=
Modulation index: βΔffm
:=β 2.4=
Reference equation: x t( )
∞−
∞
n
Ac Jn n β,( )⋅ cos ωc n ωm⋅+( ) t⋅⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦∑=
Power in the signal: PcAc
2
2 1⋅ Ω:= Pc 0.5 W=
Carsons rule bandwidth: BW 2 β 1+( )⋅ fm⋅:= BW 6.8 103×
1s
=
Order of significant sidbands predicted by Carsons rule: n round β 1+( ):= n 3=
Power as a function of number of sidebands: Psum k( )
k−
k
n
Ac Jn n β,( )⋅( )2
2 1⋅ Ω∑=
:=
Percent of power predicted by Carsons rule: Psum n( )
Pc100⋅ 99.118=

21
Power vs Bandwidth
0 0.5 1 1.5 2 2.5 30
50
100PERCENT OF TOTAL POWER
Psum k( )
Pc100⋅
k
Sideband Power β=2.4
k 0 10..:=Jk Jn k β,( ):= β 2.4=Pk Jk( )2
:=n 3=
P0 2
1
n
j
P j∑=
⋅+ 0.991=
J
0012345678910
-32.508·100.52
0.4310.1980.0640.016
-33.367·10-45.927·10-59.076·10-51.23·10-61.496·10
= P
0012345678910
-66.288·100.2710.1860.039
-34.135·10-42.638·10-51.134·10-73.513·10-98.237·10
-101.513·10-122.238·10
=

22
Sideband Power β=0.1
j 0 5..:= β 0.1:= n 1:=
Vj Jn j β,( ):=Uj Vj( )2
:=
U0 2
1
n
j
Uj∑=
⋅+ 1=
V
0.998
0.05
1.249 10 3−×
2.082 10 5−×
2.603 10 7−×
2.603 10 9−×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= U
0.995
2.494 10 3−×
1.56 10 6−×
4.335 10 10−×
6.775 10 14−×
0
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
Sideband Power β=0.6
β 0.6:= n 1:=
W j Jn j β,( ):= Xj W j( )2:=
X0 2
1
n
j
Xj∑=
⋅+ 0.996=
W
0.912
0.287
0.044
4.4 10 3−×
3.315 10 4−×
1.995 10 5−×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= X
0.832
0.082
1.907 10 3−×
1.936 10 5−×
1.099 10 7−×
3.979 10 10−×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

23
Modulation_index 7.9=Bandwidth 18=
f fc n 1+( ) Fm⋅− fc n Fm⋅−( ), fc n 1+( ) Fm⋅+⎡⎣ ⎤⎦..:=B f( ) δ f fc n 0+( ) Fm⋅+,⎡⎣ ⎤⎦ δ f fc n Fm⋅−,( )+:=
Si f( ) Ac J0 M( )( ) δ f fc,( )⋅
1
n
k
Jn k M,( ) δ f fc k Fm⋅+( ),⎡⎣ ⎤⎦⋅ 1−( )k Jn k M,( )⋅ δ f fc k Fm⋅−( ),⎡⎣ ⎤⎦⋅+⎡⎣
⎤⎦∑
=
+⎡⎢⎢⎣
⎤⎥⎥⎦
⋅:=
Modulation_index M:=n 9=Bandwidth 2 n⋅ Fm⋅:=
2 * n is the number of significant sidebands per Carsons rulen round M 1+( ):=
Mx
10:=
Modulating frequency- single sinewaveFm 100:=
fc 0 104⋅:=
Ac 1:=79
FM/PM modulation index: set to π/2 for peak phase dev of π/2set to Δf/fm for frequency modulation. spectrumis the same for sinewavemodulation.
filename: fmsidebands.mcd avo 09/21/04last edit date:2/27/07
β=.4, Sideband Level =β/2 for Narrowband FM
2 1 0 1 20.2
0
0.2
0.4
0.6
0.8
Spectrum
Single Sided Spectrum
Peak
Vol
ts
0 2 4 6 8 101
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
Carrier J01st Sidebands J12nd Sidebands J2
Bessel Functions
Modulation_index

24
β=.9, Sideband Level =β/2 for Narrowband FM
3 2 1 0 1 2 30.5
0
0.5
1
Spectrum
Single Sided Spectrum
Peak
Vol
ts
0 2 4 6 8 101
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
Carrier J01st Sidebands J12nd Sidebands J2
Bessel Functions
Modulation_index
β=2.4, Carrier Null
4 2 0 2 40.6
0.4
0.2
0
0.2
0.4
0.6
Spectrum
Single Sided Spectrum
Peak
Vol
ts
0 2 4 6 8 101
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
Carrier J01st Sidebands J12nd Sidebands J2
Bessel Functions
Modulation_index

25
β=3.8, first sideband null
6 4 2 0 2 4 60.6
0.4
0.2
0
0.2
0.4
0.6
Spectrum
Single Sided Spectrum
Peak
Vol
ts
0 2 4 6 8 101
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
Carrier J01st Sidebands J12nd Sidebands J2
Bessel Functions
Modulation_index
β=5.1, second sideband null
8 6 4 2 0 2 4 6 80.4
0.2
0
0.2
0.4
Spectrum
Single Sided Spectrum
Peak
Vol
ts
0 2 4 6 8 101
0.8
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
Carrier J01st Sidebands J12nd Sidebands J2
Bessel Functions
Modulation_index

26
Power vs BW, β=0.1
second term includes power in +Jn and power in -Jn, i.e the upper and lower sideband pairs
P M n,( )J0 M( )2
21
n
k
Jn k M,( )2∑=
+⎛⎜⎜⎝
⎞⎟⎟⎠
:=
1 1.2 1.4 1.6 1.899.99965
99.9997
99.99975
99.9998
99.99985
99.9999
99.99995
% power vs bandwidth
Number of Sideband pairs
P M k,( )
Ac2
2
100⋅
n
k
M 0.1=
Fm 1= Hz
Bandwidth 2= Hz
P M n,( )
Ac2
2
100⋅ 100=
Power vs BW, β=0.9
⎝ ⎠
1 1.5 2 2.5 3 3.5 498
98.5
99
99.5
100% power vs bandwidth
Number of Sideband pairs
P M k,( )
Ac2
2
100⋅
n
k
M 0.9=
Fm 1= Hz
Bandwidth 4= Hz
P M n,( )
Ac2
2
100⋅ 99.958=

27
Power vs BW, β=2.4
⎝ ⎠
1 2 3 4 5 6 7 850
60
70
80
90
100% power vs bandwidth
Number of Sideband pairs
P M k,( )
Ac2
2
100⋅
n
k
M 2.4=
Fm 1= Hz
Bandwidth 8= Hz
P M n,( )
Ac2
2
100⋅ 99.945=