Field and Wave Electromagnetic - Seoul National...

48
Field and Wave Electromagnetic Chapter7 Chapter7 The time varying fields and Maxwell’s equation The time varying fields and Maxwell’s equation

Transcript of Field and Wave Electromagnetic - Seoul National...

  • Field and Wave Electromagnetic

    Chapter7Chapter7

    The time varying fields and Maxwell’s equationThe time varying fields and Maxwell’s equation

  • Introduction (1)Introduction (1)Time static fields

    0, ,E D D Eρ ε∇× = ∇ = =i

    1) Electrostatic

    2) Magnetostatic

    10, ,B H J H B

    E D B H

    μ∇ = ∇× = =i

    not

    2) Magnetostatic

    ) and are not related to and for time ste atic casesE D B Hnot ) and are not related to and for time ste atic cases Example)

    ( )E J E

    E

    σ⇒ =

    A static field in a conducting medium steady current.

    give rises to a static magnetic field:Ampere's law. But field can be completely determined from the static electric charge or potential distributions

    ⇒ magnetic field is a consequence

    Electromagnetic Theory 2 2

  • Introduction (2)Introduction (2)Time varying fieldsTime varying fields

    and are properly related to and

    1) modify equation fundamental postulate leading to Faraday's law

    E D B H

    E∇× →

    2) then modify the equation to be consisteH∇×

    ) 0

    nt with the equation of continuity

    for static. but for time varyingcf J Jtρ∂

    ∇ = ∇ = −∂

    i i

    0 3) and never changes.D Bρ∇ = ∇ =i i

    Electromagnetic Theory 2 3

  • Faraday’s LawFaraday s LawMichael Faraday 1831, experimental law postulate⇒ ⇒Michael Faraday 1831, experimental law postulate

    Definition : the quantitative relationship between the induced emf and the rate of change of flux linkage

    ⇒ ⇒

    Fundamental postulate for Electromagnetic Induction

    Non-conservative field cannot be expressed

    as the gradient of a scalar potential

    BEt

    ∂∇× = − ⇒

    ∂ as the gradient of a scalar potential

    C S

    BE dl dSt

    ∂= −

    ∂∫ ∫i i

    Electromagnetic Theory 2 4

  • A Stationary Circuit in a Time Varying Magnetic Field (1)A Stationary Circuit in a Time Varying Magnetic Field (1)

    d d∂ ∂∫ ∫ ( , 0) since stationary C S

    d dE dl B ds dsdt t dt t

    ∂ ∂= − → =

    ∂ ∂∫ ∫i i ∵

    11

    2

    Right hand rule (counter clock wise)2

    1, , 0d demf v E dl

    dt dtΦ Φ

    = = − >∫ i Assume

    1

    0dt dt

    v⇒ < ⇒

    driving current to flow in the direction of clock wise potential difference of gap between terminal 1 and2

    Electromagnetic Theory 2 5

    12 2 120V E dl V V= − < >∫ i ∵ assume

  • A Stationary Circuit in a Time Varying Magnetic Field (2)A Stationary Circuit in a Time Varying Magnetic Field (2)

    : emf induced in circuit with contour CDefine v E dl∫ : emf induced in circuit with contour CCDefine v E dl= ∫ i

    1

    2 ~2

    1

    l t ti f d i i t i th di ti f i ht h d l

    2 1( 0)

    v

    E dl E dl E E dl V V V= = = = =∫ ∫ ∫i i ∵ i

    : electromagnetive force driving current in the direction of right hand rule Meaning of contour integral

    inside contour

    Field between the terminal in the gap

    1 2 121 2( 0)right

    handE dl E dl E E dl V V V= = = − = − =

    ∫ ∫ ∫i i ∵ i inside contour ca 12v V=n be replaced with voltage source. But polarity of depends on

    the change of the flux linkage

    Electromagnetic Theory 2 6

    the change of the flux linkage

  • A Stationary Circuit in a Time Varying Magnetic Field (3)A Stationary Circuit in a Time Varying Magnetic Field (3)

    B∂120 . 0

    [ ]

    B v i e Vt

    B ds S Wb

    ∂> <

    Φ = ∫ i

    e.g) then (current is in the direction of left hand rule)

    Define : magnetic flux crossing surface [ ]SB ds S Wb

    dvdt

    Φ =

    Φ= − ⇒

    ∫ iDefine : magnetic flux crossing surface

    then This is valid even in the absense of a physical closed circuit

    note The emf induced in a stationary loop caused by a time-varying magnetic field is a transformer emf

    Electromagnetic Theory 2 7

  • Ex 7 1) A Circular Loop of N Turns of Conducting WireEx 7-1) A Circular Loop of N Turns of Conducting Wire

    ( ) irπA i l l f N t 0

    2

    cos( )sin2

    i ) ( 2 ) ) 2

    rB zB wtb

    rB d B t d f dπ

    π

    π φ

    =

    Φ ∫ ∫ ∫b

    A circular loop of N turns,

    Find the emf induced in the loop

    sol) each turn ( 0 02

    0

    cos sin ) ( 2 ) ) 22

    8 1) sin

    SB ds zB wt z rdr cf d

    bb B wt

    π φ π

    ππ

    Φ = =

    = −

    ∫ ∫ ∫i i0sol) each turn = (

    (2

    z

    2

    08 1) cos

    Nd Nbv N B wtdt

    ππ

    ∴ ⇒ Φ

    Φ∴ = − = − −

    N-turns

    ( [V]2

    yb

    Electromagnetic Theory 2 8

    x

  • Transformers (1)Transformers (1)

    mmf

    j j k kj k

    N I = ℜ Φ∑ ∑

    mmf

    1 2 1 2, , , number of turns and the currents : the reluctance of the magnetic circuit

    N N i i ⇒ℜ

    N N ℜΦ1 1 2 21 1 2 2 :

    (where : mmf in the positive direction, mmf in the negative direction)

    N i N iN i N i

    l

    ∴ − = ℜΦ

    ℜ =

    1 1 2 2

    SlN i N iS

    μ

    μ

    ℜ =

    ∴ − = Φ

    Electromagnetic Theory 2 9

    μ

  • Transformers (2)Transformers (2))a Ideal transformer

    1 21 1 2 2

    2 1

    )

    )

    ai NN i N ii N

    cf

    μ →∞ = ⇒ =

    Ideal transformer

    ,

    Faraday's law

    1 1

    )cfdv Ndtd

    Φ= Φ

    Φ

    Faraday s law

    ( No negative sign, careful of sign of flux )

    v N2 2

    dv NdtΦ

    = (But flux is in the reverse direction) 1 12 2

    v Nv N

    N

    ∴ =

    ⎛ ⎞

    effective load seen by the source connected to primary winding

    122

    21 11

    1 222

    ( )eff L

    N vNv NR R

    i NN i

    ⎛ ⎞⎜ ⎟ ⎛ ⎞⎝ ⎠= = = ⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟

    21

    2

    11

    2

    ( )eff L

    N

    NZ ZN

    ⎜ ⎟⎝ ⎠

    ⎛ ⎞∴ = ⎜ ⎟

    ⎝ ⎠Impedance transformation

    Electromagnetic Theory 2 10

    2⎝ ⎠

  • Transformers (3)Transformers (3)) Real transformerb

    1 1 2 2

    ) Real transformer

    blN i N is

    s sμμ μ

    − = Φ

    2 21 1 1 1 2 2 2 2 1 2 1 2 2

    1 2 1 21 1 12 2 12 2

    ( ), ( )

    ,

    1

    s sN N i N N i N N N i N il l

    di di di div L L v L L

    dt dt dt dt

    μ μ⇒ Λ = Φ = − Λ = Φ = −

    = − = −∵

    2 21 1 2 2 12 1 2, , ) (where

    For an ideal tran

    dt dt dt dts s sL N L N L N N

    l l lμ μ μ

    = = =

    sformer No leakage flux L L L⇒ ∴ For an ideal tran 12 1 2

    12 1 2 , 1 :

    sformer No leakage flux

    For a real transformer ( coefficient of coupling)

    L L L

    L k L L k k

    ⇒ ∴ =

    ∴ = <

    Electromagnetic Theory 2 11

  • Transformers (4)Transformers (4)

    Equivalent ci trcuiEquivalent ci trcui

    1 2, ::winding resistanceleakage inductive reactance

    R RX X1 2, :

    ::

    leakage inductive reactancepower loss due to hysteresis and eddy currentnonlinear inductive reactance due to the nonlinear magnetization behaviorof the ferro

    c

    c

    X XRX

    magnetic core

    Electromagnetic Theory 2 12

    of the ferromagnetic core

  • A Moving Conductor in a Static Magnetic FieldA Moving Conductor in a Static Magnetic Field

    F qu B= ×mF qu B

    F F

    ×→→

    Charge Seperation Coulomb force of an attraction

    and will balance each other to be in equilibrium.m eF F

    F F

    and will balance each other to be in equilibrium.

    Magnetic force per unit charge

    2

    21 1

    , ,

    ( )

    m mF Fu B V E dl Eq q

    V u B dl

    = × = − ⋅ = −

    ∴ = × ⋅

    The emf g

    ' ( )C

    V u B dl= × ⋅ →∫enerated around the closed loop is

    flux cutting emf

    Electromagnetic Theory 2 13

  • Ex 6 5) A Metal Bar Sliding Over Conducting RailsEx 6-5) A Metal Bar Sliding Over Conducting Rails

    ˆB zB u= constant0

    0 1 2

    ,

    ( )C

    B zB u

    V V V u B dl

    =

    = − = × ⋅∫

    constant

    a) 1'

    02'

    0

    ˆ ˆˆ( ) ( )xu zB ydl

    uB h

    = × ⋅

    = −∫

    220 0( ), l

    V uB hI P I RR R

    = = = b)

    1'

    0ˆmF I dl B xIB h= × = −∫ c) mechanical power

    02'm

    I∫

    ( : n2 2 2

    0

    )

    m m

    dlu B hP F u F u

    R∴ = ⋅ = − ⋅ =

    egative direction to

    Electromagnetic Theory 2 14

    m m R

  • A Moving Circuit in a Time Varying Magnetic Field (1)A Moving Circuit in a Time Varying Magnetic Field (1)

    ( )F q E u B= + ×( )

    ','

    mF q E u B

    EE E u B

    + ×

    = + ×

    To an observer moving with C,

    the force on q can be interpreted as caused by an electric field

    ' ( )C S C

    BE dl ds u B dlt

    ∂⋅ = − + × ⋅ →

    ∂∫ ∫ ∫ General form of Faraday law

    the emf induced

    B

    motional emf in the moving due to the motion

    frame of reference of the circuit in transformer emf due to the time

    i i variation

    Electromagnetic Theory 2 15

  • A Moving Circuit in a Time Varying Magnetic Field (2)A Moving Circuit in a Time Varying Magnetic Field (2)

    The time rate of chage of magnetic flux,

    2 12 10

    1lim ( ) ( )

    S

    S St

    d d B dsdt dt

    B t t ds B t dstΔ →

    Φ= ⋅

    ⎡ ⎤+ Δ ⋅ − ⋅⎢ ⎥⎣ ⎦Δ

    ∫ ∫

    =

    ( )

    2 1

    ( )( ) . . .

    tB tB t t B t t H OT

    td B ds

    ⎣ ⎦Δ∂

    + Δ = + Δ +∂

    ∴ ⋅ =

    cf) Taylor's series

    2 11lim . . .B ds B ds B ds H OT∂ ⎡ ⎤⋅ + ⋅ − ⋅ +⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫B dsdt∴ 2 12 10

    3

    lim . . .S S S St

    ds B ds B ds H OTt t

    dS dl u t

    Δ →+ +⎢ ⎥⎣ ⎦∂ Δ

    Δ

    = × Δ

    ∫ ∫ ∫ ∫3assuming side surface S as the area swept out by the conductor in time t

    f om di e gence theo em

    2 12 1S S

    B dv B ds B ds B ds∇⋅ = ⋅ − ⋅ + ⋅∫ ∫ ∫V

    from divergence theorem

    3

    3

    2 1 ( )

    S

    B ds B ds t u B dl∴ ⋅ − ⋅ = −Δ × ⋅

    ∫ ∫ ∫2 1

    2 1 ( )

    ( )

    ' '

    S S C

    S S C

    B ds B ds t u B dl

    d BB ds ds u B dldt t

    d dV E dl B d

    ∴ Δ ×

    ∂∴ ⋅ = ⋅ − × ⋅

    ∂Φ

    ∫ ∫ ∫

    ∫ ∫ ∫

    ∫ ∫

    Electromagnetic Theory 2 16

    ' 'C S

    d dV E dl B dsdt dt

    Φ∴ = = − ⋅ = −∫ ∫i

  • Maxwell’s Equation (1)Maxwell s Equation (1)

    static Time varying

    0E∇× = BE ∂∇× = −∂

    , D D Eρ ε∇ = =it

    D ρ∂

    ∇ =i

    0,

    H J

    B B Hμ

    ∇× =

    ∇ = =i0

    DH Jt

    B

    ∂∇× = +

    ∂∇ 0B∇ =i

    Electromagnetic Theory 2 17

  • Maxwell’s Equation (2)Maxwell s Equation (2)

    ①Note Continuity equation

    0J

    J ρ∇ =

    ∂∇

    i

    ①Note Continuity equation

    : for steady state current

    : time varying currentJtρ

    ρ

    ∇ = −∂

    i

    : time varying current

    Vector identity

    ( ) 0H J Jtρ∂

    ∇ ∇× = = ∇ ⇒ ∇ = −∂

    i i i contradiction

    ( ) 0 DH J J Dρ ρ⎛ ⎞∂ ∂

    ∇ ∇× = = ∇ + = ∇ + = ∇⎜ ⎟i i i iwhere

    Displacement current density. [A/m2]Time varying electric field and induced magnetic field→coupling

    ∴ ( ) 0H J J Dt t

    DH J

    ρ∇ ∇× = = ∇ + = ∇ + = ∇⎜ ⎟∂ ∂⎝ ⎠

    ∂∇× = +

    i i i i, where

    Time varying electric field and induced magnetic field→coupling

    ( )t

    F q E u B∂

    = + ×Cf) Lorentz force equation,

    Electromagnetic Theory 2 18

  • Integral Form of Maxwell’s EquationIntegral Form of Maxwell s Equation→Cf) Differential form Point function

    BE S Ct

    ∂∇× = − ⇒

    Cf) Differential form Point function

    Apply stokes's theorem over open surface with contour

    ( )S S

    BE ds dst

    ∂∇× = −

    ∂∫ ∫i i

    c s

    B dE dl dst dt

    ∂ Φ= − = −

    ∂∫ ∫i i① : Faraday's lawD∂H②

    c s

    s

    Ddl I dst

    D D ds Qρ

    ∂= +

    ∂∇ = ⇒ =

    ∫ ∫∫

    i i

    i i③

    : Ampere's circuital law

    : Gauss law

    0 0s

    sB B ds∇ = ⇒ =

    ∫∫i i④ : No isolated magnetic charge

    Electromagnetic Theory 2 19

  • Ex 7 5Ex. 7-5(a) Displacement current = conduction current

    dv

    →(a) Displacement current conduction current 1 conduction current current on the wire. Apply circuit theorem

    1 1 0 coscCdvi C C V tdt

    ω ω= =

    2 Displacement cur

    D∂

    rent. Reminding

    1

    DH Jt

    ACd

    μ ε

    ∂∇× = +

    =

    Assuming the area A, plate separation d, permitivity , then

    E Assume is uniform in the dielectric (ignori

    0 icv VE D E t

    ng fringing effects) then

    0

    0 1 0

    , sin

    cos cos

    c

    D CA

    E D E td d

    D Ai ds V t C V t it d

    ε ε ω

    ε ω ω ω ω

    = = =

    ∂= = = =

    ∂∫ i

    Electromagnetic Theory 2 20

  • Ex 7 5Ex. 7-5

    (b) Magnetic field intensity reminding Ampere's law

    ,C S

    D DH J H dl I dst t

    ∂ ∂∇× = + = +

    ∂ ∂∫ ∫i i

    (b) Magnetic field intensity reminding Ampere s law

    0 2D H dl rπ= =∫ i

    surface S1 with ring C surface S2 with ring C

    H0, 2C

    D H dl rπ= =∫ i①

    1 0 cosC

    H

    H

    I J ds i C V t

    φ

    φ

    ω ω

    = = =∫ i ( Symmetry around the wire along the contour C) constant

    1 0

    1 0

    cos

    , cos

    CS

    d

    J ds i C V t

    C VI i H tφ

    ω ω

    ω ω= ∴ =

    ∫② no conduction current, but displacement current

    , cos2d

    I i H trφω ω

    π∴

    Electromagnetic Theory 2 21

  • Potential Functions (1)Potential Functions (1)

    0 ( ) 0

    A

    B A B

    B A

    = ∇×

    ∇ ∇ ∇×i i

    Vector magnetic potential,

    (Solenoidal nature of )

    Vector identity 0, ( ) 0

    ( )

    B A

    B AE E A E

    ∇ = ∇ ∇× =

    ⎛ ⎞∂ ∂ ∂∇× ∴∇× ∇× ⇒∇× +⎜

    i i Vector identity Recall Faraday's law▷

    0⎟

    Curl free

    ( )E E A Et t t

    ∇× = − ∴∇× = − ∇× ⇒∇× +⎜∂ ∂ ∂⎝ ⎠

    0

    ( ) 0V

    =⎟

    ∇× ∇ =Vector identity

    d d f l

    [ / ]

    E V

    A AE V E V V mt t

    = −∇

    ∂ ∂+ = −∇ = −∇ −∂ ∂

    and reminding for electromagnetics

    for time varying i.e) t t∂ ∂

    Electromagnetic Theory 2 22

  • Potential Functions (2)Potential Functions (2)

    A∂ 0A E Vt

    E ρ

    ∂→ = ∴ = −∇

    ∂Cf) Static

    Time varying is induced by charge distribution and time varying

    J

    B A E B

    → magnetic field time varying current,

    l d d l d▷ ,

    1

    B A E B

    V

    =

    also depends on are coupled

    ▷ 0' '

    0

    ', '4 4v v

    Jdv A dvR R

    μρπε π

    =∫ ∫ : From the static condition0

    2 20V A J

    ρ μ∇ = − ∇ = −

    These are solution of poisson equation

    and 00ε

    The time-retardation effects associated with the finite velocity of ▷ propagation is neglected

    Electromagnetic Theory 2 23

  • Potential Functions (3)Potential Functions (3)

    JR

    ρ

    Quasi-static fields

    - and vary slowly with time- the range of interest is small compared to the wavelengthR

    R - the range of interest is small compared to the wavelength cf) Frequency is high, and is large compared to wavelength : time-retardation effect must be included.

    , , ( , )A DB A E V H J B H D Et t

    μ ε∂ ∂= ∇× = −∇ − ∇× = + = =∂ ∂

    From the equations

    t t

    AA J Vt t

    μ με

    ∂ ∂

    ⎛ ⎞∂ ∂∇×∇× = + −∇ −⎜ ⎟

    ∂ ∂⎝ ⎠

    ⎝ ⎠

    Recalling vec2( )A A A∇×∇× = ∇ ∇ −∇i

    tor identity

    Electromagnetic Theory 2 24

  • Potential Functions (4)Potential Functions (4)2V A∂ ∂⎛ ⎞2

    2

    22

    ( ) V AA A Jt t

    A VA J A

    μ με με

    με μ με

    ∂ ∂⎛ ⎞∴∇ ∇ −∇ = −∇ −⎜ ⎟∂ ∂⎝ ⎠

    ∂ ∂⎛ ⎞∇ +∇ ∇ +⎜ ⎟

    i

    2A J At t

    A B A

    με μ με∇ − = − +∇ ∇ +⎜ ⎟∂ ∂⎝ ⎠∇× = ∇

    i

    i

    - we only designated but we are free to choose

    A - vector will b A A

    V V

    ∇× ∇

    ∂ ∂

    ie specified by giving and

    0 , 0 0V VA At t

    με ∂ ∂∇ + = = ∴∇ =∂ ∂

    i i - let for static

    Lorentz gauge for potentialsg g p

    Electromagnetic Theory 2 25

  • Potential Functions (5)Potential Functions (5)

    0, 0

    0

    V At t

    A

    ∂ ∂= =

    ∂ ∂∴∇ =i

    cf) For static,

    20A Jμ∇ = −

    then vector poisson equation

    2 A∂

    - Then nonhomogeneous wave equation for vector potential becomes

    22

    AAt

    με ∂∇ − = −∂

    :Jμ Vector potential wave equation

  • Potential Functions(6)Potential Functions(6)

    ,A AE V D Vt t

    ρ ε ρ⎛ ⎞∂ ∂

    = −∇ − ∇ = ⇒ −∇ ∇ + =⎜ ⎟∂ ∂⎝ ⎠

    i i

    Scalar potential wave equation

    2 ( ) ,

    t t

    VV A At t

    ρ μεε

    ∂ ∂⎝ ⎠∂ ∂

    ∴∇ + ∇ = − ∇ = −∂ ∂

    i i

    22

    2

    VVt

    ρμεε

    ∂∴ ∇ − = −

    Electromagnetic Theory 2 27

  • Boundary Condition (1)Boundary Condition (1)Electric field's boundary condition⊙

    c s s v

    BE dl ds D ds dvt

    ρ∂= − =∂∫ ∫ ∫ ∫i i i

    Electric field s boundary condition

    ... ...

    0 0 0B ds h S∂ → Δ → →∫ i

    From equation

    when since area0 0, 0s

    ds h St

    → Δ → →∂∫ when since area

    1 2 1 2 0t t t tE E E w E w∴ = Δ − Δ = ( )

    Electromagnetic Theory 2 28

  • Boundary Condition (2)Boundary Condition (2)

    From equation

    1 2 2 1 2 1 2( ) ( )

    ( )

    ssD ds D n D n S n D D S S

    n D D D D

    ρ

    ρ ρ

    = + Δ = − Δ = Δ

    ∴ − = − =

    ∫ i i i i

    i

    From equation

    2 1 2 2 1( ) ,s n n sn D D D D

    H

    ρ ρ∴ = =i

    Magnetic field's boundary conditions

    Ddl J ds

    ⎛ ⎞∂= +⎜ ⎟∫ ∫i i

    1 2 1 2

    2 1 2

    ( )

    . ) ( )

    c s

    sn t t sn

    dl J dst

    H w H w J w H H J

    i e n H H J

    ⎜ ⎟∂⎝ ⎠

    ∴ Δ + −Δ = Δ − =

    × − =

    ∫ ∫i i ,

    2 1 2

    2

    . ) ( ) s

    s

    i e n H H J

    n J

    ×

    cf) & are perpendicular to each other

    Electromagnetic Theory 2 29

  • Boundary Condition (3)Boundary Condition (3)

    t )

    H

    note)

    The tangential component of the field is discontinuous across an interface where a free surface current exists

    if both media have finite conductivity, currents are defined by volumecurrent density

    1 2t tH H→→ =

    current density surface currents do not exists

    i e) discontinuous only for interface with an ideal perfect conductor or super i.e) discontinuous only for interface with an ideal perfect conductor or super conductor.

    1 20 n nB B B∇ = ∴ =i

    Electromagnetic Theory 2 30

  • Interface Between Two Lossless Linear MediaInterface Between Two Lossless Linear Media

    ε μ→Linear media permitivity : permeability :ε μσ→

    →Linear media permitivity : , permeability : Lossless =0

    SJρ→→SAssume, at interface, no free charge =0

    no surface currents =0

    1 111 2 1 2,t tt t t t

    D BE E H Hε μ= ⇒ = = ⇒ = 11 2 1 22 2 2

    ,t t t tt t

    E E H HD Bε

    ⇒ ⇒ 2

    1 2 1 1 2 2 1 2 1 1 2 2,n n n n n n n nD D E E B B H Hμ

    ε ε μ μ= ⇒ = = ⇒ =

    Electromagnetic Theory 2 31

  • Interface between a Dielectric and Perfect Conductor (1)Interface between a Dielectric and Perfect Conductor (1)

    →Good conductor perfect conductor

    ( ) ( )

    E

    E D B H

    Good conductor perfect conductor

    Interior of perfect conductor (surface charge only) :

    are zero in the interior of a conductor( , ) ( , )

    ,

    E D B H

    E D

    ⇒ are zero in the interior of a conductor

    cf) In static case, may be zero, but ,H B may not be zero.

    2 22 20, 0, 0, 0E H D B= = = =

    Electromagnetic Theory 2 32

  • Interface between a Dielectric and Perfect Conductor (2)Interface between a Dielectric and Perfect Conductor (2)

    0 0E E1 2

    2 1 2 2

    1 1

    0, 0

    ( ) , 0, 0 0

    t t

    s t

    t sn sn t

    E E

    n H H J HH J J H

    = =

    × − = == = → =

    if

    2 1 2 2 1

    1 2

    ( ) , 0,0, 0

    s n n s

    n n

    n D D D DB B

    n

    ρ ρ− = = == =i

    note) : outward normal from medium22n note)

    E

    : outward normal from medium2

    At an interface between a dielectric and a perfect conductor

    i l t d i t f (i t ) th d t f1

    1 11

    sn

    E

    E E ρε

    = =

    : is normal to and points away from(into) the conductor surface

    1H:

    1 1

    ) ( )

    t sH H J

    f H H J

    = =

    is tangential to the interface with a magnitude of

    di ection

    Electromagnetic Theory 2 33

    2 1 2) ( ) scf n H H J× − = direction

  • Wave Equation and Their Solutions (1)Wave Equation and Their Solutions (1)2 A∂2

    2

    22

    2

    AA JtVVt

    με μ

    ρμεε

    ∂∇ − = −

    ∂∂

    ∇ − = −∂

    Wave equation :

    2

    ( )

    t

    t t

    ε

    ρ ν

    ′ΔiSolution : Assume an elemental point charge at time , located at the

    i i f th di t origin of the coordinates.

    V R tii

    Spherical coordinates. depends only on . and because of spherical symmetry.

    21 V

    φ

    ∂ ∂⎛ ⎞

    i (No dependence on ) Except at the origin,

    2V∂22

    1 VRR R R

    με∂ ∂⎛ ⎞ −⎜ ⎟∂ ∂⎝ ⎠ 2 0

    Vt

    ∂=

    Electromagnetic Theory 2 34

  • Wave Equation and Their Solutions (2)Wave Equation and Their Solutions (2)New variable

    ( )2 2

    1( , ) ( , )

    1 1 1

    V R t U R tR

    U U

    =

    ∂ ∂ ∂⎛ ⎞ ⎡ ⎤

    New variable

    ( )2 2 22

    2 2 2

    1 1 1,

    1 1

    U UR U R t R U U RR R R R R R

    U U U UU R RR R R R R R R

    ∂ ∂ ∂⎛ ⎞ ⎡ ⎤= − + = − +⎜ ⎟ ⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎡ ⎤∂ ∂ ∂ ∂ ∂⎡ ⎤− + = − + +⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

    1

    R R R R R R R∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

    ∴ 2 2 2 2

    2 2 2 2

    1 ( , ) ( , )0, 0U U U R t U R tR R R t R tt R t R

    με με

    με με

    ∂ ∂ ∂ ∂− = − =

    ∂ ∂ ∂ ∂+

    i.e)

    Any function of ( ) or of ( ) will satisfy the differential

    ( )

    t R t R

    f t R

    με με

    με

    − +

    Any function of ( ) or of ( ) will satisfy the differential

    equation

    is a wave equation which travels away from the origin

    Electromagnetic Theory 2 35

  • Wave Equation and Their Solutions (3)Wave Equation and Their Solutions (3)

    ( )f R i ti hi h t l t th i i h i l( )

    ( , ) ( )

    f t R

    U R t f t R

    με

    με

    + →

    ∴ = −

    is a wave equation which travels to the origin physical nonsense

    ( , ) ( )

    ( , ) ( )

    fR R t t

    U R R t t f t t R R

    μ

    με

    + Δ + Δ

    ⎡ ⎤+ Δ + Δ = + Δ − + Δ⎣ ⎦

    the function at at a later .

    ( )f t R με= −

    0

    .1 1lim

    t

    if t RR R ut t

    με

    με μεΔ →

    Δ = Δ

    Δ Δ= ⇒ = =

    Δ Δ

    : velocity of propagation0

    1( , )

    tt t

    RV R t f tR u

    με μεΔ →Δ Δ

    ⎛ ⎞= −⎜ ⎟⎝ ⎠

    Rf tu

    ⎛ ⎞−⎜ ⎟⎝ ⎠

    Determine

    Electromagnetic Theory 2 36

  • Wave Equation and Their Solutions (4)Wave Equation and Their Solutions (4)( )tρ νΔRecall potential function induced by a static point charge at( )

    '( ) '

    t

    Rt vt v R u

    ρ ν

    ρρ

    Δ

    ⎛ ⎞− Δ⎜ ⎟Δ ⎛ ⎞ ⎝ ⎠

    Recall potential function induced by a static point charge at the origin

    ( )( ) ,4 4

    1

    t v R uV R f tR u

    Rtu

    ρπε πε

    ρ

    Δ ⎛ ⎞ ⎝ ⎠Δ = Δ − =⎜ ⎟⎝ ⎠

    ⎛ ⎞−⎜ ⎟⎝ ⎠∫

    '

    1( , ) '4 v

    uV R t dvRπε

    ⎝ ⎠∴ = ∫ :R t

    R⎛ ⎞

    Retarded scalar potential

    Scalar potential at a distance from the source at time

    Rtu

    ⎛ ⎞→ −⎜ ⎟⎝ ⎠

    Depends on the value of charge distribution at an earlier time

    Retarded vector potential

    R⎛ ⎞

    '

    ( , ) '4 v

    RJ tuA R t dv

    Rμπ

    ⎛ ⎞−⎜ ⎟⎝ ⎠= ∫

    Electromagnetic Theory 2 37

  • Source Free Wave EquationSource Free Wave Equation

    If the wave is in a simple (linear isotropic and homogeneous)

    ,H EE Ht t

    ε μ σ

    μ ε∂ ∂∇× = − ∇× =∂ ∂

    If the wave is in a simple (linear, isotropic and homogeneous) non conducting medium. i.e) , ( =0)

    0 ,t t

    E H∂ ∂

    ∇ = ∇i i

    2

    0= From vector identity

    2

    2( )

    ) ( ) ( ) ( ) ( )

    EE Ht t

    cf A B C B A C C A B B A C A B C

    μ με∂ ∂∇×∇× = − ∇× = −∂ ∂

    × × = − = −i i i i

    2

    22

    ( ) ( )E E E

    EE με

    ∇ ∇ − ∇ ∇ = −∇

    ∂∴∇ −

    i i

    2 210 if

    t uμε= =

    2 22 2

    2 2 2 2

    1 10, 0E HE Hu t u t

    ∂ ∂∇ − = ∇ − =

    ∂ ∂ : Homogeneous vector wave equation

    Electromagnetic Theory 2 38

  • Time Harmonic FieldsTime Harmonic FieldsMaxwell's equationsMaxwell s equations - linear differential equations - sinusoidal time variation of source functions at given frequency

    ,E H - are sinusoidal with the same frequency

    Ti h i d i id lTime harm →

    onic steady state sinusoidalPhasors : Amplitude and phase information

    independent of timej te ω

    → independent of time

    cf) : time dependent factor

    Electromagnetic Theory 2 39

  • Time Harmonic Electromagnetics (1)Time Harmonic Electromagnetics (1)Vector phasors of field vectors : depend on space coordinates

    ( , , ; ) Re ( , , ) ,

    ( ) :

    j tE x y z t E x y z e

    E x y z

    ω⎡ ⎤= ⎣ ⎦

    Vector phasors of field vectors : depend on space coordinates

    where vector phasor : complex quantity( , , ) :

    ( , , ; ) Re

    E x y z

    E x y z t j Et

    ω∂ =∂

    where vector phasor : complex quantity

    ( , , ) j tx y z e ω⎡ ⎤⎣ ⎦

    ( , , ) :

    ( , , )( , , ; ) Re j t

    j E x y z

    E x y zE x y z t dt ej

    ω

    ω

    ω⎡ ⎤

    = ⎢ ⎥⎣ ⎦

    where vector phasor

    ( , , )

    j

    E x y zj

    ω

    ω

    ⎣ ⎦

    where : vector phasor

    ( )2

    22

    1, ,j jt t j

    ω ωω

    ∂ ∂⇒ ⇒ ⇒

    ∂ ∂ ∫ i.e)

    Electromagnetic Theory 2 40

  • Time Harmonic Electromagnetics (2)Time Harmonic Electromagnetics (2)

    Maxwell's equations

    ,

    , ,

    E H

    Maxwell's equations

    Vector field phasors ( )

    Source phasors ( ) Simple (linear, isotropic and homogeneous) media

    ,

    ,

    E j H H J j E

    E H

    ωμ ωερε

    ∇× = − ∇× = +

    ∇ = ∇i i

    0j te ω

    ⎫⎪⎬

    = ⎪⎭

    Assuming

    ε

    2 2

    V A

    V k V ρ

    ⎫∇ + = − ⎪⎬

    Time harmonic wave equation for and

    Non-homogeneous helmholtz's equations 2 2

    2 2 , :k kA k A J uε ωω με ω μεμ

    ⎪⎬

    = = =⎪∇ + = − ⎭

    where wave-number

    Electromagnetic Theory 2 41

  • Time Harmonic Electromagnetics (3)Time Harmonic Electromagnetics (3)2∂ ∂22

    2

    22

    2

    ) 0 0A Vcf A J A A j Vt tVVt

    με μ με ωμε

    ρμεε

    ∂ ∂∇ − = − ∇ + = ⇒∇ + =

    ∂ ∂∂

    ∇ − = −∂

    i i ( )

    22

    2

    22

    0

    tEE

    tH

    ε

    με

    ∂∂

    ∇ − =∂∂

    2 HH με ∂∇ − 2

    ( )

    0

    1 1Rj t j Ru u

    t

    ωωρ ρ

    − −

    =∂

    Phasor solution

    ' '

    '

    1 1( , ) ' ( ) '4 4

    1( ) '4

    u uj t j t

    v v

    jkR

    v

    e eV R t dv V R e dv eR R

    eV R dvR

    ω ωρ ρπε πε

    ρπε

    = ⇒ = ⋅

    ⎧=⎪⎪

    ∫ ∫

    [V] E p essions fo the eta ded scala and

    '

    4

    ( ) '4

    jkR

    v

    RJeA R dv

    R

    πεμπ

    ⎪⎨⎪ =⎪⎩ ∫

    [Wb/m]

    Expressions for the retarded scalar and vector potentials due to time harmonic sources

    Electromagnetic Theory 2 42

  • Time Harmonic Electromagnetics (4)Time Harmonic Electromagnetics (4)2 2

    kR k R1 .... :2

    2 2 ,

    jkR k Re jkR

    fk u fu uω π π λ

    λ

    − = − − +

    = = = =

    cf) Taylor series expansion.

    '

    12 1 1, ( ) '4

    jkR

    v

    u uRif kR e V R dv

    R

    λρπ

    λ πε−= ⇒ = = ⇒∫ then static potential

    Procedure for determining the electric and magnetic fields due toProcedure for determining the electric and magnetic field

    ( ) ( )V R A R

    s due to time harmonic charge and current distributions 1. Find phasors and

    ( ) )

    ( )

    AE R V j A cf E Vt

    B R A

    ω ∂= −∇ − = −∇ −∂

    = ∇×

    2. Find phasors

    ( , )E R t 3. Find instantaneous

    Electromagnetic Theory 2 43

  • Source free Fields in Simple Media (1)Source-free Fields in Simple Media (1)Source free fields in simple media

    E j H

    H j E

    ωμ

    ωε

    ⎧∇× = −⎪∇× =⎪⎨

    Source free fields in simple media

    0

    0

    E

    H

    ⎨∇ =⎪⎪∇ =⎩

    i

    i

    2 2

    2 2 2 2

    0

    0

    E k E

    H k H k ω με

    ⎧∇ + =⎪⎨∇ + = =⎪⎩

    and Homogeneous vector Helmholtz’s equation

    μ⎩Principl

    E

    e of duality : Source free Maxwell's equations in a simple mediaare invariant under the linear transformation

    ' , ' ,EE H H μη ηη ε

    = = − =

    Electromagnetic Theory 2 44

  • Source free Fields in Simple Media (2)Source-free Fields in Simple Media (2)

    0

    ( )

    J E

    H j E j E j E

    σ σ

    σσ ωε ω ε ωε

    ≠ ⇒ =

    ⎛ ⎞∴∇× = + = + =⎜ ⎟

    If simple medium is conducting i.e)

    ( ) c

    c

    H j E j E j Ej

    j

    σ ωε ω ε ωεω

    σε εω

    ∴∇× + +⎜ ⎟⎝ ⎠

    = −

    and [F/m] : complex permitivity

    ⋅cf) out of phase polariza

    ⋅ →

    tion : power loss to overcome a fractional damping mechanism caused by the inertia the charged particle finite conductivity ohmic losses

    ' ''jε ε ε

    = −

    te co duct ty o c osses

    Complex permitivity[F/m] ''εwhere : out of phase polarization and finite conductivityc jε ε ε= [F/m] ,

    ''

    ε

    σ ωε⇒ = ←

    where : out of phase polarization and finite conductivity

    equivalent conductivity representing all losses

    Electromagnetic Theory 2 45

  • Source free Fields in Simple Media (3)Source-free Fields in Simple Media (3)Complex permeability : out of phase component of magnetization

    ' '', '''jμ μ μ μ μ

    μ μ= −

    ∴ =

    Complex permeability : out of phase component of magnetization where ' for ferromagnetic materials Complex wavenumber

    ( ' '')c ck jω με ω μ ε ε= = −

    Complex wavenumber

    : in a lossy dielectric

    Loss tangent

    ''tan ,'

    ''

    c cε σδ δε ωε

    ε

    ⎧ = ≅⎪⎪⎨⎪

    where : loss angle

    loss tangent'ε

    σ ωε

    ⎪⎪⎩loss tangent

    Good conductor & Good insulator : Good conductor

    σ ωε : Good insulator

    Electromagnetic Theory 2 46

  • Source free Fields in Simple Media (4)Source-free Fields in Simple Media (4)π

    Cf) Electric hertz vector,

    ,A Vt

    A

    πμε π∂= = −∇∂

    ⎧ ∂⎪

    i

    : combine the vector and scalar potential and satisfy the Lorentz condition

    0

    AE Vt

    VAt

    με

    ∂= −∇ −⎪⎪ ∂⎨

    ∂⎪∇ + =⎪ ∂⎩i

    combine continuity equation

    0, ,

    J

    PJ J Pt t

    ρ

    ρ ρ∂ ∂∇ + = = = −∇∂ ∂

    i i

    with and

    2

    t t

    ∂ ∂

    Single vector equation

    22

    2

    2( )

    Pt

    PEt

    ππ μεεππ με π

    ε

    ∂∇ − = −

    ∂∂

    = ∇ ∇ − = ∇×∇× −∂

    i

    Electromagnetic Theory 2 47

    Htπε ∂= ∇×∂

  • The electromagnetic spectrumThe electromagnetic spectrum