FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal...

20
-121- FIBRE OTTICHE L’attenuazione produce una perdita di potenza lungo la fibra. La potenza in uscita è significativamente minore della potenza iniettata. La potenza d’uscita P o all’estremità finale del link dipende dalla potenza iniettata P c , dall’attenuazione per unità di lunghezza a e dalla lunghezza del tragitto L: P o = P c 10 -a L/10 [mW] P o = P c a L [dB] Esempio: In una fibra viene iniettata un potenza P c = 0.16 mW, l’attenuazione della fibra è di 6 dB/km, mentre la lunghezza è di 2 km. Quanto è la potenza d’uscita? P o = P c 10 -a L/10 = (0.16 mW) 10 [-(6 dB/km)(2 km) /10] = 10 μW = -20 dBm Esempio: In una fibra viene iniettata un potenza P c = -8 dBm, l’attenuazione della fibra è di 6 dB/km, mentre la P o richiesta è di –30 dBm. Qual’è la lunghezza massima? L = (P c -P o ) / α = [(-8 dBm) - (-30 dBm)]/(6 dB/km) = 3.67 km

Transcript of FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal...

Page 1: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-121-

FIBRE OTTICHE

L’attenuazione produce una perdita di potenza lungo la fibra. La potenza in uscita è significativamente minore della potenza iniettata.

La potenza d’uscita Po all’estremità finale del link dipende dalla potenza iniettata Pc, dall’attenuazione per unità di lunghezza α e dalla lunghezza del tragitto L:

Po = Pc 10-α L/10 [mW]

Po = Pc – α L [dB]

Esempio: In una fibra viene iniettata un potenza Pc = 0.16 mW, l’attenuazione della fibra è di 6 dB/km, mentre la lunghezza è di 2 km. Quanto è la potenza d’uscita?

Po = Pc 10-α L/10 = (0.16 mW) 10 [-(6 dB/km)(2 km) /10] = 10 µW = -20 dBm

Esempio: In una fibra viene iniettata un potenza Pc = -8 dBm, l’attenuazione della fibra è di 6 dB/km, mentre la Po richiesta è di –30 dBm. Qual’è la lunghezza massima?

L = (Pc - Po) / α = [(-8 dBm) - (-30 dBm)]/(6 dB/km) = 3.67 km

Page 2: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-122-

FIBRE OTTICHE

Perdite per Curvatura (Bending Losses)

Questo tipo di perdite si verifica quando la fibra viene curvata.

La curvatura può essere macroscopica (macrobend), cioè visibile dall’esterno del cavo, o microscopica (microbend), invisibile dall’esterno del cavo.

Le curvature tipo macrobend si possono avere su archi estesi, da un quarto di giro ad un giro completo, e si incontrano tipicamente nella posa in opera del cavo, per es. girando un angolo.

Le microcurvature sono causate dai processi di fabbricazione, quando la fibra viene sottoposta a stress compressivi.

Page 3: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-123-

FIBRE OTTICHE

La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente in fibra.

Una formula approssimativa per quantificare le perdite, valida per una fibra multimodale, è la seguente:

dove P1 e P2 sono la potenza prima della curvatura e dopo la curvatura espresse in mW, rispettivamente; R è il raggio di curvatura della fibra, d è il diametro della fibra, α è il profilo del graded-index, ∆ è la differenza relativa tra gli indici, n2 è l’indice del cladding e λ la lunghezza d’onda della luce iniettata. La formula è valida solo per R >> d, che è vero nel caso di macrobending.

+

+

−=32

21

2

43

22

1RnR

dPP

πλ

∆αα

Page 4: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-124-

FIBRE OTTICHE

Perdite di Connessione

Questo tipo di perdite si verifica quando c’è un punto di connessione tra due fibre, o tra una fibra e un LED o un fotodiodo.

Le perdite possono essere basse, per es. quando due fibre sono fuse insieme, o più elevate, per es. accoppiando una fibra ad un LED.

Le perdite hanno origine da disadattamento delle proprietà ottiche dei materiali e da cattivo allineamento meccanico.

Il disadattamento delle proprietà ottiche tra due mezzi materiali provoca riflessione alla superficie di interfaccia tra i due materiali. La superficie della faccetta terminale della fibra agisce come uno specchio che riflette una frazione della luce.

Page 5: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-125-

FIBRE OTTICHE

Perdite di Connessione

Il rapporto tra la potenza incidente P1 e quella trasmessa P2 attraverso una superficie semiriflettente è dato da:

dove n1 e n sono i due indici di rifrazione.

Quando n1 = n , non c’è riflessione e P2 = P1. Maggiore è il disadattamento, maggiore è la potenza riflessa.

2

1

1

1

2 1

+−

−=nnnn

PP

Page 6: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-126-

FIBRE OTTICHE

In caso di eccessivo disadattamento e riflessione, un materiale di adattamento può essere inserito nell’”air gap”.

La riflessione viene minimizzata da un materiale con indice:

Per esempio, per ridurre le riflessioni tra un core con indice di rifrazione n1 = 1.448 e l’aria (n = 1), il materiale ideale di adattamento ha indice nm = 1.203.

nnnm 1=

Page 7: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-127-

FIBRE OTTICHE

Un cattivo allineamento meccanico causa perdite, includendo sia la posizione relativa tra le due fibre, sia la differenza di dimensioni tra le due fibre.

L’allineamento coinvolge quattro gradi di libertà, di cui tre traslazioni (assi x, y, z) e un angolo relativo.

La differenza dimensionale può includere il diametro del core, il profilo del core e l’eccentricità.

Page 8: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-128-

FIBRE OTTICHE

L’efficienza di trasmissione per una fibra step-index in funzione dell’offset assiale d è dato da:

−−

=

2

1

2

21

22

1a

da

da

darccos,MIN

PP

ππ

Per fibre tipo graded-index che hanno d/a < 0.4, cosa che accade nella maggior parte dei casi, le perdite dovute ad offset assiale possono essere approssimate da:

ad

PP

π38

11

2 −=

Page 9: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-129-

FIBRE OTTICHE

L’efficienza di trasmissione in funzione della separazione s tra le faccette terminali (s è dell’ordine del µm):

( )[ ]

+

=exttansa

a,MIN

PP

01

2 1ϑ

L’efficienza di trasmissione in funzione del cattivo allineamento angolare ϑ (in un connettore o in un giunto) è data da:

( ) ( ) ( )

( ) ( )( )( ) ( )

( )( ) ( )( )( ) ( )( ) ( )

( ) ( ) ( )ϑϑϑϑϑϑ

ϑϑ

ϑ

ϑϑϑ

ϑ

ππππϑ

sinsincossincoscos

y

sincos

cosq

sinsincos

cosp

yarcsinyy

qparcsinpp

cosPP

cc

c

c

c

cc

22

23

22

3

22

1

2

1

1

211

11

121

−−=

−=

−=

++−−−−−=

Page 10: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-130-

FIBRE OTTICHE

L’efficienza di trasmissione, quando il diametro del core di trasmissione dE èmaggiore del diametro del core di ricezione dR, è data da:

=

2

1

2 1E

R

dd

,MINPP

L’efficienza di trasmissione, quando il profilo dell’indice di rifrazione del core di trasmissione αE è diverso da quello del core di ricezione αR, è data da:

( )( )

++

=22

11

2

RE

ER,MINPP

αααα

Page 11: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-131-

FIBRE OTTICHE

L’efficienza di trasmissione può essere espressa in funzione dell’apertura numerica relativa alla fibra in trasmissione NAE e alla fibra in ricezione NAR (se NAR > NAE non ci sono perdite dovute al disadattamento di apertura numerica):

=

2

1

2 1E

R

NANA

,MINPP

Esempio: Due fibre, ciascuna con un indice di core di 1.445, sono accoppiate con un air-gap tra loro. La prima fibra ha NA = 0.254 e la seconda NA = 0.20. Trovare l’efficienza di trasmissione.Ci sono due riflessioni, ciascuna per ogni interfaccia (vetro-aria e aria-vetro). Per ciascuna riflessione si può scrivere:

P2/P1 = 1 - [(1.445 – 1)/(1.445 + 1)]2 = 0.967

La fibra ricevente ha NA minore della trasmittente, perciò l’efficienza legata al disadattamento dell’apertura numerica è:

P2/P1 = (0.20/0.25)2 = 0.640

L’attenuazione totale è: Pout/Pin = 0.967 0.967 0.640 = 0.60

Page 12: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-132-

FIBRE OTTICHE

Divisori di fascio (splitter), miscelatori (combiner) e altri tipi di multiplexerottici introducono perdite aggiuntive nel collegamento.

Ripartizione della potenza: un ripartitore 1:N inietta 1/N della potenza in N fibre (se è 1:2 allora per le due fibre in uscita si ha una attenuazione di 3 dB).

Excess loss: parte della luce viene riflessa fuori dalla fibra è non è piùdisponibile per la ripartizione (cambio del numero di modi o delle dimensioni fisiche nel giunto, riflessioni all’indietro nei punti in cui cambiano le proprietàottiche della guida).

Se le fibre in uscita sono troppe per avere sufficiente potenza in uscita in ognuna delle fibre si aggiunge un amplificatore (ripetitore elettronico o amplificatore a fibra).

I combiner miscelano i segnali di più fibre in una fibra ricevente unica. Le perdite avvengono per riflessione nei giunti e per la variazione di dimensioni fisiche.

Page 13: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-133-

FIBRE OTTICHE

Esempio: uno splitter a 4 vie ha un excess loss di 1.5 dB. La potenza in ingresso è di 0.02 mW. Quanta potenza viene iniettata in ciascuna delle fibre in uscita?

La potenza in ingresso è divisa in 4 vie, quindi in ciascuna fibra si ha:

0.02 mW /4 (ovvero -17 dBm - 6 dB = -23 dBm).

Questa potenza è ulteriormente diminuita di 1.5 dB per l’excess loss.

Ogni fibra riceve –24.5 dBm di potenza.

Page 14: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-134-

FIBRE OTTICHE

Gli “optical tap” sono accoppiatori direzionali. I tap sono utilizzati per collegare le stazioni a dei bus o per prelevare potenza ai fini del monitoraggio della rete.

Per esempio, possono essere utilizzati per bypassare una stazione malfunzionante. I tap possono dividere la potenza in maniera ineguale: tipici rapporti vanno da 3 dB (50%) a 10 dB (10%).

STAZIONE

Pin

Pmain

Pbypass

PmainPout

Page 15: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-135-

FIBRE OTTICHE

La portante ottica è caratterizzata da una lunghezza d’onda centrale λ e da una larghezza spettrale σλ (usualmente corrispondente a 3 dB sotto il picco di potenza).

Nelle comunicazioni ottiche la lunghezza d’onda centrale è tipicamente tra 800 e 1600 nm.

La frequenza è legata alla larghezza spettrale come segue:

λν = c (nel vuoto)

Derivando rispetto a ν e λ, rispettivamente, si ottiene:

dν = -(c/λ2) dλ, dλ = -(c/ν2) dν

Per piccole larghezze spettrali, ∆ν = dν e ∆λ = dλ = σλ.

Pow

er (

mW

)

λ (nm)

σλ

Page 16: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-136-

Esempio: un certo LED funzionante a 820 nm ha una larghezza spettrale di 45 nm. Quale è la corrispondente “larghezza di banda” nello spazio della frequenza?

|δν | = (c/λ2) dλ = [(3 x 108 m/s)/(820 x 10-9 m)2] 45 x 10-9 m

|δν | = 2.0 x 1013 Hz

Che corrisponde circa al 5.5% della frequenza centrale

FIBRE OTTICHE

Page 17: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-137-

Trasmettitori

I trasmettitori convertono impulsi elettrici in una forma adatta per la trasmissione lungo un certo canale. Nel caso delle fibre ottiche, il trasmettitore realizza due funzioni:

Converte il segnale di ingresso in una opportuna corrente in un diodo.

Converte questa corrente in un segnale ottico.

Il trasmettitore contiene un LED o un LD, circuiti di polarizzazione DC e circuiti di modulazione.

TRASMETTITORI E RICEVITORI

Page 18: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-138-

I trasmettitori possono incorporare o meno molte delle funzioni richieste per la realizzazione del collegamento (circuiti integrati VLSI con tutte le sezioni, circuiti integrati separati, realizzazioni a componenti discreti).

TRASMETTITORI E RICEVITORI

Page 19: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-139-

1970: Trasmettitori a componenti discreti. Alla fine degli anni ’70 primi circuiti ibridi (componenti discreti + Application Specific Integrated Circuit, ASIC). Codifica (per es. Manchester) in moduli separati.

1980: Trasmettitori integrati in circuiti VLSI. Integrazione di LED e LD insieme alle altre sezioni dell’IC sullo stesso substrato. Nel 1988 la prima applicazione commerciale.

Inoltre, aggiunta sullo stesso chip di altre funzionalità, come la codifica 4B/5B, o la conversione parallelo/seriale.

1990: Integrazione di altre funzionalità su IC per comunicazioni ottiche, per la trasmissione di dati, video e voce (ISDN etc.). Laser e fotodiodi multipli su singolo chip.

Oggi, i trasmettitori sono ancora circuiti ibridi, che contengono in un unico package sia IC che componenti discreti non integrabili come celle Peltier (che servono a raffreddare opportune parti del circuito).

TRASMETTITORI E RICEVITORI

Page 20: FIBRE OTTICHE - unirc.it...FIBRE OTTICHE La quantità di potenza persa per macrobending dipende dal profilo della fibra e dal numero di modi scarsamente contenuti (leaky modes) presente

-140-

Ligth Emitting Diode e Laser Diode

Specifiche per una sorgente di luce adatta alle applicazioni in telecomunicazioni:

• Dimensioni fisiche della zona di emissione comparabili con quelle del core della fibra (10-100 µm)

• La luce deve essere facilmente modulabile a partire da un segnale elettrico, anche ad alta velocità.

• Linearità, per prevenire distorsione armonica e intermodulazione.

• Alta efficienza di accoppiamento con la fibra

• Elevata potenza di uscita

• Dimensioni ridotte e basso peso

• Basso costo

• Affidabilità

TRASMETTITORI E RICEVITORI