Feedback Voltage & Transconductance...
Embed Size (px)
Transcript of Feedback Voltage & Transconductance...

Willy Sansen 10-05 131
Willy Sansen
KULeuven, ESAT-MICASLeuven, Belgium
FeedbackVoltage & Transconductance
Amplifiers

Willy Sansen 10-05 132
Table of contents
DefinitionsSeries-shunt FB for Voltage amplifiers.Series-series FB for Transconductance amps.

Willy Sansen 10-05 133
Ideal feedback
G
H
Σ
if the loop gain LG = GH >> 1
vε = vIN - H vOUT
1 + GH≈ 1
H
vIN vOUTvε
vOUT = G vε
vOUT
vIN
=G
Gray, Hurst, Lewis, Meyer: Design of analog integrated circuits, Wiley 2001
-

Willy Sansen 10-05 134
Shunt-shunt feedback configurations
+- vOUT
RF
iIN
AR = RF
RIN ≈ 0
IN : shunt FB : RIN OUT : shunt FB : ROUT
LG =vOUT
vIN
A0 ≈ 104 … 106
Output shunt : ROUT =ROUTOL
OL Open Loop
1+LG
Input shunt : RIN =RINOL
1+LG
A0
vIN = AvOL= A0

Willy Sansen 10-05 135
Calculation loop gain or return ratio
+- vOUT
RF
vIN
LG =vOUT
vIN
A0 ≈ 104 … 106
= AvOL= A0
OL Open Loop
Low output resistance !
Independent sources : voltage source to zerocurrent source to infinity
Break loop where impedances are very differentFind the loop gain = return ratio
A0

Willy Sansen 10-05 136
Calculation loop gain - alternate
+-
RF
vIN
vOUT LG =vOUT
vIN
A0 ≈ 104 … 106
OL Open LoopIdeal separation!
= AvOL= A0
A0

Willy Sansen 10-05 137
Shunt-shunt FB pair in CMOS
+vOUTiIN-
RF
M1
M2
VDD
AR = RF
LG = gm1ro1

Willy Sansen 10-05 138
Shunt-shunt FB pair in bipolar
+vOUTiIN-
RF
Q1
Q2
VDD
AR = RF
LG = gm1ro1 RF + rπ1
rπ1

Willy Sansen 10-05 139
Loop gain or return ratio
vOUT
RF
Q1Q2
VDD
ro1gm1vIN
+
-rπ1
LG = gm1ro1 RF + rπ1
rπ1
Ideal separation!

Willy Sansen 10-05 1310
Series-shunt feedback configurations
+-
vOUT
R2R1
vIN +-
vOUTvIN
Av = 1 +R1
R2
RIN = ∞RIN = ∞Av = 1
IN : series FB : RIN OUT : shunt FB : ROUT
IN : series FB : RIN OUT : shunt FB : ROUT

Willy Sansen 10-05 1311
Calculation loop gain
+-
vOUT
R2R1 vIN
Av = 1 +R1
R2
RIN ≈ ∞IN : series FB : RIN OUT : shunt FB : ROUT
LG =R1+ R2
R1vOUT
vINAvOL
AvOL ≈ A0 ≈ 104 … 106
=
Output shunt : ROUT =ROUTOL
OL Open Loop
1+LG
Input series : RIN = RINOL (1+LG)
A0

Willy Sansen 10-05 1312
Shunt & series at input & output
Shunt
Output
Series
RIN
Input
IIN
A
RF
+
RE
vIN
A
RFRE
RIN +-
A
RFROUT
vOUT
A
RF
ROUT
iOUT

Willy Sansen 10-05 1313
Shunt FB decreases the impedance
+vOUT-
RF
ROUT =
+vOUT-
iOUT = iTT iTT iOUT > iTT
iF
iOUT
vOUT

Willy Sansen 10-05 1314
Series FB increases the impedance
+
vIN > vGS
-
RL
RS+
-
vS
vGS+
RL
-
vIN = vGS
RIN = iIN
vIN
iIN iIN

Willy Sansen 10-05 1315
Input- & output impedances
RIN = RINOL(1+LG)
Shunt
Input
SeriesOutput Shunt
Series
ROUT =ROUTOL
1+LGROUT = ROUTOL(1+LG)
RIN =RINOL
1+LG
1H
=
= AR vOUT
iIN= AI
iOUT
iIN
= AG iOUT
vIN= AV
vOUT
vIN

Willy Sansen 10-05 1316
Shunt vs series feedback
Shunt feedbacklowers impedance levels : higher bandwidths
Series feedback increases impedances : lower node poles
Ouput shunt best for interconnect to next stage !
Output series acts as current source !

Willy Sansen 10-05 1317
Shunt versus series for sensors
vIN Microphoneis a voltage sourcerequires a high Rin amplifier
+ Pixel-, photodiode , radiation detectors are current sources, require a low Rin amp.
+
Pressure- , temperature sensors are voltage sourcesrequire a high Rin amp.
iIN
vINR
RR
R

Willy Sansen 10-05 1318
Table of contents
DefinitionsSeries-shunt FB for Voltage amplifiersSeries-series FB for Transconductance amps

Willy Sansen 10-05 1319
Series-shunt FB configuration
AV = =
vOUT
vIN
R2
RIN +
-
vIN
A0vIN A0 ≈ 104 … 106
vOUT
vIN
ROUT
RO << R2
RIN ≈ ∞ ROUT ≈ 0
R2 + R1
R1R1
RNP
+-
R1 << RNP

Willy Sansen 10-05 1320
Series-shunt FB : loop gain
AV =
vOUTLG
vIN= 0
R2
+
-
vIN
A0vIN A0 ≈ 104 … 106
RO << R2R2 + R1
R1R1
LG =vOUTLG
vINLG
vINLG
= R2 + R1
R1 A0
RNP
+-
R1 << RNP

Willy Sansen 10-05 1321
vOUT
vIN
R2
RIN +
-
vIN
A0vIN A0 ≈ 104 … 106
RO << R2
R1
AV = R2 + R1
R1
RINOL = RIN (A0 = 0) = RNP + R1//R2
RNP
RIN = vIN
iIN= RINOL LG ≈ ∞
Series-shunt FB : input resistance

Willy Sansen 10-05 1322
vOUT
R2
+
-
vIN
A0vIN A0 ≈ 104 … 106
ROUT
RO << R2
R1
AV = R2 + R1
R1
ROUT = ≈ 0ROUTOL
LGROUTOL = ROUT (A0 = 0)
= RO//(R2+…) ≈ RO
vIN= 0
Series-shunt FB : output resistance

Willy Sansen 10-05 1323
Series-shunt FB pair : loop gain
+vOUT-
R2 LG = ?M3
VDD
M1
M2
R1
vIN
AV = R2 + R1
R1
R1 > 1/gm1

Willy Sansen 10-05 1324
Series-shunt FB pair : series input
+
R1
+
R1
RL
++
RL
R1 > 1/gm
RL < ro
RIN ≈ 1/gm
1/gm
1/gm
R1
RIN = 1/gm
∞ ∞
∞
∞
R1
RIN = R1
RIN = ∞

Willy Sansen 10-05 1325
Series-shunt FB pair : gain input stage
+
R1
vOUTvIN
+
R1
vOUT
RL
+vOUT
+vOUT
RL
R1 > 1/gm
RL < ro
vOUT
vIN= = gmroR2
RL
R2
R2 > 1/gm
vIN
vIN
vIN
R2 R2
R2
= RL
R2
R1
R1+R2
= gmro

Willy Sansen 10-05 1326
Series-shunt FB pair : input & output resistance
+vOUT-
R2 LG =
RIN ≈ ∞
ROUT = ≈ 01/gm3
LG
M3
VDD
M1
M2
R1
vIN
AV = R2 + R1
R1
R1 > 1/gm1
gm1ro1 gm2ro2 R1+R2
R1

Willy Sansen 10-05 1327
Series-shunt FB pair : loop gain
+vOUT-
R2M3
VDD
M1
M2
R1
vINR2M1
R1
vIN
LG = gm2ro2 R2
RL LG = gm1ro1 gm2ro2 R1 + R2
R1
RL

Willy Sansen 10-05 1328
Series-shunt FB pair : output loading
+vOUT-
R2
RIN ≈ ∞
ROUT = ≈ 0 ??(R1+R2)//ro2
LG
VDD
M1
M2
R1
vIN
AV = R2 + R1
R1
Output loading : R2 ≈ ro2
R1 > 1/gm1
LG =
gm1ro1 gm2R1+R2+ro2
ro2 R1

Willy Sansen 10-05 1329
+vOUT-
R2
RIN ≈ ∞
ROUT = (R2+R1)//ro2//R3
LG
VDD
M1
M2
R1
vIN
AV = R2 + R1
R1
Output loading : R2 ≈ R3 ≈ ro2
R1 > 1/gm1
LG =
gm1ro1 gm2R1+R2+ro2//R3
ro2//R3 R1
R3
≈ 0 ??
Series-shunt FB pair : output loading with R

Willy Sansen 10-05 1330
Series-shunt pair in BiCMOS
+vOUT
R1 > 1/gm1
Q1
VDD
ROUT =LG
1/gm3
R2
M2
vIN
-
M3
R1
Input loading : RIN < ∞
RIN = RINOL LG ≈ ∞
AV = R2 + R1
R1
LG =
gm1ro1 gm2ro2 R1+R2
R1
RINOL = rπ1+ β (R1//R2 )
≈ 0
RS

Willy Sansen 10-05 1331
Series-shunt FB pair with resistances
+vOUT-
R2
LG = gm2ro2
RIN = RINOL LG ≈ ∞ RINOL = rπ1+ β (R1//R2 )
ROUT = ≈ 0ROUTOL
LG
Q3
VDD
Q1
Q2
R1
vIN
AV = R2 + R1
R1
R1 > 1/gm1
Input loading : RIN < ∞
RL1RL2
RL2 + ro2
RL2RL1//rπ2
R2
ROUTOL = +gm3
1β
RL2//ro2
RERD CD

Willy Sansen 10-05 1332
Table of contents
DefinitionsSeries-shunt FB for Voltage amplifiers.Series-series FB for Transconductance amps.

Willy Sansen 10-05 1333
Series-series feedback : gain
+-
iOUT
R2
R1
vIN
RE
VDD
AG = R2 + R1
R1
1RE12
ROUT
LG = A0
A0R2 + R1
R1
RE12 = RE // (R1 + R2)
AGOL = A01
RE12
= R2 + R1 + RE
R1
1RE

Willy Sansen 10-05 1334
Series-series feedback : in- & output resistances
+-
iOUT
R2
R1
vIN RIN = ∞
ROUT = ROUTOL LG ≈ ∞
RE
VDD
ROUT
ROUTOL = ro (1 + gmRE12)
A0
LG = A0 R2 + R1
R1
RE12 = RE // (R1 + R2)

Willy Sansen 10-05 1335
Series-series feedback with load RL
+- iOUT
R2
R1
vIN
RIN = ∞ROUT = RL
RE
VDDRL
+
-
AV = - R2 + R1
R1
RL
RE12
A0
AG = R2 + R1
R1
1RE12
vOUT
= -R2 + R1 + RE
R1
RL
RE
RE12 = RE // (R1 + R2)

Willy Sansen 10-05 1336
Ideal current source
+-
+
- vIN
iOUT
RE
ROUT = ROUTOL LGROUTOL ≈ ro (1+gmRE )
RIN
RIN ≈ ∞
iOUT =vIN
REA0
LG = A0
ROUT

Willy Sansen 10-05 1337
Series-series feedback : two outputs
+- vOUT1R2
R1
vIN
ROUT1 = RL
RE
VDDRL
+
-
AV1 = - R2 + R1
R1
RL
RE12
A0
+vOUT2
ROUT2 =
LG = A0 R2 + R1
R1
RE12 = RE // (R1 + R2)
AV2 = R2 + R1
R1
1/gm
LG

Willy Sansen 10-05 1338
Series-series FB triple
+vOUT1
-
R2
LG = A1A2
RIN ≈ ∞ ROUT1 = RL
M3
VDD
M1
M2
R1
vIN
AV1 = - R2 + R1
R1
R1 > 1/gm1
RE
RL
RL
RE12
vOUT2+
ROUT2 =
AV2 = R2 + R1
R1
≈ 01/gm2
LGRE12 = RE // (R1 + R2)
Ai = gmiroi
R2 + R1
R1

Willy Sansen 10-05 1339
Series-series FB triple
+vOUT1
-
R2
LG = gm2ro2
RIN ≈ ∞ ROUT1 = RL
M3
VDD
M1
M2
R1
vIN
AV1 = - R2 + R1
R1
R1 > 1/gm1
RE
RL
RL
RE12
vOUT2+
ROUT2 =
AV2 = R2 + R1
R1
≈ 01/gm2
LGRE12 = RE // (R1 + R2)
R2
RD
RD

Willy Sansen 10-05 1340
Series-series triple
+
vOUT
-
R2
gm2(ro2//RL2)
RIN = RINOL LG ≈ ∞ RINOL = rπ1+ β (R1//R2)
ROUT = RL3
Q3
VDD
Q1Q2
R1
vIN
AV = - R2 + R1
R1
R1 > 1/gm1
Input loading : RIN < ∞
RL1RL2
RL1//rπ2
R2RE
Wooley, JSSC Feb.71, 24-34
RL3 RE12
RL3
R2 > ROUTQ3
RE12 = RE // (R1+R2)
LG ≈

Willy Sansen 10-05 1341
Nonideal single-transistor FB
+
vOUTvIN
-
LG = gmRE (>>1)
RIN = rπ + β RE
ROUT = RL//roL
VDD
Output loading : RL ≈ roL roL = ro (gmRE)Input loading : RS < RIN RIN = rπ + βRE
RL
RS
Av ≈ -RL
RE
RE
AG ≈1
RE
iOUT

Willy Sansen 10-05 1342
Decreasing distortion by feedback
M1Vid/2 -Vid/2
2Ibias
-ioutiout
M1 M1Vid/2 -Vid/2
Ibias
-ioutiout
M1
IbiasR R 2R
AG ≈LG = gmR (>>1)1R

Willy Sansen 10-05 1343
By tunable feedback
M2Vid/2 -Vid/2
IbiasIbias
Itune -ioutiout
M1
Ref.Torrance etal CAS Nov.85, 1097-1104
R = 1/gm2
AG ≈
LG = gmR (>>1)
1R
M1M2

Willy Sansen 10-05 1344
Decreasing distortion by more feedback
Additional local FB
2R
More FB with opamps
2R
A0 A0
iout -iout
iou -iout

Willy Sansen 10-05 1345
Low-pass filter
vIN
vOUT
CL
RL RL
Av0 = 2 RL/RE
fp = 1
2π 2RLCLAv =
RE
f
|Av|
φ (Av) fp f
f
-90o
0o
-20 dB/dec
90o
Av0
(1 + j )
Av0
fp

Willy Sansen 10-05 1346
High-frequency booster
vIN
vOUT
CE
RL RL
Av0 = 2 RL/REfz =
1
2π RECEAv = Av0 (1 + j )
RE
fz
f
|Av|
φ (Av) fz f
f
-90o
0o
20 dB/dec
90o
Av0

Willy Sansen 10-05 1347
Single-transistor FB with two outputs
+ vOUT1
vIN
-
LG = gmRE (>>1)
RIN = rπ + β RE
ROUT1 = RL//roL
VDD
Output loading : RL ≈ roL roL = ro (gmRE)Input loading : RS < RIN RIN = rπ + βRE
RL
RS
Av1 ≈ -RL
RE
RE
iOUT
+ vOUT2
Av2 ≈ 1
ROUT2 = 1/gm + RS/β

Willy Sansen 10-05 1348
Table of contents
DefinitionsSeries-shunt FB for Voltage amplifiers.Series-series FB for Transconductance amps.