Fig. 1.1. Earth pressure at-rest on the basement wall near ...

92
Rock Face Rock Face d H Soil Backfill Basement Wall σo ? Soil Backfill Fig. 1.1. Earth pressure at-rest on the basement wall near vertical rock faces 50

Transcript of Fig. 1.1. Earth pressure at-rest on the basement wall near ...

Rock Face

Rock Face

d

H Soil Backfill

Basement Wall

σo ? Soil Backfill

Fig. 1.1. Earth pressure at-rest on the basement wall near vertical rock

faces

50

Bridge Girder

Soil Backfill

Rock Face

Bridge Abutment

d

Fig. 1.2. Bridge abutment near a vertical rock face

51

Fig. 1.3. Fascia wall (after Spangler and Handy, 1982)

52

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oGranular Material

Silo Wall

Hopper

o

oo

Top of fill

(a)

(b)

Fig. 1.4. Circular silo filled with granular material

53

Non-Yielding Wall

d

Granular Materials

H

Fig. 1.5. Storage bunker filled with granular material

54

Fig. 2.1. Development of in-situ stresses

55

σ

σσ

σ

σ

σ σ

σ

γ

h h

v

v

G.L.

(a)

Soil

1

1

3 3

(b)

=z

z

σh

=

=

A

Ground Level

Fig. 2.2. Principal stresses in soil element

x

y

z v

hσσ

σ σ

σσ

=

=

= h

56

Fig. 2.3. Jaky’s formulation of the relationship between Ko on OC and φ mobilized in OAB (after Mesri and Hayat, 1993)

57

φτφ

φ

Principal Stress Trajectories

90-

45+ 2

A B C D

O

z

z

r

r

z

Parabolic Interpolationof between OB and OC

O

O

Lateral Pressure,

Dep

th, z

ab

c

d

σh

Eq. 2.8

Eq. 2.9

Eq. 2.11

Eq. 2.10

Fig. 2.4. Hand-calculation for estimating σh (after Peck and Mesri, 1987)

58

0 5 10 15 20 25 30Vertical Earth Pressure, σv (kN/m2)

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n (m

)

σv = γz(γ = 16.6 kN/m3)σv = γz

(γ = 15.5 kN/m3)

, Test C0807 (Compacted Sand)* Test C0808 (Compacted Sand)

? Test A0806 (Loose Sand)’ Test A0907 (Loose Sand)

Compacted SandDr = 75 %

γ = 16.6 kN/m3

φ = 40.8o

Fig. 2.5. Distribution of vertical earth pressure measured in soil mass

(after Chen, 2003)

59

0 5 10 15

Rankine (Passive)

Jaky

(b)

+ Test C0903, Test C1141

0 5 10 15

Rankine (Passive)

Jaky

(c)

+ Test C0903, Test C1141

0 5 10 15

Rankine (Passive)

JakyCompaction-Influenced Zone

(d)

+ Test C0903, Test C1141

∆σh,ci

0 5 10 15

Rankine (Passive)

Jaky

(e)

+ Test C0903, Test C1141

0 5 10 15

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n (m

)

Rankine (Passive)Jaky

Compacted Sand

+ Test C0903, Test C1141

(a)

Horizontal Earth Pressure, σh 2

Fig. 2.6. Distribution of horizontal earth pressure after compaction (after Chen, 2003)

60

Silo

Hopper

Top of fill

Y

dy

Granular Material

(a)

dyp p

γAdy

q

q + (dq/dy)dy

(b)

Fig. 2.7. Horizontal lamina for derivation of Janssen’s equations (redrawn after Safarian and Harris, 1985)

61

0 4 8 12 16 20Horizontal Earth Pressure, σh (kN/m2)

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

Jaky, Ko

Rankine, Ka

Janssen's SolutionFor Rectangular Silo (a x b x H)

Ottawa Sandγ = 15.6 kN/m3

φ = 31.3o

δw = 9.3o

(b = 1.5 m, a = 50 mm ~ 1500 mm)H = 1.5 m

a = 50 mm

a = 1500 mm

a = 100 mm

a = 200 mm a = 400 mm

a = 700 mm

Fig. 2.8. Distribution of earth pressure for Janssen’s solution with different hydraulic radius R

62

h

D (diameter)

pdy

Y

maxp

(a)

Weight

Fric

tion

Fric

tion

max

(b) Fig. 2.9. Lamina of stored material for derivation of the Reimbert’s

equations (redrawn after Safarian and Harris, 1985)

63

0 4 8 12 16 20Horizontal Earth Pressure, σh (kN/m2)

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

Jaky, KoRankine, Ka

Reimbert & Reimbert's SolutionFor Rectangular Silo (a x b x H)

Ottawa Sandγ = 15.6 kN/m3

φ = 31.3o

δw = 9.3o

(b = 1.5 m, a = 50 mm ~ 1500 mm)H = 1.5 m

a = 50 mm

a = 1500 mm

a = 100 mm

a = 200 mm

a = 400 mm

a = 700 mm

Fig. 2.10. Distribution of earth pressure for Reimbert’s solution with different hydraulic radius R

64

Natural ground

Hdh

h

Bd

Bc

V

V + dV

γBddhKVdh/Bd Kµ'Vdh/Bd

Trench

Conduit

Fig. 2.11. Free-body diagram for a ditch conduit (after Spangler and Handy, 1982)

65

(a) (b)

Fig. 2.12. Distribution of soil pressure against fascia walls to partial

support from wall friction F (after Spangler and Handy, 1982)

66

0 4 8 12 16 20Horizontal Earth Pressure, σh (kN/m2)

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

Jaky, KoRankine, Ka

Spangler & Handy's SolutionFor Rectangular Silo

Ottawa Sandγ = 15.6 kN/m3

φ = 31.3o

δw = 9.3o

B = 50 mm ~ 1500 mmH = 1.5 m

B = 50 m

m

B= 100 m

m

B = 200 mm

B = 1500 mm

B = 400 mmB = 700 mm

Fig. 2.13. Distribution of earth pressure for Spangler and Handy's solution with different distance B

67

0 4 8 12 16 20Horizontal Earth Pressure, σh (kN/m2)

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

Jaky (At-Rest)Rankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1984)

γ = 15.6 kN/m3

d = 0.9 mH = 1.5 mφ = 31.3o

δw = 9.3o

Fig. 2.14. Comparison of earth pressure calculated with different theories

for d = 900 mm

68

Fig. 2.15. Model retaining wall (after Frydman and Keissar, 1987)

69

Model Wall

Walkway

SideWall

End Wall

Steel Fixing Plate

1600

Unit : mm

45

Steel ColumnSteel Base Plate

15001500

Fig. 3.1. NCTU non-yielding retaining wall

70

Fig. 3.2. Locations of soil-pressure transducers mounted on the wall (after Chen and Fang, 2002)

71

Adaptor

SensingArea

Fig. 3.3. Soil pressure trans

Φ = 13 mm

ducer (Kyowa PGM-0.2KG)

72

NI – DAQ PCI – 6024E

LabVIEW Program Pentium 4, PC

Dynamic Strain Amplifiers (Kyowa: DPM601A and DPM711B)

NI BNC – 2090 Adaptor Board

Fig. 3.4. Data acquisition system

73

Front-viewUnit: mm

500

1850

400

500 50025

245

210

Extension cord

Acentric Motor

Switch

Compactor Plate (90 mm x 500 mm)

Handle

Steel Tube

35

25

50

Fig. 3.5. 90 mm × 500 mm vibratory soil compactor

74

Acentric Motor Steel Tube

Model Wall

Soil Pressure Transducer

Steel Interface Plate

Compaction Plate

(Front-view)

(a) Front view of the strip soil compactor and the model wall

Model Wall

Soil Pressure Transducer

Acentric Motor Steel Tube

Compaction Plate (Side-view)

(b) Side view of the strip soil compactor

Fig. 3.6. Strip vibratory soil compactor

75

Acentric Motor

Handle

(c) Acentric motor on strip compactor

Steel Tube

Steel Tube

Strip Compaction Plate (90 mm x 500 mm)

(d) Steel tube and compaction plate

Fig. 3.6. Strip vibratory soil compactor (cont’d)

76

50

100

150

200

10 20 30 40

60Hz

50Hz

R

Radius = 41 mmThickness = 1 mm

No. of Acentric Plate

Ace

ntric

For

ce (k

gf)

0 0 10 20 30 40

Fig. 3.7. Acentric force as a function of number of acentric plate

(Mikasa KJ75)

77

unit:mm

Steel Interface Plate with Safety-Walk

2100

2100

422

320

427

430

315

Steel L-Beam (65 x 65 x 8 mm)

Steel Plate(4.5 mm thick)

Steel L-Beam (65 x 65 x 8 mm)

(a) Front-view (b) Back-view

Steel Beam Reinforcement

Steel Plate with Safety-Walk

Unit : mm

1497

Unit : mm

Steel Platewith Safety-Walk

Steel L-Beam Reinforcement

(c) Side-view (d) Top-view

Fig. 4.1. 2100 mm × 1497 mm steel interface plate

78

Steel Plate with Safety-Walk

(a) Front-view

Steel L-Beam

Steel Plate

(b) Back-view

Fig. 4.2. Steel interface plate

79

80

(a)

(b)

Walkway

Top Supporting Beam

End Wall

Fixing Plate

Steel Interface Plate

Side Wall

Model Wall

Soil Pressure Transducer

Steel L-Beam

C-clamp

(c) Model retaining wall with top supporting beam

Fig. 4.3. Top supporting beam

1210

1084

1487

125

63

63

63

Adjustable Stand

(a) (b)

Unit : mm

63

63

63

719

845 (c) (d)

1467

Fig. 4.4. Base supporting frame

81

297

1195

125

63

6363

(e) (f)

Unit : mm130

1195

125

Adjustable Stand

(g) (h)

Fig. 4.4. Base supporting frame (cont’d)

82

Fig. 4.5. Co

End Wa

m

1195 × 130 × 125 mm

ll Interface Plate

bination of base supporting frames d = 900 mm

1195 × 297 × 125 mm

83

H =

150

0

Unit: mm

SPT1

SPT2

SPT3

SPT4

SPT5

SPT6

SPT7

SPT8

SPT9

SPT10

SPT11

SPT12

SPT13

SPT14

SPT15

Model Wall

Side View

d = 900

Steel Interface PlateTop Supporting Beam

C-clamp

Base Supporting Frame(130 x 1195 x 125 mm)

Soil Pressure Transducer

Base Spacing Plate(17.5 mm thick)

Fixing Plate

Soil Bin

Base Supporting Frame(297 x 1195 x 125 mm)

(a) Side-view

Model Wall

unit : mmTop - View

L =

1500 Soil Pressure

Transducer

Base Supporting Frame(130 x 1195 x 125 mm)

d = 900Top Supporting Beam C-clamp

Base Spacing Plate

Base Spacing Plate

Vertical Interface Plate

Soil Bin

(400 x 700 x 17.5 mm)

(200 x 300 x 17.5 mm)

Base Supporting Frame(297 x 1195 x 125 mm)

(b) Top-view

Fig. 4.6. Model retaining wall near a vertical interface plate with d = 900

mm

84

17.540020050

Unit : mm

Hoist Ring

400

100 30

0 500 70

0 Base Spacing Plate

(a)

(b)

Fig. 4.7. Base spacing plates

85

Fig. 4.8. Comb

Interface Plate

200

700 × 400 × 17.5 mm Model Wall

ination of base spacing plates for d = 900 mm

300 × 200 × 17.5 mm

700 mm mm

86

Steel Interface Plate With Safety-Walk

Plastic Sheets Lubricating

Layer

Model Wall

Top Supporting

Beam

Fig. 4.9. For d = 900 mm between interface plate and model wall

87

H =

150

0

Unit: mm

SPT1

SPT2

SPT3

SPT4

SPT5

SPT6

SPT7

SPT8

SPT9

SPT10

SPT11

SPT12

SPT13

SPT14

SPT15

35 45Model Wall

Side View

Steel Interface PlateTop Supporting Beam

C-clamp

Base Supporting Frame

Base Spacing Plate

d = 1500d = 1100

d = 900d = 700

d = 500d = 400

d = 300d = 200

d = 100d = 50

Fig. 4.10. Different spacing d between interface plate and model wall

88

H =

150

0

Unit: mm

SPT1

SPT2

SPT3

SPT4

SPT5

SPT6

SPT7

SPT8

SPT9

SPT10

SPT11

SPT12

SPT13

SPT14

SPT15

Model Wall

Side View

d = 1500

(a)

(b)

Side Wall

End Wall with Safety-Walk

Model Wall

Fig. 4.11. For d = 1500 mm between interface plate and model wall

89

90

H =

150

0

Unit: mm

SPT1

SPT2

SPT3

SPT4

SPT5

SPT6

SPT7

SPT8

SPT9

SPT10

SPT11

SPT12

SPT13

SPT14

SPT15

Model Wall

Side View

Steel Interface PlateTop Supporting Beam

Base Supporting Frame

Base Spacing Plate

Fixing Plate

d = 50

(a)

(b)

Fig. 4.12. For d = 50 mm between interface plate and model wall

d = 50 mm Interface Plate

Model Wall

10.00 1.00 0.10 0.01Particle Diameter, mm

0

20

40

60

80

100Pe

rcen

t Fi

ner

by W

eigh

t (%

) Ottawa Silica SandASTM C-778

Fig. 5.1. Grain size distribution of Ottawa sand (after Chen, 2001)

91

Fig. 5.2. Shear box of direct shear test device

(after Wu, 1992)

92

φ = 6.43γ -68.99Air-Pluviation

Compactionφ = 7.25γ -79.51

15.00 15.50 16.00 16.50 17.00 17.50

Unit Weight, γ (kN/m3 )

25

30

35

40

45φ

(Deg

ree)

Fig. 5.3. Relationship between unit weight γ and internal friction

angle φ (after Chang, 2000)

93

Fig. 5.4. Direct shear test arrangement to determinate wall friction angle

δW (after Ho, 1999)

94

15.50 15.75 16.00 16.25 16.50 16.75 17.00 17.25Unit Weight , γ (kN/m3)

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0δ w

(deg

ree)

Test Data (air-pluviation)δW = 3.41γ - 43.69Test Data (compaction)δW = 3.08γ - 37.54

Ottawa SandσN = 79.8 kN/m2

Fig. 5.5. Relationship between unit weight γand wall friction angleδW

(after Ho, 1999)

95

96

Fig. 5.6. Plastic sheets lubrication layer hung on the side wall

Lubrication layer (1 thick + 2 thin plastic sheets)

Steel Interface Plate

Model Wall

Fig. 5.7. Schematic diagram of sliding block test. (after Fang et al., 2004)

97

δ

Lubrication Layer

Handle

Standard Weight

Soil Box

Uplift Rod

Worm Gear

Horizontal LineN

T

F

27 mm

60 mm

Acrylic Plate

20 mm10 mm

Steel Plate

900 mm

600 mm

Uplift rod

Worm gear

Handle

Ball bearing

Plastic sheet ↘ ↙ Soil box↙ Sliding plate

Standard weight↓

Fig. 5.8. Sliding block test apparatus

(after Fang et al., 2004)

98

Sliding Block Test Plastic-sheet method 1 thick + 2 thin sheeting

1 10Normal Stress, σ (

5

15

0

10

20Fr

ictio

n A

ngle

, δ (d

egre

e)

Fig. 5.9. Variation of interface friction angle

(after Fang et al., 2004)

99

o

δ = 7 5

100kN/m2)

δp = 7.5°

δp with normal stress

120

20

63

Dry Ottawa Sand

Steel Plate

Safety-Walk

N

5

Upper Shear Box

Unit : mm

(a) Arrangement of direct shear test

80

120

15

20

80

80

Safety-Walk(anti-slip strips)

(b) Steel plate with Safety-Walk

Fig. 5.10. Direct shear test to determinate friction angle δi of the

interface plate with Safety-Walk

100

15 16 17 18 19Unit Weight, γ (kN/m3)

10

15

20

25

30

35δ i

, (de

gree

)

Air-pluviation Sand

Compacted Sand

δi = 2.7 γ - 21.39

δi = 1.97 γ - 8.9

Ottawa Sandσn = 4.60 kN/m2

Fig. 5.11. Relationship between unit weight γ and interface plate friction

angle δi

101

15 16 17 18 19 20Unit Weight, γ (kN/m3)

0

10

20

30

40

50

Fric

tion

angl

e, (d

egre

e)

δp = 7.5o (Fang et al., 2004)

φair = 6.43γ - 68.99 (Chang, 2000)

φcomp = 7.25γ - 79.5 (Chang, 2000)

δi, comp = 1.97γ - 8.9

δi, air = 2.7γ - 21.39

δw, comp = 3.08γ - 37.54 (Ho, 1999)

δw, air = 3.41γ - 43.69 (Ho, 1999)

ip between unit weight γ aFig. 5.12. Relationsh nd friction angle for

different types of interfaces

102

Unit:mm

500

800

430

120

Slot Control HandleSlot Opening

(a)

(b)

Fig. 5.13. Soil hopper

103

Raining of Ottawa Sand

Model Wall

Slot Opening Steel

Interface Plate

Soil Pressure Transducer

Soil Hopper

Fig. 5.14. Air-pluviation of the Ottawa sand into soil bin

104

0 20 40 60 80 100Relative Density, (%)

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

Compacted Backfill90k500 mm Strip CompactorNo. of Acentric plates = 8 + 8Drop Height = 1.5 mLift Thickness = 0.5 m D

r = 70%

0.1 m

0.5 m

Fig. 5.15. Distribution of soil density with depth for sand compacted with

the 90 mm × 500 mm strip compactor

105

Soil Pressure Transducer

Plastic-Sheets Lubricating Layer

90 mm x 500 mm Strip Compactor Plate

Steel Tube

Model Wall

Fig. 5.16. Backfill compacted with 90 mm × 500 mm strip compactor

106

H =

150

0

Unit: mm

SPT1

SPT2

SPT3

SPT4

SPT5

SPT6

SPT7

SPT8

SPT9

SPT10

SPT11

SPT12

SPT13

SPT14

SPT15

Model Wall

Side View

Lift 3

Lift 2Lift 1

Lift 6

Lift 5

Lift 4

Lift 9

Lift 8

Lift 7

Lift 12

Lift 11

Lift 10

Lift 13

Lift 14

Lift 15

d = 900

Steel Interface Plate

Base Supporting Frame

Ottawa Sand

Soil Density Cup

Base Spacing Plate

100

100

Fig. 5.17. Backfill compacted with 90 mm × 500 mm compactor for d =

900 mm

107

Model Wall

unit : mmTop - View

1500

Base Supporting Frame

d = 900Top Supporting Beam

1 2 43 65 87 109

Steel Interface Plate

M

90 mm x 500 mm compacting plate

Fig. 5.18. Backfill compacted with 90 mm × 500 mm compactor in 10 lanes

108

Fig. 5.19. Dimensions of soil density cup

109

unit : mm

Top-view

Side-view

Acrylic Tube

Acrylic Base Plate30

5

43

3.5

70

70

70

43

50

Fig. 5.20. Soil density cup

110

Model Wall

Steel Interface Plate

Top - View

L =

1500

Soil Density Cup

Base Supporting Frame

d= 900Top Supporting Beam

Fig. 5.21. Locations of soil density control cups at the same elevation

111

(a) Placement of soil density cup

(b) Cup filled and Buried in Backfill

(c) Compaction of soil

(d) Soil density dug out

VWs

d =γ

(e) Soil mass in cup weighted (f) Calculation of dry density

Fig. 5.22. Procedure of density control test

112

0 20 40 60 80Relative Density, D

100r (%)

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m) This Study

Chen (2002)

Compacted Sandγ = 16.5 kN/m3

Dr = 72% ± 2.8%Lift = 0.1 m

Loose Sandγ = 15.6 kN/m3

Dr = 35% ± 3.1%Drop Height = 1.5 mSlot Opening = 18 mm

Dr =

32%

Dr =

38% D

r = 6

9%

Dr =

75%

This Study

Fig. 5.23. Distribution of soil density for loose and compacted sand

113

(a)

0 4 8 12 16 20Horizontal Earth Pressure, σh (kN/m2)

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n, (m

)

JakyRankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0128Test 0216

Loose Sandd = 1500 mmγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

(b)

Fig. 6.1. Distribution of horizontal earth pressure for loose sand with d =

1500 mm

d = 1500 mm Model wall

114

0 4 8 12 16 20Horizontal Earth Pressure, σh (kN/m2)

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n, (m

)

JakyRankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0616Test 0619

Loose Sandd = 1100 mmγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

Fig. 6.2. Distribution of horizontal earth pressure for loose sand with d =

1100 mm

0 4 8 12 16Horizontal Earth Pressure, σh (kN/m2)

20

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n, (m

)

JakyRankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0503

Loose Sandd = 900 mmγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

Fig. 6.3. Distribution of horizontal earth pressure for loose sand with d =

900 mm

115

0 4 8 12 16Horizontal Earth Pressure, σh (kN/m2)

20

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n, (m

)

JakyRankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0428Test 0430Test 0503

Loose Sandd = 700 mmγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

Fig. 6.4. Distribution of horizontal earth pressure for loose sand with d =

700 mm

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n, (m

)

JakyRankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0409Test 0412

Loose Sandd = 500 mmγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

Fig. 6.5. Distribution of horizontal earth pressure for loose sand with d =

500 mm

116

0 4 8 12 16 20Horizontal Earth Pressure, σh (kN/m2)

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n, (m

)

JakyRankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0407Test 0413

Loose Sandd = 400 mmγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

Fig. 6.6. Distribution of horizontal earth pressure for loose sand with d =

400 mm

0 4 8 12 16Horizontal Earth Pressure, σh (kN/m2)

20

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n, (m

)

JakyRankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0324Test 0328

Loose Sandd = 300 mmγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

Fig. 6.7. Distribution of horizontal earth pressure for loose sand with d =

300 mm

117

0 4 8 12 16Horizontal Earth Pressure, σh (kN/m2)

20

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n, (m

)

JakyRankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0406-1Test 0406-2

Loose Sandd = 200 mmγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο δw = 9.3ο, δi = 20.7ο

Fig. 6.8. Distribution of horizontal earth pressure for loose sand with d =

200 mm

0 4 8 12 16Horizontal Earth Pressure, σh (kN/m2)

20

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n, (m

)

JakyRankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0331Test 0405Test 0609

Loose Sandd = 100 mmγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο δw = 9.3ο, δi = 20.7ο

Fig. 6.9. Distribution of horizontal earth pressure for loose sand with d =

100 mm

118

(a)

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5

Elev

atio

n, (m

)

JakyRankine (Active)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0330Test 0331Test 0609

Loose Sandd = 50 mmγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

(b)

Fig. 6.10. Distribution of horizontal earth pressure for loose sand with d

= 50 mm

119

H =

150

0

SPT1

SPT2

SPT3

SPT4

SPT5

SPT6

SPT7

SPT8

SPT9

SPT10

SPT11

SPT12

SPT13

SPT14

SPT15

Model Wall

Side View

Steel Interface Plate

Base Supporting Frame

Transducer

Base Spacing Plated = 200

Z

Water

u = γ Ζw

Horizontal Water Pressure

(a) Filled with water

H =

150

0

Unit: mm

SPT1

SPT2

SPT3

SPT4

SPT5

SPT6

SPT7

SPT8

SPT9

SPT10

SPT11

SPT12

SPT13

SPT14

SPT15

Model Wall

Side View

Steel Interface Plate

Base Supporting Frame

Transducer

Base Spacing Plated = 200

Z Sand

ff i w

σ

v γ Z

σ

v ?

Horizontal Earth Pressure

(c) Filled with sand

Fig. 6.11. Distribution of horizontal pressure for water and sand with d

= 200 mm

120

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m) Jaky

d = 1500 mmd = 900 mmd = 500 mmd = 400 mmd = 200 mmd = 100 mmd = 50 mm

Loose Sandγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

f horizontal earth prFig. 6.12. Distribution o essure for loose sand at different spacing d

121

0 0.2 0.4 0.6 0.8 1d/H

0

0.2

0.4

0.6

0.8

1

Ko,

h

JakyRankine (Ka)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)This Study

Loose Sandγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

Fig. 6.13. Distribution of Ko,h for loose sand at different spacing d

122

0 0.2 0.4 0.6 0.8 1

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Erro

r of K

o,h,

(%)

Loose Sand

Error of Ko,h =

JakyJanssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)

-Ko,h

Ko,h

d/H

Fig. 6.14. Error of Ko,h estimated with different methods

123

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

h/H

h/H = 0.33Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)This Study

Loose Sandγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

d/H

Fig. 6.15. Point of application fo ferent spacing d

r loose sand at dif

124

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

Ove

rturn

ing

mom

ents

abo

ut th

e ba

se, M

o (kN

. m/m

)

Loose SandJakyJanssen (1895)Reimbert and Reimbert (1976)Spangler and Handy (1982)This Study

d/H

Fig. 6.16. Distributio ut the base for loose sand with diff

n of overturning moments aboerent spacing d

125

H =

150

0

Unit: mm

SPT1

SPT2

SPT3

SPT4

SPT5

SPT6

SPT7

SPT8

SPT9

SPT10

SPT11

SPT12

SPT13

SPT14

SPT15

Model Wall

Side View

Steel Interface PlateTop Supporting Beam

Base Supporting Frame

Base Spacing Plate

d = 1500d = 1100

d = 900d = 700

d = 500d = 400

d = 300d = 200

d = 100

Fig. 7.1. Different spacing d between interface plate and model wall

126

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

JakyRankine (Passive)Coulomb (Passive)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0529Test 0621

Compacted Sandd = 1500 mmγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Fig. 7.2. Distribution of horizontal earth pressure for compacted sand with d = 1500 mm

127

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

JakyRankine (Passive)Coulomb (Passive)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0706

Compacted Sandd = 1100 mmγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Fig. 7.3. Distribution of horizontal earth pressure for compacted sand with d = 1100 mm

128

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

JakyRankine (Passive)Coulomb (Passive)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0601

Compacted Sandd = 900 mmγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Fig. 7.4. Distribution of horizontal earth pressure for compacted sand with d = 900 mm

129

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

JakyRankine (Passive)Coulomb (Passive)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0603

Compacted Sandd = 700 mmγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Fig. 7.5. Distribution of horizontal earth pressure for compacted sand with d = 700 mm

130

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

JakyRankine (Passive)Coulomb (Passive)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0515

Compacted Sandd = 500 mmγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Fig. 7.6. Distribution of horizontal earth pressure for compacted sand with d = 500 mm

131

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

JakyRankine (Passive)Coulomb (Passive)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0524

Compacted Sandd = 400 mmγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Fig. 7.7. Distribution of horizontal earth pressure for compacted sand with d = 400 mm

132

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

JakyRankine (Passive)Coulomb (Passive)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0520

Compacted Sandd = 300 mmγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Fig. 7.8. Distribution of horizontal earth pressure for compacted sand with d = 300 mm

133

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

JakyRankine (Passive)Coulomb (Passive)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0524Test 0612

Compacted Sandd = 200 mmγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Fig. 7.9. Distribution of horizontal earth pressure for compacted sand with d = 200 mm

134

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

JakyRankine (Passive)Coulomb (Passive)Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Test 0614

Compacted Sandd = 100 mmγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Fig. 7.10. Distribution of horizontal earth pressure for compacted sand with d = 100 mm

135

0 4 8 12 16 2Horizontal Earth Pressure, σh (kN/m2)

0

0

0.3

0.6

0.9

1.2

1.5El

evat

ion,

(m)

JakyRankine (Passive)Coulomb (Passive)d = 1500 mmd = 1100 mmd = 900 mmd = 700 mmd = 400 mmd = 300 mmd = 200 mmd = 100 mm

Compacted Sandγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο,δw = 13.3ο, δi = 23.6ο

Fig. 7.11. Distribution of horizontal earth pressure for compacted sand at

different spacing d

136

0 0.2 0.4 0.6 0.8 1d/H

0

0.2

0.4

0.6

0.8

1K

o,h

JakyJanssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)This Study

Compacted Sandγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Fig. 7.12. Distribution of Ko,h for compacted sand with different spacing d

137

0 0.2 0.4 0.6 0.8 1d/H

-100

-80

-60

-40

-20

0

20

40

60

80

100

Erro

r of K

o,h,

(%)

JakyJanssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)Line/Symbol Plot 5

Compacted Sand

Error of Ko,h = -Ko,h

Ko,h

Fig. 7.13. Error of Ko,h estimated with different methods

138

0 0.2 0.4 0.6 0.8 1d/H

0

0.2

0.4

0.6

0.8

1h/

H

h/H = 0.33h/H = 0.66Janssen (1895)Reimbert & Reimbert (1976)Spangler & Handy (1982)This Study

Compacted Sandγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

h/H = 0.33

h/H = 0.66

Fig. 7.14. Point of application for compacted sand with different spacing d

139

0 0.2 0.4 0.6 0.8 1d/H

0

0.2

0.4

0.6

0.8

1K

o,h

Jaky (Loose Sand)Jaky (Dense Sand)Janssen (1895) (Loose Sand)Janssen (1895) (Dense Sand)Reimbert & Reimbert (1976) (Loose Sand)Reimbert & Reimbert (1976) (Dense Sand)Spangler & Handy (1982) (Loose Sand)Spangler & Handy (1982) (Dense Sand)This Study (Loose Sand)This Study (Compacted Sand)

Compacted Sandγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Loose Sandγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

Fig. 7.15. Comparison of Ko,h for loose and compacted sand with different spacing d

140

0 0.2 0.4 0.6 0.8 1d/H

0

0.2

0.4

0.6

0.8

1h/

H

Janssen (1895) (Loose Sand)Janssen (1895) (Dense Sand)Reimbert & Reimbert (1976) (Loose Sand)Reimbert & Reimbert (1976) (Dense Sand)Spangler & Handy (1982) (Loose Sand)Spangler & Handy (1982) (Dense Sand)This Study (Loose Sand)This Study (Compacted Sand)

Compacted Sandγ = 16.5 kN/m3

Dr = 72 %φ = 40.1ο

δw = 13.3ο, δi = 23.6ο

Loose Sandγ = 15.6 kN/m3

Dr = 35 %φ = 31.3ο

δw = 9.3ο, δi = 20.7ο

h/H = 0.33

h/H = 0.66

Fig. 7.16. Comparison of h/H for loose and compacted sand with different spacing d

141