FIRST SPECTROSCOPIC INVESTIGATION OF A MICROLENSING · PDF fileFIRST SPECTROSCOPIC...
date post
28-Oct-2019Category
Documents
view
9download
0
Embed Size (px)
Transcript of FIRST SPECTROSCOPIC INVESTIGATION OF A MICROLENSING · PDF fileFIRST SPECTROSCOPIC...
FIRST SPECTROSCOPIC INVESTIGATION OF A MICROLENSING EVENT: NO EVIDENCE FOR THE BINARY I. BOISSE (LAM), A. SANTERNE (IA), J.-P. BEAULIEU (IAP), B. ROYA-AYALA (IA), C. RANC, N.C. SANTOS, V. BATISTA, D. BENNETT, E. SCHLAWIN, J.B. MARQUETTE, S. SOUSA, R. DIAZ, J.-M. ALMENARA, D. JAMES, T. HERTER
Introduction
V
J
E
U
S
N
30 cm/s
3 m/s
1 m/s
RV
Imaging
Transit
μ-lensing
from exoplanet.eu and exoplanet.org June 2014
http://exoplanet.eu http://exoplanet.org
OGLE-2011-BLG-0417
Shin et al. 2012Binary system
OGLE-2011-BLG-0417 Characteristics
Lens Source
K3 red giant 8 kpc
binary M dwarfs 0.95 kpc I = 16.3
I = 16.74V = 18.23 V = 19.42
OGLE-2011-BLG-0417 Characteristics
Lens Source
K3 red giant 8 kpc
binary M dwarfs 0.95 kpc I = 16.3
I = 16.74V = 18.23 V = 19.42
OGLE-2011-BLG-0417 Gould et al. 2013Predicted RV curve
OGLE-2011-BLG-0417 Gould et al. 2013Predicted RV curve
Several km/s
OGLE-2011-BLG-0417 Gould et al. 2013Predicted RV curve
Several km/s
P = 1.42 yr
OGLE-2011-BLG-0417 Gould et al. 2013Predicted RV curve
Several km/s
P = 1.42 yr
Phase is lost
Observations UVES @ VLT, ESO
Observations UVES @ VLT, ESO
Crowded field
Observations UVES @ VLT, ESO
Crowded field
10 spectra of ~1h
SNR ~ 20 (550nm)
Observations UVES @ VLT, ESO
Crowded field
10 spectra of ~1h
SNR ~ 20 (550nm)
1” slit: R~40 000
Observations UVES @ VLT, ESO
Crowded field
10 spectra of ~1h
SNR ~ 20 (550nm)
1” slit: R~40 000
Th-Ar calib before and after exposures
Data reduction Reduced with Reflex (ESO)
Data reduction CCF with K5 maskReduced with Reflex (ESO)
�80 �60 �40 �20 0 20 40 60 80 Radial velocity [km.s�1]
0.75
0.80
0.85
0.90
0.95
1.00
1.05
C C
F co
nt ra
st
source lens
3300 – 4500 Å 4800 – 5800 Å 5800 – 6800 Å
Data reduction CCF with K5 maskReduced with Reflex (ESO)
�80 �60 �40 �20 0 20 40 60 80 Radial velocity [km.s�1]
0.75
0.80
0.85
0.90
0.95
1.00
1.05
C C
F co
nt ra
st
source lens
3300 – 4500 Å 4800 – 5800 Å 5800 – 6800 Å
Data reduction CCF with K5 mask
(V-I) = 1.93 ; (V-I) = 2.68sourcelens
Reduced with Reflex (ESO)
�80 �60 �40 �20 0 20 40 60 80 Radial velocity [km.s�1]
0.75
0.80
0.85
0.90
0.95
1.00
1.05
C C
F co
nt ra
st
source lens
3300 – 4500 Å 4800 – 5800 Å 5800 – 6800 Å
Data reduction CCF with K5 mask
(V-I) = 1.93 ; (V-I) = 2.68sourcelens
Reduced with Reflex (ESO)
Bluer lens
�80 �60 �40 �20 0 20 40 60 80 Radial velocity [km.s�1]
0.75
0.80
0.85
0.90
0.95
1.00
1.05
C C
F co
nt ra
st
source lens
3300 – 4500 Å 4800 – 5800 Å 5800 – 6800 Å
Data reduction CCF with K5 mask
(V-I) = 1.93 ; (V-I) = 2.68sourcelens
Reduced with Reflex (ESO)
Bluer lens
lens source
Data reduction Corrected from BERV
Data reduction Corrected from BERV
Corrected from spectrograph drift (15 to 400 m/s in 1 h)
Data reduction Corrected from BERV
Corrected from spectrograph drift (15 to 400 m/s in 1 h)
But Variation of the illumination of the slit
Data reduction Corrected from BERV
Corrected from spectrograph drift (15 to 400 m/s in 1 h)
But Variation of the illumination of the slit
Corrected from RV telluric reference (O2 lines)
Data reduction
6550 6600 6650 6700 6750 6800 6850 6900 6950 Time [BJD - 2 450 000]
�0.6
�0.4
�0.2
0.0
0.2
0.4
0.6
0.8
R el
at iv
e R
V [k
m .s
� 1 ]
lens source
Data reduction
6550 6600 6650 6700 6750 6800 6850 6900 6950 Time [BJD - 2 450 000]
�0.6
�0.4
�0.2
0.0
0.2
0.4
0.6
0.8
R el
at iv
e R
V [k
m .s
� 1 ]
lens source
Stars RV share same systematics !
Data reduction
6550 6600 6650 6700 6750 6800 6850 6900 6950 Time [BJD - 2 450 000]
�0.6
�0.4
�0.2
0.0
0.2
0.4
0.6
0.8
R el
at iv
e R
V [k
m .s
� 1 ]
lens source
Stars RV share same systematics !
Used RV source as a reference for RV lens
Results
RMS = 94 m/s
6500 6600 6700 6800 6900 7000 Time [BJD - 2 450 000]
40
42
44
46
48
50
52
54
D iff
er en
tia lR
V (R
V le
n s
-R V
so u rc
e) [k
m .s
� 1 ]
OGLE-2011-BLG-0417
predicted best model observed
6500 6600 6700 6800 6900 7000
42.2
42.4
42.6
42.8
43.0
Results
RMS = 94 m/s
6500 6600 6700 6800 6900 7000 Time [BJD - 2 450 000]
40
42
44
46
48
50
52
54
D iff
er en
tia lR
V (R
V le
n s
-R V
so u rc
e) [k
m .s
� 1 ]
OGLE-2011-BLG-0417
predicted best model observed
6500 6600 6700 6800 6900 7000
42.2
42.4
42.6
42.8
43.0
Results
RMS = 94 m/s PASTIS validation tool
Diaz et al. 2014
6500 6600 6700 6800 6900 7000 Time [BJD - 2 450 000]
40
42
44
46
48
50
52
54
D iff
er en
tia lR
V (R
V le
n s
-R V
so u rc
e) [k
m .s
� 1 ]
OGLE-2011-BLG-0417
predicted best model observed
6500 6600 6700 6800 6900 7000
42.2
42.4
42.6
42.8
43.0
Results
RMS = 94 m/s PASTIS validation tool
Diaz et al. 2014 Probability < 2 10 -7
Conclusion
Spectroscopic follow-up observations of microlensing event is possible
We don’t confirm the Gould et al. prediction
Boisse et al. 2015
Conclusion
Spectroscopic follow-up observations of microlensing event is possible
We don’t confirm the Gould et al. prediction
Boisse et al. 2015
Yee et al. 2015Recently same method on a different target
Conclusion
Bright component is most probably not the light from the lens
Spectroscopic follow-up observations of microlensing event is possible
We don’t confirm the Gould et al. prediction
Boisse et al. 2015
Yee et al. 2015Recently same method on a different target
Conclusion
Bright component is most probably not the light from the lens
Spectroscopic follow-up observations of microlensing event is possible
The lens is not detectable
We don’t confirm the Gould et al. prediction
Boisse et al. 2015
Yee et al. 2015Recently same method on a different target
Conclusion
Bright component is most probably not the light from the lens
Spectroscopic follow-up observations of microlensing event is possible
The lens is not detectable
We don’t confirm the Gould et al. prediction
High angular resolution observations planned
Boisse et al. 2015
Yee et al. 2015Recently same method on a different target
Keck AO imaging
No blend within 130mas
Probability to have another star within 130mas ~ 50ppm
Santerne et al. (submitted)
Spectral Energy Distribution
0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.3 1.5 1.8 2.0 2.5 Wavelength [µm]
10�18
10�17
10�16
10�15
C al
ib ra
te d
flu x
[e rg
.s �
1 .c
m �
2 .Å
� 1 ]
J H K
Santerne et al. (submitted)
Spectral Energy Distribution
0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.3 1.5 1.8 2.0 2.5 Wavelength [µm]
10�18
10�17
10�16
10�15
C al
ib ra
te d
flu x
[e rg
.s �
1 .c
m