Farm and Forest Biomass

304
r J > Γ Commission of the European Communities energy FARM AND FOREST BIOMASS AN ENERGY SOURCE FOR EUROPE? Report EUR 7937 FR, IT, EN, DE Blow-up from microfiche original

Transcript of Farm and Forest Biomass

Page 1: Farm and Forest Biomass

r J > Γ

Commission of the European Communities

energy

FARM AND FOREST BIOMASS AN ENERGY SOURCE FOR EUROPE?

Report EUR 7937 FR, IT, EN, DE

Blow-up from microfiche original

Page 2: Farm and Forest Biomass
Page 3: Farm and Forest Biomass

Commission of the European Communities

energy

FARM AND FOREST BIOMASS AN ENERGY SOURCE FOR EUROPE?

D. AHNER (1), M.A. FARGET (2) (1) CEC - Directorate-General for Agriculture - Brussels (Belgium) (2) I.N.R.A.

Contract No. 9136

1983

Directorate-General for Agriculture

JM EUR 7937 FFI, IT, EN, DE

Page 4: Farm and Forest Biomass

Published by the COMMISSION OF THE EUROPEAN COMMUNITIES

Directorate-General Information Market and Innovation

Bâtiment Jean Monnet LUXEMBOURG

LEGAL NOTICE Neither the Commission of the European Communities nor any person

acting on behalf of the Commission is responsible for the use which might be made, of the following information

Ç) ECSC-EEG-EAEC Brussels · Luxembourg 1983

Page 5: Farm and Forest Biomass

I

PREFACE

Europe is poor in raw materials, especially energy sources and for this reason its prosperity is bound to suffer in the long term. This trend will not spare farmers; caught between the rising cost of the raw materials they use and the rigidity of the farmgate prices which determine their incomes.

These difficulties are due to the general economic crisis and in particular the energy crisis; they follow the development boom of the sixties, which conversely, had been spurred on by the very low cost of fuel and power. Agriculture is, however, itself a potential source of energy. Land and water plants have always used solar energy to manufacture products which are at present used mainly to feed and clothe man but which can under certain economic conditions yield energy.

Of course, the production of food is still the priority for obvious reasons; however, agricultural waste may already provide an appreciable source of energy and the cultivation of certain crops solely for this purpose should be con-sidered/ as should the idea of substituting some agricultural raw materials (timber) for industrial materials which are very costly in terms of energy. This mobilization of the biomass might also be linked with a more efficient use of marginal land7 much of which is not being kept in good heart or is deteriorating because of erosion.

The fullert information on the present situation and the future outlook is needed if this new approach for agriculture is to succeed- Our staff has therefore put in hand a study to assess the current situation in this sector-It is in two parts : a bibliographical analysis grouping over a thousand references and a summary with suggestions based on the bibliography.

This should help those members of the public interested in this question to a better understanding of the opportunities offered by biomass as a source of renewable energy compared to fossil energy»

Let us hope that this study will encourage more thought on techniques which could be useful at the present juncture in solving Europe's energy problems

Claude VILLAIN Director General for Agriculture

Page 6: Farm and Forest Biomass

- II

POREWORD

This report is chiefly a synthesis of the large number of documents listed in the bibliography. In order to avoid overburdening the text, authors of sources have not been cited each time. This would in any case have made the bibliography redundant.

Our work is thus more or less a compilation of ideas to be found in the literature, and its main value lies in the attempt to put them into coherent form and to compare and combine the many ideas circulating on the subject in Europe.

In analysing the literature we have in some cases been led to make additional comments. These have been inserted in the text at points where they would be in context for subsequent discussions.

Many aspects of the survey have been discussed in depth with research workers and with colleagues in the Commission. We thank them warmly for their help. Our thanks are also due to those of our colleagues who have helped us with the production and publication of this report.

We hope that this document will give the reader a clear idea of the scope of the subject and promote critical and constructive thinking on it.

Brussels, May 1981

Dirk AHNER Marie-Angele PARGET

Page 7: Farm and Forest Biomass

- III -

CONTENTS

Preface I Foreword II Outline of the survey VI

CHAPTER I: Agriculture and energy ! A. Agriculture as an energy consumer 1 B. Agriculture's energy balance 3 C. The rising cost of energy 8 D. The agricultural sector and the energy crisis 11

CHAPTER II: Energy biomass - definitions and conversion routes 13 A. Definitions and techniques 13 B. The technical routes for converting biomass into usable energy ...15

I. Biochemical routes or biological conversion of biomass 15 a) Ethanol production 15 b) Anaerobic digestion 17 c) Aerobic decomposition 20

II. Thermo-chemical routes 20 a) Combustion 20 b) Pyrolysis 21 c) Gasification 21 d) Methanol production 23 e) Hydrauliquefaction or hydrocracking of cellulose 26

CHAPTER III: Energy analysis - a new tool for improved interpretation of the 30 allocation of a scarce resource A. General definitions 30

I. Definition of energy analysis 30 II. Definition of the tools for energy analysis 30 III. Formalization of definitions 31

B. Problems 34 I. Calculation of input 34

a) The forms of energy taken into account 34 b) Evaluation of human energy as an input to any 34

production process c) Calculation of energy flows 34

II. Calculation of output 35 a) Energy evaluation of output 35 b) Difficulties of calculating output 36 c) The polluting effect of waste material 36

Page 8: Farm and Forest Biomass

- IV

III. Common measuring standard 36 IV. Energy equivalence coefficients 37 V. Validity of energy analysis in time 38

C. Energy analysis of waste and energy crops 40

CHAPTER IV: Biomass - a potential energy source for Europe ? 48

A. Farm and forest waste 48 I. Availability of waste 48 II. The energy potential of waste 51

B. Energy crops 54 I. Energy crops: various scenarios 54 II. Energy crops as potential sources of liquid motor fuels 56

a) Ethanol 56 b) Vegetable oils 57 c ) Methanol 58

C. Conclusions 59

CHAPTER V:

Use of biomass - some socio-economic considerations 60

A. Profitability 60 I. The investment needed 60 II. Collection and transport costs 62 III. The cost of producing energy crops 64

B. Competition for land use 65 I. The problem 65 II. Marginal land and fertile land 65 III. The interdependence of markets 66

C. Two secondary effects : employment and environment 67 I. Repercussions on employment 67 II. Advantages and disadvantages for the environment 68

D. The need for a political choice 69 I. Allocation of resources 69 II. Facing the energy crisis 70 III. Biomass in the context of the common agricultural policy (CAP) 71

Page 9: Farm and Forest Biomass

- V -

PART II

CHAPTER VI:

International bibliography of the use of biomass for energy I

Plan of classification IV

A· References 1

B. Index of authors 187

C. Index of themes 199

D. Geographic index 205

Page 10: Farm and Forest Biomass

VI

OUTLINE OF THE SURVEY

Agriculture and energy

1* The remarkable increase in the productivity of agricultural labour in

Europe over the last few decades has required a concurrent increase in the direct and indirect consumption of energy by agriculture, now estimated at 5% of total commercial energy consumption in Western Europe.

2* Following the second oil price shock in 1979/80, the repercussions of the energy crisis on the economic situation of farming have been increasingly felt in Europe, though the consequences have varied widely with the type of production, the structure of production units, regions and countries. The rise in energy prices is therefore liable to affect the competitiveness of regions and to increase income disparities within farming.

3* If the industry is to adjust to the present energy situation the first priority, as elsewhere, will be to try to save energy. It has been estimated that energy consumption in agriculture could be reduced by 15-20$ if suitable steps were taken.

In addition, agriculture is particularly well placed to use biomass as a renewable energy source and a partial future replacement for non-renewable fossil fuels. Agriculture would then become an energy producer.

Energy biomass - definitions and conversion processes

4* "Biomass" means all organic matter - animal and vegetable - deriving from photosynthesis, by which plants fix their carbon uptake by means of the chlorophyll in their leaves. Even if the photosynthesis yield is low (between 0.4 and 0.8$ a year for most plants), considerable solar energy is fixed in plants each year by this process. Biomass is a renewable energy source but is dispersed and sometimes difficult to tap. In addition, it is not used only to produce energy, since it also serves to satisfy a large number of essential needs (food, shelter, clothing, etc.).

Page 11: Farm and Forest Biomass

- VII -

5* For these reasons, "energy biomasa" in Europe consists primarily of agricultural and forestry residues and wastes (e.g. straw, manure, brushwood). As well as recovering these by-products it is planned to make limited use of certain plants primarily for energy-producing purposes. The more important of these would be:

- plants for alcohol production (beet, sorghum, maize, Jerusalem artichoke, etc.);

- plants yielding oil (colza, sunflower, soya, etc.) which could fuel diesel engines;

- crops which provide large amounts of dry matter in a short time (short-rotation coppicing, giant reed, etc.).

Other biomass energy sources are also of interest to Europe: organic waste from the agri-food industries, and urban wastes (household waste, sewage).

6* At the moment there are two main methods of turning biomass into energy (heat) or fuels: biochemical and thermochemical routes.

Biochemical routes (biological conversion of biomass) can use wet (i.e., undried) biomass. The main products are: alcohol (ethanol), from fermentation and distillation of sugar-containing juices; methane (in a biogas mixture) produced by anaerobic digestion (e.g. of animal excreta); and direct heat obtained by aerobic digestion.

Thermochemical processes, however, require relatively dry material (straw, wood) and are carried out at high temperatures. The main products are: direct heat from combustion; charcoal, gas and pyroligneous liquor from pyrolisis; lean gas for heat and power, produced by gasification in gas producers; and methanol (methyl alcohol) synthesized from gas.

In the case of oil seeds and oleaginous plants, the oil is extracted mechanically, by pressing, or chemically, by means of solvents.

Page 12: Farm and Forest Biomass

VIII

Energy analysis - Methodology - Interpretation of energy flows

7* The aim of energy analysis is to calculate the amount of energy necessary, directly or indirectly, to provide a commodity or service (G. Leach's definition). It enables energy balances to be drawn up or energy efficiency (yield) to be calculated. The balance is the outputs less the inputs. Efficiency is the ratio of inputs to outputs in a given system. All data are converted into energy units.

Energy analysis can be applied both to an entire economy "and to one sector of it (e.g. agriculture) or to a particular form of production. It provides a better interpretation of the forms of energy used and enables energy flows to be estimated. Where biomass energy is concerned, energy analysis is an extremely valuable aid in the choice of conversion processes or in estimating the energy potential of biomass in a given region.

8* However, energy analysis is a complex technique, and there is some confusion over the definition of the concepts used and how well they are suited to the calculations to be made.

The number of variables is large - and they may not always be well defined, measurable or be used in a consistent manner. These variables will be reviewed and defined individually. The least controllable element is how to assess inputs in terms of indirect energy.

All elements necessary for making a comprehensive calculation of energy balances and yields are listed, both for the energy use of residues and waste and for energy crops.

Biomaas - potential energy for Europe ?

9* In Community countries, biomass is mainly used for non-energy purposes. In a first phase, therefore, an analysis of biomass availability must concentrate on the wastes or residues of agricultural production.

Recent studies indicate that about 30-40 million tonnes of oil equivalent toe could be obtained annually by recovering and using farm wastes in the

Page 13: Farm and Forest Biomass

IX -

Community, say, 2.5 to 3% of the Community's energy consumption forecast for 1985.

10* As regards potential energy production from energy crops, several scenarios have been worked out for Europe. On fairly conservative assumptions (use of some 7-8 million hectares of "new" land for energy crops) it appears feasible to produce crops corresponding to about 35-40 million toe by the year 2000. This would satisfy about another J>% of the 1985 energy needs forecast for the Community and probably 2.5$ of energy needs in the year 2000.

Some socio-economic observations

11* As for any new activity, at the present stage it is difficult to predict production and distribution costs for the use of biomass energy, what shape will be taken by the markets involved and how they will interact with other markets, both those for raw materials and those for end products.

As harvested biomass is relatively bulky, sometimes highly perishable and generally has a low energy concentration, it must be used near the site of production to avoid prohibitive transport costs. It needs more labour and more complex conversion systems (and so higher investment) than "traditional" fuels (fuel oil, diesel oil, natural gas) to which potential consumers are now accustomed.

12* Some uses of farm and forest wastes as energy sources at farm or village level are already economically attractive. They could provide some of the energy consumed by agriculture more cheaply than traditional fuels. In contrast, the production of energy crops in the Community is still for the most part at an experimental stage, and in most cases it is not yet certain whether they are economic.

Page 14: Farm and Forest Biomass

- Χ -

13* The production of energy crops on a large scale would also raise a number of other crucial questions: competition between energy and other uses of biomass; competition for land use; interdependence of markets and security of supply (of energy and food); agricultural restructuring; and risks of soil deterioration.

14* The use of biomass for energy is one of several possible ways of meeting the challenge of the energy crisis, and - as with the other ways - its development would require sizeable investment. As funds are limited, a political decision will be needed to determine to what extent one solution should be preferred to another.

Where farm and forest biomass is concerned, the decision coincides with a general discussion on the reform of the common agricultural policy. A crucial point in this discussion is the over-production of certain food products. It may therefore be asked whether a "biomass energy" strategy might not contribute to solving both the over-production problem and the energy problem.

Naturally, the production of a food product simply for transformation into energy cannot be justified in energy or economic terms. On the other hand, the partial re-allocation of land now producing surpluses to the production of energy could, in the years ahead, be worth careful investigation.

Page 15: Farm and Forest Biomass

Chapter 1

AGRICULTURE AND ENERGY

A. AGRICULTURE AS AN ENERGY CONSUMER

1. Present-day European agriculture, at least in much of the Community, is often called "modern", "intensive" or "industrial". And the unprecedented increase in the productivity of agricultural labour and land over the last few decades has been mainly brought about by the specialization and intensification of agricultural production, together with major structural changes (decrease in the agricultural working population, increase in the average size of farms). This trend has been dependent on an increase in direct and indirect energy consumption by agriculture. The main indicators are a high degree of mechanization, the intensive use of fertilizers and pesticides, the use of selected seeds and plants, and etockraising with concentrated feedingstuffs.

2. Many surveys of western agriculture, especially since the 1973/74 energy crisis, show that this trend also brings increasingly clear disadvantages. Two in particular stand out:

a) The specialization and intensification of agricultural production, with a withdrawal from some less productive agricultural land, and the development of virgin land with consequent erosion, are liable to cause progressive undermining of nature's productive capcitiy.

b) Agriculture consumes, directly or indirectly, more and more fossil fuel and is thus increasingly dependent on the petroleum products market, where prices have increased more than fivefold in the last ten years. Table 1 illustrates this by comparing the respective consumption of commercial energy per hectare for the production of maize and the corresponding yields in a modern system of agricultural production (USA) and in a traditional agricultural system (Mexico). This commercial energy, even today, is provided almost entirely by fossil fuels.

Page 16: Farm and Forest Biomass

- 2

In the traditional system, it is used mainly for the production of tools. However, the traditional farmer uses practically no energy for fertilization or seeds, for he does not use chemical fertilizers and his seed has been kept from the previous harvest. The table also clearly shows that yields per hectare in the traditional system are far lower than in the modern system.

Table 1 Commercial energy needed per hectare for the production of maize by modern methods (USA) and traditional methods (Mexico), with corresponding yields.

: Machinery : Fuel

: Chemical : fertilizer

: Seed

: Irrigation

: Pesticides

: Drying

: Electricity

: Transport

: Total

: Yield : (kg/ha)

Modern system (USA)

Amount per ha

206 litres

226.9 kg

: 20.7 kg

: 2.2 kg

50£

Energy ; per ha

(kg o e)

100.4 196.9

267-4

: 14.8

ί 8.4

! 5.2

: 29·6

: 77.6

ί 17.5

715.6

35

Traditional system (Mexico) :

Amount : per ha

ί 10.4 kg (a)

Energy : per ha :

(kg o e) :

4.1 :

4.1 :

>0 :

(a) Seed kept from previous year's harvest; commercial energy content is practically zero.

Source: FAO The state of food and agriculture, 1976, Rome 1977, based on PIMENTEL, D. et al., Pood production and energy crisis, Science, 182, 1975, pp. 445-450.

Page 17: Farm and Forest Biomass

- 3 -

3· Direct energy uses are mainly to fuel agricultural machinery, heat livestock units and hothouses, and fire driers and desiccators. Indirect uses are chiefly in mineral fertilizer, chemicals (pesticides, herbicides, etc.), certain feedingstuffs and equipment (machinery, tools, buildings, etc.) which need energy to be produced. Figure 1 illustrates this by showing the final energy flows in Denmark's agricultural system in 1974/75·

In Europe, 10-20$ of energy consumption on average is connected with capital invested (i.e. is used in the construction of buildings, machines and other equipment), the rest (80-90$) being consumed in actually running the farms. About half (55-45$) is accounted for by chemical and biological substances (fertilizers and pesticides in particular) and the remaining 45-55$ by direct consumption of fuel and/or electricity.

Another important factor in the total energy consumption of European agriculture, as the Danish example shows, is the energy content of imported feedingstuffs. For Community farming does not produce all the fodder necessary for its livestock. In 1977/78 about 17$ of Community animal production relied on imported fodder. The percentage varies from 9$ in France to 23$ in Denmark and 53$ in the Netherlands.

B. AGRICULTURE'S ENERGY BALANCE

4· The above trends have been accompanied by a deterioration in the marginal energy yield of agriculture, i.e., agricultural production increases at a lower rate than energy consumption once a certain level of intensification is exceeded. This level varies from one crop to another and depends, among other things, on soil and climatic conditions, and on production and rotation systems.

However, the overall energy balance (agricultural production in energy terms less inputs of commercial energy) is still in surplus: the estimated energy input/output ratio of European agriculture is 1:2.5. This means that

Page 18: Farm and Forest Biomass

Figure 1

FINAL ENERGY FLOWS IN THE DANISH AGRICULTURAL SYSTEM, 1974/1975 ι ('000 toe)

51 Petroleum 509

164 Electricity 194

Gas 10

Buildings 179

un Equipement

30

458

30

Imported Feed 510

Λ

Source: OECD, Paris. S

\

^ V Fodder

459

Cereals

570'

805 !

235 |

Sugar beet.

51 1

Other

211

1539

<*> Animal products I

1969 (80%)

\ r W

355

< * > Plant products

388 (15%)

131

Horticultural products

131 (5%)

Fertilizer !

637 I

Machinery ·' 298 |

Chemicals. 18

Other

Page 19: Farm and Forest Biomass

­ 5

for the input of one kilocalorie of energy to agricultural production about 2.5 kilocalories of food and feed are produced on average in European farming. If present trends continue the energy input/output ratio is likely to deteriorate further and, for certain crops at least, to fall below parity.

Already the energy balance is markedly in deficit if the calculation is not confined to agriculture itself but extended to the entire agri­food sector. In the processing, storage and distribution of agricultural products the agri­food industries consume as much, and in some cases considerably more, energy than farming itself. In this context a negative energy balance means that the amount of (scarce) energy needed to put a consumer's daily food on to his plate is much higher than the energy content of the food itself.

To illustrate this point, Figure 2 shows the commercial energy flow in the French agri­food sector in 1974· It can be seen that for one kilocalorie expended on agricultural production in France, about 2.8 kilocalories of food and feed are produced (input/output ratio: 160:450 = 1:2.8). Accord­

io ing to these calculations, the 300 χ 10 kilocalories used for feeding

12 livestock give 25 x 10 kilocalories of animal products, a conversion rate of 1 to 12. The consumption of energy in processing, storage and dis­tribution is slightly higher than for the actual agricultural production. In final terms about 5 kilocalories of energy are needed to produce 1 kilocalorie consumed in the human diet.

The calculation given in Figure 2 is, however, incomplete. We will return to this point later when discussing other energy balances, but it should be noted here that the diagram does not take into account:

either the commercial energy incorporated in imported feed;

or the energy content of by­products and waste which could be used at least partly for non­food purposes.

Page 20: Farm and Forest Biomass

- 6 -

ENERGY FLOWS IN FRENCH AGRICULTURE

Unit = 10IJ kcal

By-products

Harvesting losses

Losses througn excretion & metabolism

5J Fertilizer

Machinery

Direct con-¿ I sumption of

fossil fuels various

Direct-indirect energy

Loss in food processing & domestic losses Food consumed

Source: R. Carillon, Etudes du CNEEMA K" 408, L'activité agricole et l'énergie, 1975·

6. When all consumption of commercial energy, direct and indirect, is considered, the greatest energy user in European agriculture is mechanization (for the construction and operation of machinery), followed by the use of mineral fertilizers and, a good way behind, by the use of pesticides and by irrigation. Table 2 shows the estimated amount of energy used in 1972 for each of these purposes in Western European farming, together with corresponding forecasts for 1985/86. Forecasts are based on the assumption that recent trends will continue. In this case there would be a marked increase in the use of fertilizer and a high level of mechanization, which would make farming even more dependent on energy input.

Page 21: Farm and Forest Biomass

- 7 -

Table 2: Estimated (1972/73) and projection (1985/86) commercial energy-consumption for agricultural production in Western Europe

: 1.

: 2.

: 3-

: 4.

: 5-

Fertilizer a) nitrogen b) phosphates c) potassium

Mechanisation : a) procurement b) operation ;

Irrigation ! a) installation : b) operation ;

Pesticides ;

Total :

! Energy demand in : millions

: 1972/73

: 17.29 14.14

. 2.03 1.12

31.95 10.9 21.05

0.37 0.065 0.305

0.87

50.48

of toe (1)

1985/86

26.99 23.03 2.48 1.48

39-58 12.35 27.23 !

0.44 ! 0.07 . 0.37 !

0.98 :

67.99 :

¡Percentage ' increase » increase

56.1 62.9 18.2 32.1

23-9 13-3 29-4

18.9 : 7.2 21.3 :

12.5 :

34-7 :

: % of total demand : : for each

i 1972/73

! 34-3 : 28.0

4.0 23

63-3 21.6 41.7

0.7 . 0.1 0.6

1.7

100

input :

: 1985/86 :

: 39-7 : Ì 33-9 :

3-6 : 2.2 :

58.2 : : 18.2 :

40.0 :

0.6 : 0.1 : 0.5 :

1.5 :

100 : 1 = 2 3 3 = 3

Source: F.A.O., The state of food agriculture 1976, Rome 1977 (l) toe: tonne of oil equivalent: the calorific value of one tonne of

petroleum (unit used in comparison and addition of different sources of energy in terms of their equivalent heat content).

7. Although the energy consumption of agriculture is increasing, its share of total commercial energy consumption is still small compared with that of other sectors, an estimated 5%, in Western Europe and 3.5% world-wide. Table 3 compares consumption in the major regions of the world. It can be seen that in general even if agriculture's energy consumption increases in the future, the effect on total energy demand will be modest.

Page 22: Farm and Forest Biomass

- 8 -

Table 5; Estimated total commercial energy consumption and commercial energy consumption in agriculture in Western Europe, 1972/73

B S S K S K B S S E X S a X S S S S S S S S S

: Developed countries; : North America : Western Europe : Oceania : Others : Developing countries : Africa : Latin America : Near East : Far East

: Countries with : planned economies

:World

=======================: Energy consumption, :

mtoe * :

total

3242.7 1838.7 1025.6 58.3 320

Ì 461.7 : 37.5

194.7 63 166.4

: 1531.7

: 5236.1

agriculture:

110.8 51.1 50.5 3-3 5.8 21.9 1.6 7-4 4 8.8

: 48.9 : 181.8

=======»================ Percentage : consumed : by

agriculture:

3-5 : 2.8 4-9 5.6 1.8 4-8

: 4-5 3-8 6.4

: 5-3

: 3.2

: 3-5

i s s s s s a s s a s i a

Energy consumption, : mtoe * :

Per capita:

4.4 8.0 2.8 3-7 2.4 0.3

: 0.1 0.7

! 0.6 : 0.1

: 1.3

: 1.4

Per farmer : or farm : worker :

2.6 : 13.3 : 2.0 : 5.9 : 0.5 :

0.05 : : 0.02 i 0.21 : : 0.11 : : 0.03 :

: 0.2 :

: 0.24 : : 3 3 { 3 3 { 3 S S 3 S B B a BSS3B3ES2SS

* mtoe " million tonnes of oil equivalent

Source: P.A.O., The state of food and agriculture, 1976, Rome 1977

C. THE RISING COST OP ENERGY

8. The rise in energy prices has had less effect on agriculture than on other sectors. To begin with it mainly affected certain highly intensive crops (e.g. hothouse horticulture) or crops produced far from centres of consumption (transport costs). Since prices rose again in 1979/80, however, the energy crisis has had increasing repercussions on the economics of farms all over Europe. The cost of the energy (fuel, electricity, etc.), fertilizer and equipment necessary for agricultural production has risen much faster than the prices paid to the farmers for

Page 23: Farm and Forest Biomass

9 -

their produce.This divergence between prices paid to producers and the cost of the means of production is illustrated in Figure 3. All prices have been deflated by the general index of purchase prices of means of production, which thus remains constant (= 100). The opening of the "price scissors" as shown in the diagram is the clearest illustration of how the energy crisis is affecting agriculture. Up to 1972, the movement of price differentials was generally in the farmer's favour. Since the 1973/74 oil crisis, however, agricultural prices have ceased to increase in proportion to energy input prices (direct and indirect), and the improvement in the situation in 1975 and 1976 was limited and temporary.

9· European agriculture is therefore increasingly sensitive, in economic terms, to the worsening energy crisis and this sensitivity is liable to become more pronounced, even though energy costs (for direct consumption) represent a small percentage of the total costs of agricultural production (less than 6% on average). Not only have energy costs increased markedly (they have almost trebled since 1973); the prices of almost all other factors of production purchased by the farmer have also been affected, indirectly to varying degrees, by the rise in energy prices. This is the case for fertilizer, pesticides, seed, animal feed and equipment, all of which need energy for their manufacture and distribution. Their prices will reflect a rise in energy prices to a varying extent and with a time-lag depending on the amount of commercial energy incorporated in them, whether it has been possible to economize further on the energy used for their production (conditions of production) and the extent to which producers can pass on their increased costs (market conditions). In the case of equipment, which is replaced over a long period, the rise in prices will only gradually work through to the farming sector as replacements are purchased.

10. The consequences of rising energy prices vary widely according to types and methods of production, the structure of production units, regions and countries. On the one hand the amount of energy consumed by agricultural production depends on the type of production and the extent to which energy is rationally used. On the other, direct and indirect energy costs

Page 24: Farm and Forest Biomass

- 1 0 -

Figure 3: Changes in costs of energy, fertilizer, inverstment in machinery and in prices paid to producers for agricultural products, in relation to the general index of purchase prices of the means of agricultural production (= 100) _

I50 i

130-

L 1973 74 75 76 77 78 79 80

Energy and lubricants , _ . _ . . Fertilizer and soil improver

Inverstment in machinery • —— —» Prices paid to producers for agricultural products

Source: EUROSTAT

Page 25: Farm and Forest Biomass

_ 11 _

vary between countries and in many of them some sort of tax or duty concession is made to farmers. As examples: at the end of 1978, the price of tax-reduced diesel oil in Belgium was less than two-thirds of the price of tax-reduced diesel oil in the Netherlands, but the price of natural gas (for heating greenhouses) was three times as high in Belgium. Between 1973 and 1980 the price of fertilizer rose 21% more than agricultural prices in Germany, and 56Í in Prance. The rise in energy prices may thus affect the competitiveness of regions and aggravate income disparities in European farming.

D. THE AGRICULTURAL SECTOR AND THE ENERGY CRISIS

11. If the agricultural sector is to adjust to the energy situation it must first, like other sectors, endeavour to save energy: some experts estimate that agriculture's present energy consumption could be reduced by 15-20¡£ by appropriate action. This would include: - "tailored" application of fertilizers and pesticides; - choosing the most suitable machinery and using it efficiently; - using insulation wherever possible; - recovering the heat which is a by-product of certain forms of

agricultural production (in particular dairy and stock farming); - finding substitutes for at least some indirectly consumed energy

products (e.g., the use of waste, processed if necessary, as biological fertilizer to replace chemical fertilizer).

12. But energy-saving is not the only adjustment strategy available to agriculture to combat the energy crisis. This sector is particularly well placed for using certain renewable energy sources which could in future partially replace non-renewable fossil fuels. Agriculture would then become an energy producer.

In an initial phase it would be possible to consider using farm waste to produce energy in the form of heat (by combustion) or gas (by fermentation or gasification) which could then be used on the farm or in the village (no transport).

Page 26: Farm and Forest Biomass

-12

In a second phase, which would take matters much further, agriculture could make a positive net contribution to satisfying society's energy needs by producing energy biomass on a varying - but large - scale. This would require the intensive use of forests and underbrush and also the development and use of so-called energy crops (e.g., giant reed; short-rotation coppicing; euphorbia).

15· As things stand at present, biomass as a renewable energy source seems very promising. A great deal of research is now in hand to investigate its possibilities and limitations in detail.

It is certainly much too early for definite conclusions. The following chapters will deal briefly with the technical possibilities and the potential of biomass as an energy source, and with the socio-economic problems and political decision-making that such a strategy would entail, in particular for the European Community.

Page 27: Farm and Forest Biomass

- 13 -

Chapter 2

ENERGY BIOMASS DEFINITIONS AND CONVERSION ROUTES

A. DEFINITIONS AND TECHNIQUES

14· Definition - Biomass is all the organic, animal and vegetable matter, plus by-products, deriving from photosynthesis, the process by which plants take up carbon by means of the chlorophyll in their leaves.

15· General characteristics : Biomass is renewable but dispersed. The development of vegetable biomass is a function of temperature, light, water and nutrients. On the basis of these conditions certain regions of the world are better for biomass production than others. The "mass" is the dry matter produced per hectare per year, which may then be assessed in terms of tonnes of oil equivalent at the following rate :

2 500 kg of dry matter « 1 toe. This is a general equation which may be modified in certain cases (oil or wet substances, where account must be taken of the latent heat of evaporation).

16. Basic materials which constitute 'energy biomass' Agricultural wastes and residues Certain agricultural by-products form the first category of materials which are immediately available; these are : a) plant wastes : straw from cereals and oleaginous crops, maize stalks

and shucks, vine shoots, beet leaves and tops, and from wine-making, marcs etc;

b) by-products from livestock : manure and slurry from sheep, cattle and pig pens, poultry droppings, whey and abattoir wastes.

]7» Forestry wastes and residues a) existing brushwood, much of which is used little or not at all

(particularly in France and Italy); b) the products of thinning, which are not currently used commercially; c) wastes from forestry and wood-processing operations (saw mills;

structural timber; board manufacture).

Page 28: Farm and Forest Biomass

- H -18. Energy-producing crops

In addition to the recovery of these by-products, there are plans to grow crops which are intended not for feeding men or animals, nor for other sectors such as textiles, but for producing energy. Such crops must meet certain criteria with regard to feasibility and profitability : they must yield a substantial amount of dry matter per hectare, have low production costs, be easy to harvest - and their energy budget must be in substantial surplus.

The feasibility of growing certain crops for energy is being investigated in temperate zones; These are mainly brushwood with a short growth cycle likely to produce between 12 and 15 tonnes of dry matter per hectare per year. A plantation was established in Ireland in 1980 on former peat bogs. One or two particular plants might be attractive : bracken, gorse and broom, which are able to grow on poor soil and under adverse climatic conditions. Other plants which usually grow in tropical countries might be of some interest to European countries. The water hyacinth produces up to 150 t of dry matter/ha/year in a lagoon. Its ability to absorb pollutants (including metals) would give it a secondary role as an antipollutant in hot waste-water pools. Euphorbia (Euphorbia lathyrus and Euphorbia characias) grows on poor, dry soil and produces sap which is rich in latex with a composition similar to that of hydrocarbons. Certain plants are already being harvested for energy purposes : an experiment is under way in the South of Prance with the great reed, which yields an average of 15 tonnes dry matter/ha/year (l).

19* Other plants have several possible uses, for food, industry and energy : a) Plants which yield, either after hydrolysis or directly, a sugary juice

which can be fermented and turned into alcohol (which may be blended with petrol - up to 2Ω% admixture being possible even at present) : sugar beet, fodder beet, sweet sorghum, Jerusalem artichokes, maize, potatoes and fodder kale;

b) Oleaginous plants (colza, rape, sunflower, soya, flax etc.) might be considered since their products can fuel diesel engines.

Page 29: Farm and Forest Biomass

- 15 -

c) Catch crops : after an early harvest a new crop is sown for harvesting before the winter;

d) Biomass produced from seaweed and marine algae is being studied. Productivity is potentially very high : 80 tonnes of dry matter/ha/year.

20. Other products a) Organic waste from the agricultural and food industries : waste water

etc. ; b) Urban wastes (domestic refuse; effluent); one advantage is that they

are already collected.

B. THE TECHNICAL ROUTES FOR CONVERTING BIOMASS INTO USABLE ENERGY

21. There are currently two types of biomass conversion : biochemical routes and thermochemical routes.

I. Biochemical routes or biological conversion of biomass

Biochemical methods can be used to process wet biomass, so avoiding the necessity for drying (which would be expensive). The main products are : alcohol, methane and direct production of heat.

22. a) Ethanol production Various input materials may be used : potatoes, manioc, sugar beet, sugar cane, wood, wheat, maize and whey. The first stage of the process is to convert the cellulose, starch or sugars present in certain plants into sugary liquor.

This can be done by means of acid hydrolysis or biological hydrolysis or by aqueous extraction. The second stage is based on alcoholic fermentation of the sugary liquor, which produces the ethanol for distillation. Ethanol for use as an energy source must have an alcohol content of at least 95* if it is to be blended with petrol, and this presupposes several stages of distillation. But distillation, by present methods, requires a great deal of energy and one also counts the energy inputs for growing, storing and transporting the raw materials, the energy budget for this route is not attractive.

Page 30: Farm and Forest Biomass

- 16 -

PRODUCTION FROM AGRICULTURE OR FORESTRY

BIOMASS

STARCH

\

BIOLOGICAL OR ENZYMATIC HYDROLISIS 7

FERMENTATION

I FERMENTED LIQUOR

DISTILLATION

1 ANHYDROUS ALCOHOL

VLCOHOL FROM BIOMASS - GENERAL FLOW DIAGRAM

Page 31: Farm and Forest Biomass

- 17 -

There are, however, advantages to using ethanol as a liquid fuel : - being liquid, it is easy to store; - a mixture of 10-15$ with petrol requires only retuning of the engine; - it increases the octane number and could be used in oil refineries for this purpose and thus reduce the amount of energy required to produce the petrol itself;

- the by-products may be converted in their turn and used as animal feedingstuffs;

- it is non-polluting during combustion. However, this rosy picture does have its thorny side : - for a mixture of more than 20$ considerable engine modifications are required;

- the effluent from distillation is a pollutant; - research is still required to develop certain techniques, such as the enzymatic hydrolysis of cellulose;

- production costs are currently far greater (by a factor of between 1.5 and 2.5) than the cost of importing oil;

- the production of alcohol for use as an energy source is in competition with that of alcohol for human consumption.

However, it is interesting to note that synthetic ethanol produced by the petrochemical industry (from naphtha) has an energy budget which is even less favourable than beet ethanol and from the point of view of energy efficiency, seen in isolation, synthetic ethanol should cease to be used as a chemical feedstock. It is essential to improve the entire ethanol production process to make the operation profitable from the cost point of view and to make a rational decision possible.

23. b) Anaerobic digestion This is the conversion route for the production of methane. Using organic matter (animal excreta and industrial, agricultural, food and domestic waste) in an anaerobic environment and in the presence of water, the first stage is solubilization and hydrolysis followed by the formation of fatty acids by acid-forming bacteria. The action of methane-forming bacteria in the presence of heat generates methane. A gas is formed consisting of methane (60 to 70$) and carbon dioxide (30 to 40$), traces of hydrogen, and hydrogen sulphide. The calorific value of the methane is 9 500 kcal/Nm5.

Page 32: Farm and Forest Biomass

- 18

The main advantage of methanogenesis is that it permits a vide variety of waste to be used and promotes its recycling whilst acting as a purifier (slurry, waste water from the agri-food industry, etc.) since it reduces the chemical oxygen demand by approximately 50% and does not appear to reduce the fertilising capacity of the final effluent. The methane output may be used to produce heat with a burner, power with gas engines or electricity via an alternator, driven by a gas engine. The process may be continuous (a given proportion of the substrate is regularly topped up) or a batch process (all the material is introduced at once and emptied when digestion is completed; several digesters will be required if gas is to be produced on a regular basis). The difficulties with anaerobic digestion stem from the considerable investment required (new digesters to be designed and manufactured), the unimpressive energy budgets, because the digesters need to be heated, and the complex nature of the reactions involved in methanogenesis (further research needed).

24· Investment for the manufacture of digesters There are two approaches to this type of problem :

a) manufacturers' proposals for the design and manufacture of large automated digesters which are easy to use and need little handling. These digesters will be expensive and therefore only economic for large stock farms (80 livestock units or 1 000 pigs) because they keep down transport costs. They serve two purposes - purification and energy production;

b) a "craft" or "do-it-yourself" approach, with small digesters made by the farmers themselves in their spare time and suitable for medium-sized stock farms (30 livestock units) to provide extra energy to run the holding.

The point is an important one, since the latter kind of digester may be constructed for small, decentralised farms, whereas the former type is intended for large farms or centralised collection units. Both approaches are interesting and useful and the price might well be lower for digesters built in series.

Page 33: Farm and Forest Biomass

SES SISTEMI ENERGIA SUD ITALIA

1 Caule shed 2 Excretor collection pit 3 Charge pump 4 Heated digestor 5 Gas-holder

6 Electricity and heat generator 7 Domestic use of hot water and electricity 8 Use of hot water and electricity for a fodder drying installation 9 Storage of sludge and digested slurry

Page 34: Farm and Forest Biomass

- 20 -

25· The reactions involved in methanogenesis. Methanogenesis is a delicate reaction since it depends on achieving equilibrium between several bacteria. This equilibrium may be upset by over-acidity of the substrate (caused by the action of the acidogenic bacteria), by a drop in temperature (if the digester is filled too quickly or heating ceases), by a noticeable modification of the components of the substrate (animals treated with antibiotics; high copper content in pig feedingstuffs) or by the use of monensin (humensin) (a substance which prevents the formation of methanogenic bacteria during digestion in cattle). Given present knowledge and the technical performance of anaerobic digestion, it would appear that this conversion route must remain combined with purification functions if it is to be economically viable and also that there is a great deal of research still to be done to achieve lower break-even levels, particularly by dispensing with re-heating.

26. c) Aerobic decomposition Many farms have used and some still do, the heat given off by decomposition of the organic matter in their manure heaps, as with all compost. It may be produced equally well from manure heaps or sludge stored in an aerated tank before spreading or from brushwood crushed to make compost. It is possible to recover the heat by placing a water circulation coil in the substrate, although it should be borne in mind that the temperature will not exceed 50 to 60*C. Only a small amount of energy is produced and a considerable amount of waste must be collected. In addition to heat production, this method has the advantage of producing an organic improvement for good quality soils, or of preventing forest fires after undergrowth clearance - which is a considerable point in its favour, particularly in Mediterranean countries.

II. Thermo-chemical routes

27* Unlike biochemical conversion routes, thermochemical processes require dry material and are carried out at high temperatures. The substances produced by thermochemical methods differ according to the processes used, a) Combustion Combustion, the complete oxidation of a substance, has been used for centuries and remains an important source of energy, world-wide/after oil,

Page 35: Farm and Forest Biomass

- 21 -

coal, wood and other heating materials. Combustion is generally effected in a boiler to produce heat for industrial processes and in a stove for domestic heating purposes. Problems with using different types of biomass (wood, straw, etc.) arise from storage of the fuel and feeding it to the boilers. Studies are being carried out in several countries (Denmark, the Federal Republic of Germany and France) to make the process more convenient through automatic charging and multi-fuel operation) to reduce the volume of the fuel - i.e. to convert it, say into the readily stored form of pellets or slabs, and to develop boilers which will take these new materials. Other difficulties to be resolved are the release of smoke and fumes, and tar deposits.

28. b) Pyrolysie Pyrolysis is the decomposition of organic matter by heat (200 to 400*C) in the absence of air. It has been known for .a very long time from charcoal-burning and produces charcoal, a pyroligneous liquor (water, organic acids, resins, alcohol, etc.) and lean gas (l 000 to 2000 cal/Nm3). Charcoal has uses in chemistry, electrometallurgy and the iron and steel industry; the pyroligneous liquor is a raw material for the manufacture of resins (acetic acid, furfurol, etc.) and can be converted into fuel-oil (a mixture of charcoal and pyroligneous liquor). The gas can be burned to dry the wet organic material prior to pyrolysis. Research is being carried out to achieve total gasification (by flash pyrolysis for example ) which would improve the gas output and calorific value and avoid the production of tars. The liquor could be processed into plastics by polymerization, or into petrol or alcohol by hydration. In Europe pyrolysis is of interest principally to the chemicals and fine chemicals sector (the constituents of the pyroligneous liquors). Only a fairly small amount of energy is produced by combustion or gasification (see next section), which detracts from the usefulness of pyrolysis. Moreover, production costs are currently very high.

29* c) Gasification The gasification of raw organic matter or charcoal is carried out in a gaeifier where it is subjected to temperatures of the order of

* Flash pyrolysis is carried out at a very high temperature (lOOO'C) and in a very short time

Page 36: Farm and Forest Biomass

- 22 -

ETUDES DU CNEEMA - Feb. 1980 -No. 460

Pipe

. · . . . . . . . . .

· < · . > ■ · · · · ; , · . . ; · '

Vapour , Wood

/ Reaction zone

~^έ— Gas outled grid

Ash box

GOHIN-POULENC portable gas producer

■rrCE

en lit

15

I. •"V

/

:SrW

TJ-^t

νΛ

<£ >r

m

Additional air intake

H \

Ú Gas produced

DELACOTTE gas producer

I I Gas outlet

Reheating pockets

CNEEMA-PILLARD suspension ' ' gas producer

Hopper

Hearth

\ ' Principal f~~ L air inlet

Inverted flow gas producer - • ^ .

Page 37: Farm and Forest Biomass

- 25

800 to lOOO'C in the presence of a controlled amount of air or oxygen. Charcoal can be gasified in this way. Gasification produces a gaseous mixture ("producer gas") which can be used to fire a furnace to provide heat or to fuel an internal combustion engine to provide power. Finally it is possible to obtain from this gas, which contains carbon monoxide and hydrogen, a synthetic methanol which may be used as liquid fuel. The energy yield of gasification is usually between 70 and 80^; 1 kWh of processed matter is obtained per 900 g. There is a great variety of gas producers on the market which have already been proven industrially. The main advantage of using gas producers for biomass is that it is possible to decentralize the procedure to a large extent with small units. This technique would also appear to lend itself to application in isolated rural communities in developing countries. Moreover, gas producers (fitted to lorries) might solve the problem of lack of liquid fuel. But there are difficulties with gasification; for example, the process is often incomplete and the unconsumed mass arrests it; there is some risk of pollution due to fumes, carbon particles and tars. Gas producers take only fairly large pieces of material, which rules out waste such as sawdust*. To run profitably, a gas producer should not be too big and should be operated continuously. Existing gas producers need to be improved, and various research teams are working to achieve this; it is worth pointing out that they were widely used during the last World War.

30. d) Methanol production Methanol is an alcohol produced from gas. In France it is synthesised from natural gas but coal, oil and methane from biomass degradation or any biomass gasification are other possible sources.

Methanol arouses interest because - like ethanol - it can be used as a (liquid) motor fuel and obtained from any biomass and not only by alcoholic fermentation, which requires fermentable glucides. It can even be turned into petrol. The process itself would seem relatively inexpensive if it

* with the exception of the suspension gas producer.

Page 38: Farm and Forest Biomass

- 24 -

were not for the raw material - methanol is very expensive. Despite the problem of cost, research is being carried out on the process in the United States and New Zealand·

The factors which favour the production of methanol are as follows : - production from natural gas requires 0.88 toe per tonne of methanol yield. Current research is directed towards the gasification of wood with oxygen and appears to be well advanced. However, the production of methanol by gasification of wood requires only 0.23 toe per tonne of methanol (not counting the wood) whch is an immediate saving of 0.6 toe

2 per tonne of methanol produced;

- production sources are very varied : wood, algae or any lean gas; - engine efficiency is increased because of the higher octane number of methanol;

- like ethanol, methanol obviates lead pollution; - although it is corrosive, methanol could be used straightaway in a blend

(not more than 1.5% methanol).

The main technical difficulties for using methanol as liquid fuel arise because it is still necessary to : - design an industrial gas producer which will supply a gaseous mix suitable for methanol synthesis. Research projects in hand appear to be very close to success;

- modify engine intake systems to give a lower fuel/air ratio; - increase the compression ratio to take account of the higher octane number of methanol;

- reduce its toxicity; - increase the size of the fuel tanks; - solve cold-starting problems; - modify the alloys used for engine components to reduce the corrosive effect of methanol;

- set up an industrial infrastructure; in order to produce methanol/ high-capacity centralised units must be set up.

*· 1 tonne of methanol - 0.6 toe. 2 Speech by the Minister for Agriculture (France), October 1980.

Page 39: Farm and Forest Biomass

WOOD GASIFICATION AND METHANOL PRODUCTION

Methanol

Conveyor

o 2 -->

producer Gas

J U U U Ü Ü O O Ö ! Charcoal / ^ —

Q Pump

^

Cooling ! system

& =

Cooler

Catalytic leonversion '

Compression to 10 - 20 BARS

D | Pump

Source: EEC-DG XII - Prospectus Energy from Biomass 1980

Page 40: Farm and Forest Biomass

- 26

31. e) Hydoliquefaction or hydrocracking of cellulose Biomass can be converted into liquid hydrocarbons at high temperature and pressure in the presence of hydrogen or in a gaseous mix. Fuel oil is produced. The starting materials are wood and lignin, but this conversion route is only at the experimental stage and much research still needs to be carried out.

Rapid results of hydroliquefaction of wood

B S S 3 S X S S M

Procedure

Hydrogénation

Hydrogénation

Source

Wood

Lignin

B = a a m a : a = = = = s

Products

3% methanol 15% propanol 40% pulp

8% methanol 13% alcohol 23% hydrocarbons

32. In addition to the biochemical and thermochemical conversion routes, there is a route for oleaginous fruits which may be described as mechanochemical and consists in extracting the vegetable oils by pressing or by solvents, for later use in diesel engines. There are various plants from which oil may be extracted : ground-nuts, soya, colza, sunflower, olives, flax, mustard, jojoba, guayule, eucalyptus, etc. The oil can fuel diesel engines. The production method is well understood since it is currently used to obtain the edible oils. In general two processes are used : - extraction by pressing (by means of screw or hydraulic presses) usually used for olive oil;

- solvent extraction : a volatile inert liquid, which is a strong solvent of fats, is passed through the raw material, or an initial mix obtained by pressing, at temperatures below 100'C. The oil dissolved is separated off by distillation from the solvent, which is recycled.

There are various forms of equipment and numerous solvents on the market; they yield a maximum amount of high-grade oil. The residue from extraction is oil cake, which is rich in proteins and is being used in increasing quantities in Europe as animal fodder.

STERN, A.J.; HARIS, E.E. 1953 - the chemical processing of wood - New York; Chemical Publishing Company.

Page 41: Farm and Forest Biomass

- 27 -

It is worth pointing out that one hectare of colza produces approximately 2 tonnes of oil cake, 0.9 tonnes of oil (- 0.9 toe) and 3 tonnes of straw.

Many studies and experiments have been undertaken very recently on this crop : in Brazil, where the bus fleet should be using a mixture containing 16$ of vegetable oil by 1985; in South Africa, where numerous tests are being carried out to determine tractor performance; in the United States, where tests are being carried out on the performance of various mixtures; and in Austria, where certain studies indicate that engines are well-suited for running on vegetable oils (BPVA in Wieselburg).

The most obvious advantages of this conversion route are as follows : - the method for growing the crops is generally well known to the farmers

(particularly for colza and sunflower) and would not require any special training ;

- the plant varieties grow in a variety of climatic conditions in the north and south of Europe;

- certain oleaginous crops (soya and ground-nuts) promote nitrogen fixing and reduce the need for nitrogenous fertilizers;

- the by-products (oil cake) are an important complement to animal feedingstuffs (of which 85% is currently imported);

- finally, the extraction techniques are simple and established and the oil may be used in diesel engines without any significant modification; the oil is immediately usable as fuel and there is no need to create an extensive industrial infrastructure.

There are nevertheless some problems still to be solved :

- only engines with in-line injection pumps can cope with high vegetable oil contents;

- vegetable oils are more viscous than fuel oils and need to be "fluidized" (by mixing or heating);

- vegetable oil tends to form gums, to resinify and to produce carbon residues;

- as with the production of alcohol and most energy crops, the arable land required for cultivation of the crops proposed will have to be made available.

Page 42: Farm and Forest Biomass

- 28 -

34· The various conversion routes cited above are largely processes already in use - some of them have been in use for a considerable time - but some are only at the laboratory stage· Some of the equipments need to be developed and others improved. In addition, all the necessary equipment needs to be developed for harvesting, transporting and storing biomass, apart from that for oleaginous crops. Production of liquid fuel (methanol, fuel oil) appears to be one way to meet part of our energy requirements, particularly for automotive applications. Solution of the technical difficuties will partly determine the future of this avenue of development.

Page 43: Farm and Forest Biomass

Anaerobic digestion

¡Air

Agricultural resources

| Sun

J Photosynthes .

Forestry 1 resources

| Water

^ ' ' Aquatic 1 organisms

Biochemical conversion

! Aerobic , digestion

Alcoholic ι fermentation

Ethanol

Conversion

i, Nechanochemical conversion

Thermochemical conversion

Processes

Extraction Pressing j \ [Solvent .

Combustion

I Gasification I Pyrolisis Hydro-

; cracking

Charcoal ' ' I J~Pyroli-I geneous I I liquor

process

ι Lean gas Fuel

Catalytic synthesis

TECHNICAL ROUTES FOR BIOMASS CONVERSION | Methanol

Page 44: Farm and Forest Biomass

- 30 -

Chapter 3

ENERGY ANALYSIS - A NEW TOOL POR IMPROVED INTERPRETATION OP THE ALLOCATION OF A SCARCE RESOURCE

35· In the firat chapter energy analysis, or at least the tools of energy analysis - energy budget (balance) and yield - were used largely to illustrate the position of agriculture in relation to energy. It is no simple matter to apply energy analysis to a sector of activity and there is some confusion with regard to definition of the concepts used and their suitability for the calculations made. We shall therefore try in this chapter to clarify some of the definitions and the principal difficulties of energy analysis and then demonstrate its usefulness for calculating the potential of biomass.

A. GENERAL DEFINITIONS I. Definition of energy analysis

36. "Energy analysis is an attempt to evaluate the quantities of energy required, either directly or indirectly, to produce an article or a service" - G. Leach. Energy analysis is based on the assumption that it is possible to convert all the various forms of energy involved in production systems to one homogeneous unit. Energy forms are measured on a common scale either in joules or kilocalories.

II. Definition of the tools for energy analysis.

37· The energy budget is the calculated output (converted into energy units) less energy input (converted into energy units). This method makes it easier to evaluate quantities used and quantities produced (see Table l). Energy yield corresponds to the ratio between output and input (converted into energy units) for a given system. It shows the efficiency of a production system in relation to the energy flows (see Table 1). Yield » Qnergy equivalent of production - output

energy expended on production input

Page 45: Farm and Forest Biomass

­ 31 ­

Studies based on energy budgets or energy yield may refer to an entire production sector (energy budget for French agriculture in a particular "department" or region), to a specific crop (maize), to a holding or given type of holding or again to biomass conversion routes (anaerobic digestion).

Table 4 : Energy budget for some crops (toe/hectare) INRA Toulouse experiment

: Wheat : Maize : Soya : Lucerne : Bye­Grass i s i 8 i a i B 3 t i x s 8 i » s a > S 3 i i B i s s a a a s :

BIOMASS

BALANCE YIELD

Energy Produced Energy Consumed Difference P­C Efficiency*

: 4.5 : 0.59 : 3-9 . : 7.6

5.2 ■ 0.53

4-7 9-8

! 2.7 : : 0.30 : : 2.4 : : 9.0 :

RECOVERY: Energy recovered : Energy consumed

BALANCE : Difference R­C YIELD : Efficiency

: 2.2 : 0.59 : 1.6 : 3-7

2.6 0.53

: 2 .1 4-9

1.4 : 0.30 : 1.1 : 4.6 :

4.2 0.52 3-7 8.0 S a S 3 B » l

3-8 0.52 : 3-3 7-3

3-9 : 1.11

2.8 3-5

I S B S B B S B a

: 3-5 1.11 2.4 3.1

Efficiency ­ Energy produced or recovered = Y i e l d Energy consumed

W. Hutter, INRA, Toulouse at the CENECA symposium, February 1980 ­Agriculture and Energy.

III. Formalization of definitions

38. Any production process may be represented as the conversion of one set of components, ("inputs") into another set of components ("outputs").

Inputs LN ­?

Production Outputs

There are η input items, and each I. represents the quality of input item i. There are ρ output items, and each 0. represents the output quantity j. The input flow (Fl) and output flow (FO) may be calculated from these data by the formulae : Input flow : FI = K.I, + K2I2 + Κ I

1 1 2 2 η η Output flow : FO = C ^ + C2O2 + C 0 p

K. and C. represent the energy conversion factors assigned to the input items and output items to determine their energy value.

Page 46: Farm and Forest Biomass

­ 32 ­

Inputs which are consumed directly in agriculture are represented chiefly by the calorific value of fuels and the cosumption of energy such as electricity. Inputs which are consumed indirectly in agriculture are represented by the energy content of fertilizers, seeds, irrigation, the energy content of materials and human energy required by the work.

Using FO and FI the energy budget can be represented as follows : Β ­ FO ­ FI;.

Yield may be written : Y ­ FO

FE This representation of energy analysis may be applied to any production process. The problems arise from the difficulty of evaluating input and output and the energy conversion factors (which are difficult to assess because of variations with time and place and in the product itself).

39« The processes taken into account in the continuation of this study are : ­ agricultural production processes; ­ the process for converting agricultural waste and energy crops into fuel These may be represented as follows :

Agriculural Production

a) In agricultural production solar energy input is not generally taken into account, which explains why the yield is often greater than 1 under most conditions at present. The input items I, to I are usually set off against the output edible produce. The above diagram shows a balance between input and output; this balance may vary and we might in fact require a small amount of input for a considerable amount of output or vice versa; and there are many possibilities in between.

Page 47: Farm and Forest Biomass

­ 33 ­

Agricultural Production

In ò *Sp Itx It„

Food

Waste Conversion­) SR Fuel

Process Ss By­product

b) For the use of waste (normally discarded) as an energy source, products 0. to 0 from an agricultural production process and the actual input for the conversion process It, to It will be regarded as energy input for the conversion process. The following will be regarded as output : fuels 0_ produced and by­products 0g, if any, from the conversion process itself.

■"•n Im It

Production of Biomass

­JS Conversion Process

_^ SR Fuel

_)Ss By­product

c)For energy crops input is regarded as the I, to I required for the production of biomass and input I required for the conversion process. Output is regarded as the fuels 0_ produced and the by­products 0g, if any, from the conversion process itself. The product 0 becomes input to the conversion process and the nature of the product 0 (wood, algae, or whatever) will affect the yield from the process. The same is true for the previous process (the waste may be straw or vegetable tops or the like).

Although this has been expressed in simple terms a whole range of difficulties arise with regard to the methodology and conventions used in energy analysis. These are discussed below.

Page 48: Farm and Forest Biomass

- 34

Β. PROBLEMS

I. Calculation of input

40. (a) The forma of energy taken into account Ecologista have calculated the ecological yield of certain ecoayatema with the object of quantifying all the relatione and exchangee between living beings and their environment. The calculationa show the importance of solar radiation and of photosynthetically active radiation in a land or water environment. But these energy flows are never taken into account in the energy analysis of agricultural production. Despite the obvious importance of solar energy in living processes and in agriculture, it is not taken into account for energy analysis since it is neither a scarce nor an expensive resource. The main factors taken into account are typea of energy which preaent problema of exploration, extraction and transportation. This currently relates to coal, oil producta (petrol, gas oil, fuel oil), natural gaa and electricity, which are called "direct energy".

41· (b) Evaluation of human energy as an input to any production process Methode for the evaluation of the amount of work carried out by man in a given production proceas vary considerably. Symposia have been organized under the aegis of the IFIAS (international Federation of Inatitutes of Advanced Study) with a view to defining and elucidating the concepta of energy analysis. The advice given by IFIAS on this problem ia that human work should not be taken into account except non-industrialized or barely industrialized economies. This recommendation is in line with the approach of certain authors like G. Leach, D. Pimentel, A. Lepape, F. Bel and A. Mollard and is usually observed. Note : Measurement of human work is important for comparing an industrialized production system with a production system based on human work (cf. Table 1 in the first chapter).

42. (c) Calculation of energy flows The gross energy content of a raw material is defined by its net calorific value (NCV).

NCV - The quantity of heat recovered by complete combustion of a kilogramme of the raw material in question, disregarding the condensation of fumes, smoke, etc.

Page 49: Farm and Forest Biomass

- 55 -

In order to obtain a quantity of energy in usable form a series of energy input stages is required (exploration, extraction, transportation and processing). This is true of fossil energy sources and of recyclable energy sources.

It has therefore been proposed that these input factors should be worked out so as to define fuel energy cost as the total NCV of the energies required to prepare the fuel. In spite of this convention it is not uncommon to find as the energy equivalent just the NCV, or something in between. In the context of agriculture it appears that direct energy is generally very well accounted for, but that in the case of indirect energy it is difficult to know what has been included (intermediate products such as : fertilizers, weedkillers, pesticides ? average depreciation of the equipment used ? energy required for manufacturing the equipment used and, if so, the average depreciation of equipment ? human energy and, if so, how it is calculated ? feedingstuffs ? irrigation ? seeds ? etc). Such lack of precision makes the calculations somewhat less than reliable.

II. Calculation of output

43· (a) As pointed out in the first chapter of this study, traditional agricultural energy budgets show the energy contained in agricultural products as production outputs and their energy content is calculated from their calorific value on combustion or from their possible methabolizable energy (the difference between these two types of calculation is approximately 10/Q. This accounting technique masks the other aspects of agricultural products : their nutritional qualities, richness of composition, on the fact that they result from highly sophisticated processing. It is therefore difficult to reduce them to mere level of basic energy-vectors. It is because the exercise is particularly academic, and in order to make it easier, that energy equivalents for agricultural products are tolerated. See Table 5 which gives a series of energy equivalents for various products. It will be noticed that the coefficients vary from one author to another, depending on the calculation methods used.

Page 50: Farm and Forest Biomass

- 36

Where biomasa is used as an energy source the problem does not arise, in that the waste or even a given energy crop is of interest only for energy purposes : nutritional and other qualities are normally discounted.

44· (h) However, the greatest difficulty in calculating outputs arises from considering harvesting and processwastes as losses (see diagram 2 in the first chapter). Since agricultural waste represents a considerable proportion of the energy potential of biomass, this type of approach must be questioned. In view of the calculation methods used by most authors, new calculations were necessary to work out complete energy budgets for a given product.

(c) The polluting effects of waste are rarely assessed, although if they are used, or converted into energy, their adverse impact on the environment should be reduced and this should be estimated.

III. Common measuring standard

45· By convention, and in order to make calculations, it is necessary to reduce the various products and forms of energy to a homogeneous measuring unit. Using such a unit, it is possible to place a value on things which differ considerably in qualitative terms. The basic unit generally used is the calorie (1) or the joule (2). Other units of measurement are also of interest : the tonne of oil equivalent (toe), since it is very apt in the present context for showing the savings to be made. The measuring standard adopted in that case would be the calorific value of a tonne of oil. The tonne of coal equivalent (tee) is also used. Moreover, since the French and anglo-american systems differ, there is some point in keeping a conversion table permanently available to see what the figures would be in the unit one knows best or generally uses. A conversion table is given below.

(1) Calorie : the heat required to raise one gramme of water at atmospheric pressure from 14.5°C to 15.5'C.

(2) Joule : the work done by force of one newton moving through 1 metre; 1 calorie = 4·1855 joules.

Page 51: Farm and Forest Biomass

37

Table Ş : Equivalence of units - JR Mercier - Energie et agriculture La choix écologique - published by Debard, Paris, 1978

Calorie (cal)

Joule (J)

Kilowatt hour (kWh)

Tonne of coal equivalent (tee)

Tonne of oil equivalent (toe)

Brithis Thermal Unit (BTU)

cal

1

0.239

0.86xl06

6.7xl09

ìoio

252

Equivalent e.g. 1 J

4.1855

1

3.6xl06

28x10$

4·2χ1010

1,055

values as cross references joule - 0.239

kWh

1.163X10-6

0.278xl0-6

1

7,790

11,600

0.294x10-3

calories tee

0.150x10-9

0.360xlO-10

0.130x10-3

1

1.5

0.378x10-7

'toe

io-io

0.239X10-10

0.860x10-4

0.67

1

0.25x10-7

BTU

0.397xl0-2

0.948x10-3

3,400

26.6χ106

4x10?

1

* The calories in food are kilocalories (= 1 000 calories); the negative kilocalorie (French 'frigorie') is also equivalent to 1 kilocalorie.

** Different equivalents for a tee may be found; here we have assumed 1 tee ■ 2/3 toe. The prefixes to a unit denote a multiple or a fraction of the basic unit : micro - 10"6 - 1/1 000 000 kilo - 1θ3 - 1 000 giga - 10$ - 1 000 000 000

milli - 10-3 - 1/1 000 mega - 106 - 1 000 000 tera - 10 1 2 ■= 1 000 000 000 000

IV. Energy equivalence coefficients

46. In order to quantify energy inputs and outputs, it is first necessary to have a coefficient of calorific equivalence for goods or services as a working basis (this coefficient will correspond to the amount of energy required to produce one unit of a product). A series of comparisons of the value of the coefficients used by various authors revealed that they differ widely - sometimes by as much as a factor of 2. The differences are generally explained when the authors's methods are known. It is therefore important to have some idea of the analytical tools used by each author and to know their limits.

Page 52: Farm and Forest Biomass

- 38

Table 6 : Summary of the coefficients for estimating agricultural energy output

unit : 105 kcal/kilo

: Product

: Maize : Barley : Wheat : Potatoes : Sugar : Pulses : Cow's milk : Beef and veal : Pigmeat : Sheepmeat : Poultrymeat : Eggs

G. LEACH

3.10 3-35 0.76 3.90 -

0.65 2.4 3-94 3.1 1.4 1.6

R. CARILLON

4 4 4 0.9 0.64 4 0.6 1.8 3-3 1.8 1.6 0.096 (1)

US of

Department Agriculture

3·48 3-49 3.30 0.76 3-73

-

0.65 2.7 à 3·2 4.72 à 5-53 2.5 à 3.1 1.2 à 1.3

1.6

t t • • • • t • t • •

(l) per unit.

Sources : G. LEACH, "Energy and Food production", p. 100. R. CARILLON : Etudes du CNEEMA N" 404 p. 16 for crop products and N* 408 p. 59 for animal products.

USDA : Agr. Handbook, 1963, N* 8, Composition of foods. F. BEL - Y. Le PAPE - Α. MOLLARD - Analyse énergétique de la production agricole - INRA - Grenoble - 1978

V. Validity of energy analysis in time

47· As a general rule energy budgets are precisely dated, for a specified year or a short period, so that the effects of climate on production may be corrected (in the case of agriculture). These budgets therefore represent the results for a given moment in the development of methods or productivity levels for crops and stockbreeding.

Page 53: Farm and Forest Biomass

- 39 -

If we take as an example Table 2 in chapter I on the estimating (1972/73) and forecasting (1985/86) of commercial energy consumption for agricultural production in Western Europe, it is clear that the energy budgets for agriculture will differ sharply between 1972 and 1985» owing to the considerable increase in the amount of fossil fuels consumed. The same will apply to a cereal crop or a biomass conversion route. It is likely, of course, that agricultural production and the efficiency of conversion routes will improve in time as a result of technological progress, and energy analysis must take account of this for the purposes of calculation. Developments in the course of time will alter the energy equivalence coefficients, which at first sight appears complicated. One way out might be to use mathematical models. But before we propose sophisticated tools, we must first have reliable, representative statistics.

48. We have tried in the foregoing to show the many possible factors and variables used or ignored by the proponents of energy analysis. Nevertheless, despite this range of variables, energy analysis for agriculture can be correctly carried out in accordance with the tools mentioned at the beginning of this chapter (the concept of budget and yield). The most troublesome factor is still how to estimate indirect energy and define its components. Any study on the subject would therefore need to define its framework for analysis and explain the relevance of each of the variables. For follow-up to our work it is essential to take account of waste and losses in production systems and, since wastes are likely to become a considerable source of energy in the future, we think it of paramount importance that they should be accounted for, be it on a crop, a regional or a production-system basis. This would give a far more detailed picture of the potential of wastes in countries like ours.

Page 54: Farm and Forest Biomass

- 40 -

C ENERGY ANALYSIS OP WASTE AND ENERGY CROPS

49. As shown by the model set out in the first part of this chapter, the energy required to produce waste is regarded as nil. When the waste is collected a series of input items are defined depending on the conversion routes. For an energy crop on the other hand, input accounting begin with the provision of energy inputs for production. But once "output" is obtained, wastes and energy crops for conversion may be accounted for by identical methods. Taking the ratio :

γ m NCV of the fuel produced NCV of the raw material used

for these two types of energy matter, as often done, Y is the overall yield of the conversion process. The energy budget, or the yield from waste and energy crops, will, of course, be calculated as described above. The net yield for both types may be expressed as follows :

50. Yield from waste :

Output . NCV of the fuel produced Input NCV of the raw material used

+ direct energy for collection, transport and storage + direct energy for the conversion process + indirect energy (in equipment and buildings)

Yield from energy crops : Output . NCV of the fuel produced Input NCV of the raw material used

+ direct energy for collection, transport and storage + direct energy required for the conversion process + indirect energy contained in materials + indirect energy required for cultivation methods.

Page 55: Farm and Forest Biomass

- 41 -

PROCESS AND YIELD FLOW SCHEME FOR ETHANOL PRODUCTION FROM VARIOUS RAW MATERIALS

Cellulosic materials

100

15*50

Starch products (high moisture

content)

100

Hydrolis is

10M2

Starch products (low moisture

content)

100

Mis

Sugars

100

Fermentation

' Í 30

i¿

5f7 15r20 IO7I2

Distillation

A427

1

Af6

i ¿ Ethanol

13^18

C

« 1 1

G. Pellizzi - New and recyclable energy sources in agriculture - for the FAO, June 1980

Page 56: Farm and Forest Biomass

42

51. Aspects of importance include comparison of the energy yield processes for different crops or types of waste according to their ability to produce greater or lesser quantities of fuel (sugar beet or maize; straw or waste wood ). The table on page 41 shows the process and yield flow schemes for ethanol production from raw materials. It may be seen that different products produce different amounts of fuel by the same conversion route. This might favour the selection of one energy crop rather than another, but it is only one factor in the selection process; account must also be taken of agricultural, soil, climatic, economic and social conditions which favour a product in a given region, and of crop yields per hectare. All yield calculations must also include the following information : - whether the yields are for crops in open fields; - whether they are experimental yields; and - whether the yields relate to full-scale production.

52. As shown in the diagram (page 43) setting out the production and conversion routes for waste and for energy crops, conversion routes require a direct energy input for their operation (heat for the digester in the case of anaerobic digestion; fuel for heating the distillation column for the production of ethanol; etc.). The following table is a good illustration of how energy budgets differ with differences in the level of direct energy input. It may be seen that the overall energy budget can be improved by varying the direct energy source used.

53« - A further factor which should not be forgotten is the indirect energy which goes into the equipment and buildings needed for conversion processes (digesters, gasproducers, etc.). This is generally either overlooked or not specified. Once the fuel has been made it can be used by being converted into power (for stationary or mobile applications, heat or electricity. Thus it will do work, though not without heat losses, since the thermodynamic efficiency of an engine or boiler is always less than 100 %.

Page 57: Farm and Forest Biomass

- 4i -

"PRODUCTION AND CONVERSION ROUTES FOR WASTE AND ENERGY CROPS

Food production

Input

^ Agricultural ^-production

Industry e

Waste

Input

Conversion Ì route A

Conversion route Β

J*

Conversion route C

Waste from conversion

» u^_.4 . Processing tor another sector

© = Direct energy input required for the process " r

Page 58: Farm and Forest Biomass

44

Energy budgets for alcohol production

Energy Input source _i _i

Crop distillation toe ha year or process agricul­ industry

ture

Use

Blending normal compression

idem

idem

idem

kg of petrol equiva­

lent

0.6(1)

0.6 0.6 0.6

Output ­1

toe ha ­1

year

1.7

1.7 2.0 2.0

Production: ­1

: toe ha :

­1 s

year :

+ 0.3 :

ι ·

♦ 1.3 :

­ 0.6 :

♦ 1.0 :

Sugar cane (Brazil) fuel oil

2.t Sugar : cane : (Brazil) bagasse s

4.

5.

6.

Beet

Beet

fuel oil

straw

0.4

0.4

1.0

1.0

1.0

Beet solar (l£ of surface area) 1.0

1.6

0.6(2) idem 0.6 Short rotation poplars poplars (5) poplars 0.2

Blending normal compression 0.45

2.0

3­2

+ 0.4

+ 3.0

(1) 1 hectolitre of ethanol » 0.05 toe on an NCV basis. (2) A thermodynamic solar facility produces the amount of energy required to construct

it in 4 years. It is assumed that it could operate for 10 years.

(5) Production of methanol by total gasification of wood followed by catalytic synthesis; yield is 15 tonnes/ha/year of dry material.

Ph. Cartier ­ in "Futuribles" ­ January 1980, p. 26.

54« Finally, as with agricultural production, where in the main the edible substances were quantified and waste and losses ignored, the by­products of certain conversion routes should be taken into account. These are : the final effluents from anaerobic digestion, which produce a compost; and molasses and vegetable waste from the alcohol route, which can be converted into animal feed. These are rarely taken into account although they may improve the energy budget for a particular route or detract from it (distillery effluent).

At the end of the capter a number of energy budgets and yields which illustrate the subjects studied will be given as examples.

Page 59: Farm and Forest Biomass

- 45 -

55· In conclusion, it can be said that the resulta of energy analysis provide a measure of the efficiency of a production system which is completely independent of the influence of monetary flows or market situations. The results also make it possible to establish temporal and spatial comparisons between production systems (cf. Table 1, Chapter I) and to produce forecasts based on technological trends. Energy analysis is a new tool which needs to be refined. It could throw new light on certain factors which have not received much attention so far : distinction between premium energy sources, with a high calorific value, and energy with a low calorific value, for example. We have tried to set out here those aspects most representative of the complex nature of this tool and of the field in which we wish to apply it. It is important to remember that the results of energy analysis are not an end in themselves and that they must be complemented by economic and ecological analyses.

Page 60: Farm and Forest Biomass

- 4 6 -

ENERGY BUDGET (BALANCE) OF THE SOLID FUEL CONVERSION ROUTE

Giant reed

20 tonnes of giant reed (dry matter)

Crop input 0.7 toe

Replaces 8 tonnes of heavy fuel oil or domestic fuel oil

Extra cost in use 0.8 toe

_ Crude oil saved: 8.8 toe

""* Balance: 7.3 toe ha"1 year"1 -~

Ph. CHARTIER, INRA-VERSAILLES 1980

Page 61: Farm and Forest Biomass

Yield, t/ha

Dry matter, t

Potential energy yield, toe/ha/year

OVERALL YIELD OF SOME ROUTES FOR THE ENERGY USE OF BIOMASS

Straw I

4 .

Short | rotation forestry

20

10

Γ J' Combustion L 3 ,^T1 +

X Gasification

\

9000 mJ

low energy gas (CO, H2) | 1 toe/ha ι

0.9 toe/ha 'j

Final energy yield

) Grain

5 5 Beet

4 0

3.2

Fermentation

^ 1? Mt» 210ÕT ethanol

30000 m3 20001 j low energy , ethanol

gas ' 1 toe/ha | (CO.H2) I 3.2 toe/ha \ 1 toe/ha

approxi- ' mately ■

40001 ethanol 2 toe/ha

Cattle slurry Pig slurry

1 tonne of organic matter

200 m' i méthane >

1 mVLU/day , 0.17 toe/ha ,

500 mJ

méthane 1.5 mVLU/day

0.42 toe/ha

Waste from the \ 1 food industry \

I

300 m' méthane

0.25 toe/ha

Source: OCDE - Meeting of experts, Paris, 19-22 May 1980, on the agri-foodstuffs industry and the energy problem.

Page 62: Farm and Forest Biomass

- 48 -

Chapter 4 BIOMASS - A POTENTIAL ENERGY SOURCE FOR EUROPE ?

A. FARM AND FOREST WASTE

I. Availability of waste

56. Figures given for the energy potential of biomass are sometimes highly impressive. For even if the yield of photosynthesis is very low (between 0.4 and 0.8$ for most plants over one year), a considerable amount of solar energy is fixed by plants each year by this process. Worldwide it is nearly ten times the amount of fossil energy consumed now each year.

However, biomass is often highly dispersed and, with present harvesting techniques, difficult to tap. In addition, the plant matter which is readily available is not only used to supply energy. Man uses it to satisfy a large number of essential needs such as food, shelter, clothing, furniture and many chemical and pharmaceutical products.

57« In European Community countries, biomass is for the most part cultivated for non-energy purposes, in particular for foodstuffs and for forest and industrial products. To begin with, therefore, analyses of biomass availability must concentrate on the wastes or residues from the production of these.

Table 8 gives a general idea of the amount of wastes theoretically available from the main sectors of agricultural and forestry output in the Member States, Spain and Portugal. Calculations were based on (a) FAO statistics for agricultural production in 1978 (except for forestry by-products, where Community and national statistics have been used) and (b) a number of assumptions derived from the results of other research) regarding the ratio of products to waste. Obviously the figures can only be approximations of what is theoretically available.

Page 63: Farm and Forest Biomass

Table 7 - Main agricultural and forestry wastes and by-products in Community countries. Spain and Porgual

Plant wastes

: Wheat- : Maize : type : & : cereals: sorgh-: and : urn : rice :

Belgium & Luxembourg Denmark France Federal Sep. of Germany Crocce Ireland Italy Netherlands U.K. EUR-10 Portugal Spain BUR-12

2.0 6.8

32.0

21.0 3,* l.S 9.0 1.2

IS.3 92.2 0.4 12.2

t 104.8

0.1

19.7

1.2 1.1

12.2

34.3 0.9 4.4 39.6

Beet Pota­toes

Sun- : Vego- : Tines, flower : tables : fruit and and : trees,

colza s to- : olive : bacco : trees

Animal wastes (excreta) Forestry by-products

Cattle Pigs

Millions of tonnes/year

3.S 2.1

15.0

13.0 2.1 1.0 7.7 4.4 4.S 53.3 0.1 5.8

59.2

0.6 1.0 7.5

10.5 0.9 1.1 2.9 6.2 7.1

38.8 1.2* 5.3

45.3

0.4 2.9

1.3

0.3 0.1 0.6 5.6 0.1 2.5 8.2

0.5 0.1 2.2

0.5 2.3

5.3 0.7 1.8 13.4 0.9 3.4 17.7

Poultry Sheep &

goats

: : :: ::

Wast· from :

cultlng: & pro- : ceasing:

Thinning & coppi­cing wood

: 0.1 : : - : : 4.4 :

: 0.6 : 1.1 : : 5.7 : 0.1 : 0.1 : 12.1 : 1.2

5.8 ï 19.1

29.6 30.0 220.0

145.0 9.1 55.0 88.0 49.0

! 123.0 : 748.7 : 10.1

39.8 : 798.6

8.0 : 12.8 : 18.8 :

: s : 34.2 : : 1.5 : : 16.5 : : 15.0 :

14.6 : :· 12.4 : : 133.8 : 3.6 : 14.7 : 152.1

1.1 0.5 4.8

3.1 0.1 0.3 4.2 1.6 3.4 19.1 0.6 1.9

21.6

0.1

7.2

0.7 7.1 1.8 5.4 0.5

17.0 39.6 2.4 9.8 52.0

1.1 0.8 6.1

6.4 0.4 0.1 2.2 1.0 4.2

22.3 1.3 3.2

26.8

0.5

10.1

1.1 0.2 4.1

0.8 16.8 (a)

(a) EUR-9

Source Sources : A)

B>

C)

Pelizzl C. In collaboration with the National Research Council (CNR). Italy, and the Institute of Rural Engineering of the University of Milan : Survey for FA0 "New and renewable energies in agriculture". Rome 1980. Annex 4. General Technology Systems Ltd. Survey for the Commission of the European Communities (EEC) : »The distribution of biomass opportunities In the European regions", 2nd report, 1981. Chartier. Ph. : Survey for the EEC : »Possibilité de valorisation énergétique de la biomasse dans la CE". 1980. Anne« 4.

Page 64: Farm and Forest Biomass

- 50

58. However, some of this biomass is practically impossible to recover because it is too dispersed or too difficult of access. The cost of gathering it in money and time would be prohibitive. As for plant wastes, with the increasing mechanization of harvesting over the last thirty years, the simultaneous recovery of waste has come to be increasingly disregarded. It is usually left where it lies and would have to be gathered afterwards. But this can present great problems at harvest time, when the agricultural work schedule is usually very heavy. Animal excreta are more easily collected when the animals are housed. The task is practically impossible when the animals are out of doors for all or part of the year as sheep, particularly, tend to be.

Some of the other wastes included in Table 7, although actually accessible, are used for alternative (non-energy) purposes : ploughing into the soil as an organic soil improver; use as fodder and litter, or for the manufacture of paper and composition panels; for chemical uses, etc.

The extent of "losses" due to inaccessibility or alternative use of wastes remains for the moment, in the absence of more accurate information, a matter for speculation. Figures advanced are hypothetical and vary according to the type of farming and the conservatism of authors : between 20 and 60^ for plant wastes and between 30 and 70% for animal excreta (discouting sheep and goat droppings, which are rarely taken into consideration).

However, even on the assumption that on average only half of the wastes theoretically available are in fact recoverable, considerable surpluses of farm and forestry wastes could be used for energy purposes in the Community.

59· It should be added, to avoid any misinterpretation of Table 7, that the amounts of the various wastes are the weights "at harvesting". Each by-product contains a certain amount of moisture which can vary with soil and climatic conditions in the Community. The gross energy content of a by-product, its net calorific value, is determined per unit of dry matter. For most of the by-products in Table 7 one kilogramme of dry matter has about the calorific value of 0.30 to 0.48 kilogrammes of oil, depening on the (oil)product.

Page 65: Farm and Forest Biomass

- 51

The gross energy content of the dry matter in wastes still has to he converted into usable energy (heat, gas, alcohol, etc.)ι and some of it is "lost" in the process. The conversion yield is therefore less than 100JÉ, and varies considerably (from 30 to 80^) from one conversion route to another, and also within the same process according to the technique and raw materials used.

Additional energy inputs are necessary for - gathering and pre-processing; - the construction of conversion facilities, and - making certain conversion processes work (e.g., heat for anaerobic

digestion, gasification or pyrolysis).

This energy input may come from fossil fuels, but the biomass itself could provide some of it, especially heat. For example, it has been estimated that 40% of the biogas produced by anaerobic digestion of damp plant waste and animal excreta would be sufficient to heat the digester.

II. The energy potential of waste

60. Though incomplete, our brief survey shows clearly that any estimate of the energy potential of farm and forestry wastes in Europe must for the moment bè based on a number of assumptions concerning the amount of waste theoretically available, its accessibility, its use for other purposes and its conversion into usable energy. These assumptions can vary from one author to another according to the degree of optimism with which he views the possibilities, without this making them implausible. When they are brought together in one analysis there can be an accumulation of errors in the final result, and this is often the reason for the divergence between various authors' estimates.

To give some idea of the amount of energy which could be obtained in the European Community by making maximum use of farm and forestry wastes, three recent estimates have been set side by side in Table 8. The figures are approximate. It should be pointed out straightaway that the first estimate has quite a different purpose form the other two. Its authors confined themselves to working out the gross energy content of the main

Page 66: Farm and Forest Biomass

Table 8 : Energy potential of the main forms of farm and forestry waites in the Community, Spain and Portugal

Plant : wastes : Total

Plant wastes

Animal waatea

Animal : Forestry wastes : by­

: products Forestry : by­ Total products :

Millions of toe Millions of toe

Plant : Animal : Forestry wastes : wastes : by—

: : products

Millions of toe

: Total t <b>

: Belgium & : Luxembourg : Denmark : France : Federal Hep

of Germany : Greece : Ireland : Italy : Netherlands : U.K. : SUK ­ 10 : Portugal : Spain î BUR ­ 12 : Source

: : :: : : :: .:: :: : : : : : : :: : : : < i i

t s

Π

1.2 2.7

20.0

9.1 1.7 0.7 8.4 1.0 8.9

33.7 0.7 8.S

62.9 !

! 1.7 1.8

11.3

: 11.0 O.S 2.8 4.6 2.6 6.4

42.7 0.6 2.7

46.0

: s

:

: t

B

0.4 0.3 2.2

2.3 ­

­

0.8 0.1 l.S 7.6 0.5 1.2 9.3

* '·

I

: ι i

i

s

3.3 4.8

33. S

22.4 2.2 3.S

13.8 3.7

16.8 104.0

1.8 12.4

118.2

s : :: :: :: :: s : :: :: : : :: : s

? : : :

0.1 : 1.1 : S.l :

t

2.6 : :

­ s 1.9 : 0.1 1.2 :

12.1(a):

O.S O.S 3.7 :

2.4

0.6 : 1.2 : 0.6 2.0 :

11.5(a):

0.6 0.1 7.3

3.2

3.1 0.1 O.S

14.9(a)

C

I !

1.2 : ! 1.7 : : 16.1 :

8.2 :

0.6 6.2 : 0.8 : 3.7 :

38.9(a) :

: i 0.4

0.8 : 6.3

: 3.0 : 0.7 : 0.2 : 3.0

0.4 2.0 ·

16.8 : 0.2 i ! .2.3 : 19.3

0.3 ■ 0.2

l.S

1.0 0.1 0.4 0.6 0.4 0.9 S.4 0.1 0.4 5.9

A

: : !

: : :

0.7 1.0 7.8

4.0 0.8 0.8 3.6 0.8 2.9

22.2 0.3 2.7

25.2

:

: : : :

52

Sources : As Table 1 (a) EUR­9 (b) Plant and animal wastes only. (B) Gross energy content of the main forma of waste theoretically available. (C) Gross energy content of main dry wastes (straw, wood) which are readily accessible. (A) Amount of energy recoverable by burning readily accessible dry mattor.

Energy content of biogas produced by conversion of accessible damp wastes; 40% of gas being deducted for heating the digester.

Page 67: Farm and Forest Biomass

- 53 -

forms of waste theoretically available, and take neither the accessibility problem nor conversion losses into account. This limits the number of assumptions needed for the estimate reduces and the risk of cumulative error. The drawback is, of course, that the stated amount of energy could never actually be obtained. However, it can be roughly estimated that about a third of waste is actually recoverable and that another third is lost during conversion, which makes the figures comparable with those of the other two estimates.

61. The other two estimates endeavour to determine the energy which could be obtained from wastes which are actually recoverable, after converting them (at least partially) into usable energy (heat or biogas). The differences can be explained firstly by the fact that different statistical sources have been used, and secondly by the fact that calculations have been based on different assumptions.

For example, estimate C includes the energy contribution of straw used as litter in the energy potential of animal wastes, whereas estimate A does not. This contribution is estimated at about 5·7 million toe/year for the Community as a whole (50 million tonnes of straw, mixed with excreta and converted to biogas). On the other hand, estimate A gives a higher figure for the amount of recoverable plant waste than estimate C. Lastly, forestry by-products have not been taken into account in estimate A. Estimate B considers only the main forms of wood production and processing waste (the quantity theoretically available), while C also includes thinning and coppicing wood but attempts to determine the amount actually recoverable.

62. To sum up, according to the estimates given in Table 8, some 30-35 million toe could be obtained each year by recovering and using farm and forestry waste in the Community, which would represent about 2.5 to 2.8$ of the Community's energy needs forecast for 1985 (1237 million toe). These figures, which appear to be a fairly plausible approximation of what could be achieved, are final ones, after subtracting the 40$ of the biogas produced from wet animal and plant wastes which is used to heat the digester. On the other hand, they do not take into account the energy needed to collect and sometimes preprocess wastes and to build conversion facilities.

Page 68: Farm and Forest Biomass

- 54 -

Β. ENERGY CROPS

I. Energy crops : various scenarios

63· If it is difficult to determine the energy potential of farm and forestry wastes, the potential production of energy from energy crops is even more hypothetical. Several scenarios for Europe have been prepared. Two of them are given in Table 9 by way of illustration. Neither sees much change in present farming techniques or agricultural land use. However, there would be more intensive farming of arable land (catch-cropping), the partial use of abandoned land and a reduction of 5 to 10$ in the area currenlty used for farming.

In both cases, a large proportion of the energy crops would be catch crops. Since land is relatively scarce in Europe, such crops can provide a viable solution. In Europe, the most favourable conditions for catch crops occur after the summer grain harvest, firstly because the area under cereals is very large and secondly because the harvest is normally finished before the end of August. Other crops which leave enough time for catch crops after their harvest are colza and some vegetables (early vegetables, peas and beans). For this reason the scenarios in Table 9 estimate the area available for catch crops in each country as the area used for cereals, colza and 50$ of vegetables. The total area for the Community is some 28.5 million hectares.

64· When energy crops are grown as main, rather than catch, crops part of the available land has to be allocated to their production. This could be done partly by taking over land at present used for agricultural production, which would cause competition for land use. For this reason both scenarios make conservative assumptions about the reallocation of agricultural land. The agricultural area used is only reduced by 8.6 million hectares in Scenario A, and 7 million hectares in Scenario B. The latter also proposes bringing 9 million hectares of marginal land into use; the former proposes only half as much.

Page 69: Farm and Forest Biomass

Table 9

­ 55 ­

Potential energy production from energy crops in various scenarios for the Community.

Scenario A Catch crops are grown on 2.86 million hectares, and 4«3 million hectares of agricultural land are used for energy crops grown as main crops. In addition, a 25% reduction in permanent grass land is proposed for France, Germany, Italy, Ireland and the U.K. (8.6 million ha). This is based on the Commission's structural proposals of 1966/68 (Mansholt Plan) which suggested that 5 million ha should be reallocated in the Community of Six. This figure matches the reallocation proposed here for Germany, Prance and Italy.

Scenario Β Catch crops are grown as in Scenario A, but only 40% of the potential can actually be realized for energy crops each year. This restriction takes into account areas not under crops (because of summer drought, and/or overloaded crop schedules) and other uses of biomass (animal feed, humus, etc.). In addition, an 8^ reduction in utilized agricultural area between now and the year 2000 is envisaged in order to free land now producing surpluses (assumptions : constant per­capita consumption; population of 280 million in 2000; 1^ increase in land productivity annually; self­sufficiency without surpluses in 2000). Lastly, 40^ of the marginal land at present unused would be brought into cultivation. In the plan as a whole, it would be possible to mobilize 15 million ha, with 7 million of them used for energy crops and the remainder for extending the productive forest area (7 million ha of timber woods to reduce the Community's timber deficit) and the non­agricultural area (+ 2 million ha).

Results

: Belgium & : : Luxembourg : : Denmark : : France : : Federal Rep. : : of Germany : : Greece : : Ireland : : Italy : : Netherlands : : U.K. : : EUR­10 :

: Scenario : Catch : crops

Main crops

A : ! Total : » 9

• : Millions of toe :

: 0.7 : 2.3 : 15.2

: 7.4 : 2.0 : 7.3 : 0.5 : 0.6 : 4.4 : 40.4

• !

29.8

5­2 ­

4.8 9.8 5.0 ­

64.4

: 0.7 : : 2.7 : : 45.0 :

! 12.6 : : 2.0 :

12.1 : ! 10.3 : : 5­6 : : 4.4 :

104­8 :

: Catch : crops

Scenario Main crops

Β : ! Total :

: Millions of toe :

: 0.3 : 0.5 : 3­4

: 1.6

: 1.6 : 0.1 : 0.1 : 1.0 : 8.6(a)

­

0.5 12.7

1.9 3­4

: 2.4 ­

7­2 28.1(a)

. 0.3 : : 1.0 : ! 16.1 :

3­5 :

5 : Ì 2.5 :

0.1 : . 8.2 : 36.7(a) :

Sources : (A) White, L.P./Plaskett, L.P. Low, J.B., (General Technologies Systems Ltd) : Survey for the Commission of the European Communities (CEC) : "Overview of opportunities for energy from biomass in the European Communities", 1st report, 1979·

(B) Chartier, Ph. : Survey for the CEC : "Possibilités de valorisation énergétique de la biomass dans la CE", 1980.

(a) EUR­9.

Page 70: Farm and Forest Biomass

- 56 -

Energy crops may be crops which are already grown but which would then be grown exclusively for energy purposes or quite different crops unconnected with human nutrition. Crops may be annual or perennial. The latter would seem to have certain advantages : they are easy to grow. A fairly well-known example of a perennial energy crop is the giant reed (Armido donax).

65· With Scenarios A and Β it would be possible to produce between 36 and 105 million toe from energy crops by the year 2000. In view of the differing assumptions used by the authors, however, Scenario Β appears the more realistic. The potential given (36 million toe would satisfy about 3$ of the Community's forecast energy needs for 1985 (and probably about 2.5$ in the year 2000).

Though the figures quoted are a plausible estimate of what could be achieved, they do not take into account the energy needed to plant, maintain and harvest the energy crops. On the other hand, at least part of the energy needed to convert wet biomass into biogas has been deducted (40$ of gas production is allocated to digester heating in Scenario B). The net contribution from biomass would thus be lower than the figures suggest. When all wastes and energy crops are taken together it may be cautiously predicted that agriculture could contribute 4-5$ of the Community's total needs by the year 2000. However, this potential is not spread evenly among the Member States. A little over 40$ would be produced by Prance, and about 15$ each by the U.K., Germany and Italy.

II. Energy crops as potential sources of liquid motor fuels

66. (a) Ethanol Table 9 does not deal with the possibility of and potential for producing alcohol (ethanol) from sugar beet, maize or other cereals. The authors do not consider that such production would be viable in Europe, either in economic or energy terms. However, the idea is often aired in current discussions on the subject of a renewable source of liquid-fuel production

Page 71: Farm and Forest Biomass

- 57 -

in the Community. This would entail replacing up to 10$ of petrol with ethanol. A blend of this kind would improve the quality of fuel, in particular its anti-knock properties and would thus enable its lead content to be reduced - and pollution with it.

For these reasons it may be worth considering how large an agricultural area should be set aside for the production of sugar beet in Europe in order to achieve this aim. The gross energy yield of a hectare of sugar beet, after conversion to alcohol, is 2-2.5 toe/year. Petrol consumption in the Community in 1980 was an estimated 120 million toe. To replace 10$ of that would require 4*8 to 6 million hectares producing sugar beet, i.e., about three times as much land as at present - or about 10$ of all arable land. And this would put disproportionate pressure on land use because sugar beet needs fertile soil. In addition, all the energy needed for production, maintenance, harvesting an processing would have to be found elsewhere. On the other hand, a great deal of energy is also used in the production of petrol (extraction, transport and processing of crude oil).

Under Scenario Β in Table 9, 8% of arable land would be re-allocated to energy production. Ethanol from sugar beet could replace between 6 and 8%

of the petrol consumed in 1990 and would therefore be perfectly feasible in this scenario. Two by-products would arise : beet cops which could be anaerobically digested to produce biogas, or used as feed; and digestion residues, which would make a very good high-protein feedingstuff.

67· (b) Vegetable oils Another possible renewable source of liquid fuel in the Community would be the production of vegetable oils, especially colza oil, which could replace (technically at least) a large proportion of diesel fuel.

Colza is less demanding than sugar beet as regards soil quality. To extract the oil is relatively simple (the methods are fully developed) and as produced it can be used for fuel diesel engines without creating great

Page 72: Farm and Forest Biomass

- 58 -

problems of engine adjustment or of pollution. In addition, the extraction residues would provide a very good quality feed (colza oilcake) and the green waste (leaves, etc.) could be recovered for the production of biogas by anaerobic digestion.

One hectare of colza at present produces on average about 0.9 tonnes of oil, 2 tonnes of oilcake and 3 tonnes of green waste. Early experiments show that the oil could replace diesel fuel in a ration of about 1 to 1. If 20JÍ of the diesel fuel now used in the Community (about 38 million tonnes in 1979) were to be replaced, an area of some 8 million hectares would have to be set aside for this crop, i.e., 18^ of the arable land or 9% of the agricultural land now in use in the Community. If this strategy were followed, the whole of the present utilized agricultural area which would be diverted to energy production under Scenario B of Table 9 would have to be used to grow colza.

However, the Community at present suffers from a deficit of vegetable oil; about three-quarters of its annual consumption has to be imported. If self-sufficiency in a food crop were to be considered a priority before that crop could be used for energy purposes, about 1.5 million hectares would first have to be set aside for the production of vegetable oils for human consumption.

68. (c) Methanol In the longer term, other ways of producing liquid fuel from biomass might also be considered. The main solution would be the use of cellulose (straw, wood, etc.) to produce either ethanol (by hydrolysis fermentation and distillation) or methanol (by gasification and catalysis). The latter system would seem the more likely to be economically viable in future, if all the technical problems can be overcome (large-scale methanol production, engine adjustment). To begin with, methanol - like ethanol -would be used in engines, in 5-10/6 mixtures with petrol.

Farm and forestry wastes would provide part of the raw material for the production of methanol. For larger quantities, however, energy crops would have to be grown, which would entail re-afforestation. It has been

Page 73: Farm and Forest Biomass

- 59 -

estimated that there are at present 5 million hectares of fallow land which could be re-afforested without any risk of competition with agriculture. However, the Community is far from self-sufficient in timber, and it is probable that competition between energy production and other uses would be fierce.

The possibilities of developing short-rotation forests especially for energy production (heat, gas, methanol, charcoal, electiricity) are currently being examined in most Community countries. With the exception of Ireland, however, plana are still at the research and pre-development stage. Trials have produced as much as 15 tonnes of dry matter per hectare/year with rotations of 5-8 years, though on small areas of fairly rich soil. In practice, with large production units and varied soils, a mean annual production of 9-10 tonnes would probably be more realistic. This would correspond to a gross energy value of about 4 toe per hectare/year, or, after conversion, to about 2.8 toe in the form of methanol.

C. CONCLUSIONS

69· To sum up, farm and forestry biomass represents a modest but not inconsiderable energy potential in the European Community. According to certain scenarios the use of biomass could meet some 4-5% of energy needs in the Community by the year 2000, without requiring radical changes in either farming methods or land use.

As the word "potential" indicates, the estimates and scenarios in this chapter can only provide approximate figures for what would be possible under certain conditions. The extent to which this potential is exploited will mainly depend, if "dictatorial" solutions are ruled out, on the decisions taken by those who own the biomass. Their decisions will be guided by their present (economic and other) interests, their assessment of the prospects of a "biomass strategy" and their economic horizon. A whole range of factors - social, economic and political - come into play here.

Page 74: Farm and Forest Biomass

- 60 -

Chapter 5

USE OP BIOMASS - SOME SOCIO-ECONOMIC CONSIDERATIONS

A. PROFITABILITY

70· The socio-economic analysis of biomass use is at the present stage even more complicated than its energy analysis. It will only be possible here to raise a few important and characteristic aspects. The use of biomass for energy production is still for the most part experimental. As with any new activity, it is very difficult at present to forecast production and distribution costs, the shape of the relevant markets and what relations will develop with other markets, both for raw materials and for end products. In addition, a comprehensive analysis cannot be confined to the micro-economic level. It must also take into account the social effects of the use of biomass on the continuity of energy supplies, the cost of living, employment and the environment.

The cost of producing energy from biomass in the future depends on factors which cannot easily be predicted, such as : - developments in conversion technology;

the development of new energy crops; - the cost of the factors of production needed to produce, collect and

process biomass; the economies of scale possible with new harvesting machinery and conversion plant;

- the cost of competing forms of energy and fossil fuels in particular; - the availability and cost of the biomass itself.

I. The investment needed

71. Newly-harvested biomass is relatively bulky, sometimes highly perishable, and in general has a fairly low energy density. This explains why its use should normally be decentralized and why it needs more labour and more complex conversion systems than traditional fuels (domestic fuel, oil, diesel fuel, natural gas) which potential users accustomed to at present.

Page 75: Farm and Forest Biomass

- 61 -

There are therefore likely to be two main obstacles, at the micro-economic level, to the rapid and widespread adoption of this new technology. The use of biomass will be less convenient and will generally require higher investment for the storage of raw materials (straw, wood, etc.)» for their conversion into energy and for the removal and possible processing of conversion residues (ash, juice, unprocessed organic matter). In addition, conversion apparatus, to provide the same level of comfort as conventional facilities, will cost more, mainly owing to the cost of automation equipment.

Thus, for domestic heating, a straw-burning stove which is manually stoked costs roughly the same as an oil-fired stove, but an automatic stove will cost 4 or 5 times as much : the feed system alone costs 3 or 4 times more than the actual stove. However, such a stove would be a paying proposition in the long term in places where the amount of straw harvested was enough to provide year-round heating, as long as the cost of storage was low (3-4 tonnes of straw being needed to replace 1 tonne of oil). The operation becomes much less profitable where straw-burning can only be used to supplement traditional heating.

72. The same reasoning is valid for the production of biogas by anaerobic digestion of animal excreta. A system of this kind for 100 to 200 dairy cows requires, at the moment, an investment per cow roughly equivalent to that needed for the cowshed and milking parlour. The cost of energy conversion can vary widely according to the length of time each year for which the system is in use and the depreciation period. If the use of manure at a farm is to be profitable, the size of the farm will be a fairly important limiting factor. It is estimated that, under present conditions, an anaerobic digestion system becomes profitable when fuelled by 80 to 100 cattle, 1 000 pigs or 10 000 chickens, especially if heating and electricity needs are high. Below this level, the smaller the farm, the less worth-while it is to use such a system.

Page 76: Farm and Forest Biomass

- 62 -

Host agricultural holdings engaged, in stock-raising in the Community are too small for investment in fermentation plant to pay (l). In these cases the problem might be solved by a centralized fermentation plant in a "neighbourhood centre", serving, for example, the producers in one village. This would seem to be particularly appropriate in regions with a high density of livestock (minimizing transport costs) and a large proportion of small and medium-sized holdings.

In addition to benefits in economic and energy terms, the production of biogas in these cases would undoubtedly bring environmental benefits. The production and spreading of large quantities of manure in regions where there is high-density stockraising and where land availability is limited, can create considerable pollution problems. In certain cases, large holdings in which stock is raised intensively are already equipped with waste-treatment systems to prevent or reduce the risk of pollution. At present treatment usually consists of aerobic digestion with various filtering and drying systems, which produces an effluent which is much less dense and can be spread with much less danger of pollution.

It would even now be worthwhile for these holdings to include an anaerobic-digestion stage in the treatment system so as to reduce the polluting capacity of the waste and produce energy in the form of biogas. Such "pre-processing" would facilitate, where appropriate, the subsequent processing phases (aerobic digestion of wastes, filtering and drying) and would supply direct energy for the whole processing operation. Spreading would then be much less likely to cause pollution, but the fertilizing capacity of the waste would be undiminished. If its composition was suitable, it might even be transformed later into marketable compost.

II. Collection and transport costs

73· The relatively high capital cost of biomass conversion would seem to indicate that operations should be centralized in order to achieve

(1) If these threshold levels are applied to the results of the Community's 1975 farm structure survey anaerobic digestion of wastes for the production of biogas would only be economically viable in some 270 000 farms or about 6% of all farms with a stock-raising enterprise.

Page 77: Farm and Forest Biomass

- 63 -

economies of scale. However, the advantages of centralization are often more than counterbalanced by a second very important economic factor : the cost of collection and transport. In view of this the distance between the source and the user is crucial if biomass is to be used profitably, which points to decentralization as the better option.

In this context, an example which has been studied particularly thoroughly is straw. Where the cost of the actual collection is concerned, it is difficult to make a general judgment, as it varies widely from one holding to another, depending among other things on the equipment used, the size of the harvest and the availability of manpower.

If straw also has to be transported, costs increase rapidly with the size of the area covered. Where collection is systematic and the straw is moved to a processing plant, economies of scale due to the size of the plant may compensate to some extent for the cost of transport. It appears, however, that above a distance of 20 to 30 km the operation is no longer economic.

74. Where animal wastes are concerned, the scope for collection is mainly determined by housing practices. These still vary widely in the Community, from 100^ indoor housing throughout the year (highly intensive stockraising) to extensive stockraising or something which animals spend a large part of the year on pasture. Only the first case (highly intensive stockraising or something approaching it) makes collection of wastes for energy purposes economically viable (on condition that the operation is on a sufficiently large scale). In extensive stockraising the collection of wastes is only feasible during periods of indoor housing; the shorter this period, the less economically worth-wile any digestion plant is likely to be. This example demonstrates the complexity of such an analysis. Intensive stockraising with permanent indoor housing produces dense deposits which are easy to recover and hence cheap to collect and transport. But would it be appropriate to encourage intensive stockraising, which ties up large amounts of capital and is known to be a heavy energy consumer, in order to facilitate the recycling of wastes into renewable energy ? There are as yet insufficient data available to enable a decision to be taken one way or another.

Page 78: Farm and Forest Biomass

- 64 -

III. The cost of producing energy crops

75« In the case of energy crops, the cost of planting and maintenance must be added to the cost of harvesting, transport and conversion. The break-even level of fossil-fuel prices is therefore higher for energy crops than for agricultural wastes. Hence, certain well-known crops already used for food production in Europe could also serve as an energy source, but still could not compete with traditional (fossil) fuels. For example, the production of one litre of ethanol from sugar beet would today cost 1.5 to 2.5 times more than the production of one litre of petrol from oil. Even the transformation of petroleum by-products into synthetic alcohol, while providing a much lower energy value, would still cost less than the production of agricultural alcohol.

Experiments are being carried out on other crops which would be used mainly for energy purposes. They are characterized by having a high yield of dry matter and/or being easy to grow. It is not yet possible to judge whether these crops would be economically viable or not. One exception is the giant-reed (Arundo donax). It is grown on a very large scale on a pilot farm in the south of France and has proved to be economic.

A direct comparison between the production costs of energy obtained from biomass with those of fossil fuels is of limited interest, since these costs change fairly rapidly. It is possible that the continuously rising price of oil would bring it up to the level at which the extensive use of biomass for energy would become viable. But though this argument is plausible, it should not be forgotten that a continuing increase in oil prices would also have repercussions on the cost of producing and processing biomass. The greater these repercussions, the later will the break-even level for biomass be reached.

Page 79: Farm and Forest Biomass

- 65 -

Β. COMPETITION FOR LAND USE

I. The problem

76. It is not possible to discuss the large-scale cultivation of energy crops without at least briefly examining a number of other matters of fundamental importance : competition for biomass between energy and non-energy uses; competition for land use; the interdependence of markets; agricultural restructuring and the risk of soil deterioration.

The use for energy of agricultural and forestry wastes has little impact on food or forestry production. But the situation changes when energy crops are grown on a large scale.

Firstly, a number of vegetables such as beet, potatoes and cereals can be used both for food and for energy production. For these products, therefore, as for wood, there is competition between different end uses.

Secondly, there are "pure" energy crops - those not intended to be used as food. These, with dual purpose crops and wood, will be competing for land use with all other food crops.

From the producer's point of view the key economic criterion governing his choice of a crop is whether the profit from energy crops is higher than, or at least equal to, that from using the land for a food crop. In other words, his choice will be determined by the profitability of energy crops compared with the most profitable alternative.

II. Marginal land and fertile land

77· For marginal land, which may be abandoned, the production of food crops is not usually a sufficiently profitable alternative. The use of such land for energy crops could therefore be a viable proposition for the farmer, on condition, of course, that it brought him a profit. But marginal land is often low-yielding and difficult to work and sometimes easily damaged.

Page 80: Farm and Forest Biomass

- 66

The intensive production of energy cropa on ¡Land of this kind would lead fairly rapidly to falling yield and soil deterioration. The increased use of fertilizer would probably restore productivity but might bring about further soil deterioration.

In order to use marginal land, a farmer would thus need to choose crops that were easy to grow and had a sufficiently high dry-matter yield to make them profitable to grow.

In the long term (20 or 30 years) another alternative could become economically worthwhile, on at least some marginal land : conventional re-afforestation. The Community is increasingly short of wood, and it is likely that world timber prices will rise appreciably in the next twenty years, especially if present suppliers to the Community should themselves carry out ambitious biomass energy programmes based on their own production of wood.

On good quality land, however, food crops are almost always a much more attractive proposition. The need to obtain as high a return from the land as would come from a food crop would therefore be a major economic obstacle to its being used for energy crops. Given the prices now obtainable for food products, and also the fact that energy accounts for only a small percentage of the total costs of agriculture, it is improbable that market forces would encourage a changeover of production to energy crops.

III. The interdependence of markets

78. In view of the number of possible uses of biomass and the competition for the use of land, a relatively complex system of interdependent markets would develop. If, for example, a large area of land were set aside for energy crops in the Community (or in certain regions of it), the price of food products would probably be affected. This would then have repercussions on the profitability of energy crops and hence on the cost of biomass. If matters went to extremes, variations in food product prices could make the area devoted to energy crops vary considerably from year to year. This would cause fluctuations in the supply of bio-energy or food

Page 81: Farm and Forest Biomass

- 67 -

products to consumers. Such a situation could be avoided or mitigated to some extent by organizing the biomass market on stable lines, e.g. by means of long-term supply contracts. In other cases, the solution would be to accumulate sufficiently large reserves or switch to alternative types of energy. Such precautions would also be needed to offset the effects of bad harvests.

C TWO SECONDARY EFFECTS : EMPLOYMENT AND THE ENVIRONMENT

I. Repercussions on employment

79· A detailed analysis of the social effects of the use of biomass for energy is not yet available. An argument sometimes used in favour of biomass strategy is that it would create jobs. Can the "biomass alternative" in fact be considered as a factor which would reduce unemployment ?

In most cases, the increased use of biomass for energy would certainly require more manpower than fossil fuels. The development of new equipment, the construction of plant and the dissemination of new techniques would hardly be possible without the creation of new jobs. These, or most of them, would have to be filled by highly qualified personnel and would not necessarily be based in rural areas.

On the other hand, the harvesting (or collection) of biomass and its processing would for the most part be carried out in a decentralized way in rural areas. Waste recovery and the replacement of food crops by energy crops would have relatively little effect on employment. The use of biomass at the farm itself would, in certain regions, reduce existing agricultural underemployment. In other regions, however, the systematic production of biomass would conflict with an already overloaded agricultural work schedule and the employment of additional manpower would not be economic. Lastly, the setting-up of small or medium-sized processing centres would probably create few new jobs.

Page 82: Farm and Forest Biomass

- 68 -

The utilization of marginal land (for planting suitable energy crops or re-afforestation) and more systematic forest management would very probably provide new jobs, though such work is often arduous and can be relatively dangerous.

80. Job creation would be highly desirable for rural areas, which are now suffering badly from underemployment. However, it would create problems for the profitability of a biomass strategy, which would feel the effects of rising wages more than fossil fuels; and wages have increased more rapidly over the past ten years than the cost of any other factor of production. This partly explains why there has been a trend towards mechanization or automation for harvesting and processing biomass. In addition, the rational, large-scale production of energy crops would necessitate, at least in certain regions, fairly sweeping changes in agricultural structures, in particular the creation of large production units and massive investment in rural infrastructure. Mechanization and restructuring would probably have an adverse effect on employment, while development of the rural infrastructure could have a beneficial effect.

II. Advantages and disadvantages for the environment

81. The question of the ecological impact of the large-scale use of biomass for energy must also be examined. Once again, it is only possible here to consider a few basic aspects.

The probable decentralization of energy production from biomass, resulting from transport costs, will create ecological problems different from those caused by fossil fuels. Owing to the small size and dispersed siting of most of the facilities pollution problems will be less serious for each processing unit, but units will be much more numerous : pollution will be less intense but more widespread. The advantage of this will be that emissions and conversion residues will be more easily assimilated by the environment. Anaerobic digestion of animal excreta will even partly purify the material during conversion.

Page 83: Farm and Forest Biomass

69 -

However, with decentralization there is the difficulty of ensuring that a large number of facilities are properly operated. Poor management of conversion processes and their effluents by a large number of bio-energy producers, either through ignorance or to cut costs, may create many sources of pollution.

With energy crops the environmental effects will depend on the type of soil, the crops and the intensiveness of the operation. The use of marginal land, for example, could be both economically viable (at least under certain conditions) and environmentally desirable, since it brings land back into cultivation. If both these aims are to be achieved, however, great care must be taken in the choice of crops and the use of fertilizer and pesticides. It is often possible to increase short-term profitability at the expense of the long-term ecological balance (soil deterioration, water pollution). There is a great risk that profitability will outweigh everything else at the micro-economic level.

D. THE NEED POR A POLITICAL CHOICE

I. Allocation of resources

82. As the socio-economic analysis shows, the market still provides little incentive for the systematic production of biomass for energy needs. The inter-relationships of market prices provide a system of indicators which guide producers and consumers in their economic decision-making. But this system has a number of weaknesses which may interfere fairly seriously with the optimum allocation of resources : - Prices are influenced by a large number of economic, social,

institutional and political factors which often represent opposing interests and aims. For this reason, the relative prices of factors of production and end products are not always an accurate reflection of economic scarcity. Hence it is possible for a scarce, non-renewable resource still to be used to increase the production of a commodity which is already in surplus.

Page 84: Farm and Forest Biomass

- 70 -

- Market prices often fail to reflect the external effects (beneficial or adverse) of production or processing, especially effects on the environment. For this reason micro-economic decisions as a whole do not necessarily lead to an allocation of resources which is the optimum for society.

- Prices often imply a tendency to overvalue present-day needs compared with the needs of future generations. The long-term benefits or costs of an economic choice are thus overlooked or underestimated, which makes a long-run optimum allocation of resources impossible.

83· Misallocations of resources may reach such a level of severity that political intervention becomes necessary to avoid aberraut developments which would lead to serious adjustment problems. Interventions could take two main forms : - Clarification of possible future options and formulation of a coherent

energy strategy. Such a policy - and political - statement would provide useful guidelines for decision-making by economic agents.

- Neutralizing of the harmful effects of today's market forces in order to encourage economic agents to follow the strategy laid down. Economic incentives could be negative (e.g., increased taxes on fossil fuels; discouragement of surplus food crop production by means of a co-responsibility system operating above a specified production level), or positive (e.g., investment grants for the conversion of waste into energy; guaranteeing sales of energy crops by means of long-term contract; reducing the relative price of bio-energy through tax relief).

II. Facing the energy crisis

84· The current energy criais can be combated in many ways. It is generally recognized that considerable energy savings could still be made in all sectors. In agriculture, for example, it has been estimated that energy consumption could be cut by 10-20JÍ. But in a sector where energy accounts for only 10-12^ of total production costs, savings of 1C# would only

Page 85: Farm and Forest Biomass

- 71 -

decrease total costs by about 1%. This would not necessarily be a sufficient incentive for the investment needed to achieve these savings.

In other sectors, and even in certain branches of agriculture (e.g. crops grown under glass), the situation is quite different; energy costs are a much larger fraction of total production costs and savings would be much more worth-while. It would thus be important to identify the priority sectors or sub-sectors and develop "tailored" strategies for each. Where investment will only be profitable in the very long term, carefully calculated aid could be granted in some cases to shorten the payback period and thus make the exercise more attractive to the investor.

85· Saving energy is just one solution to the problem. Fossil fuels can also be replaced by nuclear energy, solar energy, wind power, hydraulic power, geothermal energy, etc. Its potential contribution to meeting the Community's energy needs would be modest, but not inconsiderable (about 3%

by the year 2000). As with the other alternatives, its development would require fairly substantial investment. Since only limited funds are available for the purpose, a political decision would be necessary to determine to what extent one solution should be implemented rather than another.

III. Biomass in the context of the common agricultural policy (CAP)

86. A decision on the use of biomass for energy coincides with a more general discussion of reform of the CAP. A crucial point in this discussion is the systematic production of surpluses of certain food products. It may therefore be asked whether a "biomass energy" strategy might not be the solution to three problems at once : surplus production, rural employment and energy.

It is self-evident that converting surplus food production into energy cannot be justified in either energy or economic terms. On the other hand,

Page 86: Farm and Forest Biomass

- 72 -

the partial transfer of land now producing surpluses to alternative uses might be well worth investigating as a solution for the future. There are three possible uses for such land :

- Agricultural (feedingstuffs in particular). This would require increased protection against cheap imports of feedingstuffs and would entail either more expenditure on the CAP or higher prices for milk and meat products.

- Energy crops on a large scale. This is viable in energy terms but does not yet appear to be an economic proposition in most cases. This situation might, however, improve in future. Generous aids would be needed, at least during a transitional period, for production and processing. These aids could be regarded as "security premiums" for energy supply, though it should not be forgotten that the amount of energy provided would give only partial security, being quite inadequate on its own.

- Re-afforestation. This would be a very long-term (20-30 year) undertaking aimed at remedying the Community's increasing timber deficit. It would become economically viable if the price of imported timber were to increase considerably between now and the year 2000. A number of assumptions can be made which favour such a course, but it too would require substantial aids.

These three uses are not mutually exclusive. It would be possible, even necessary, to combine them in order to make optimum use of available land and meet pressing demands. In addition, the products obtained would often answer two purposes : some energy crops can also be used for animal feed and forestry by-products are an excellent source of bio-energy.

Page 87: Farm and Forest Biomass

- 73 -

87· To repeat what has been said several times in this chapter, the ideas set out here are only a starting point for a more detailed examination of the matter and for a wider-ranging discussion of the various possibilities. This report can in no way take the place of an overall policy assessment which should lead to a coherent programme for the future.

Page 88: Farm and Forest Biomass
Page 89: Farm and Forest Biomass

INTERNATIONAL BIBLIOGRAPHY ON ENERGY-GENERATING USERS OF BIOMASS OF AGRICULTURAL ORIGIN

This international, bibliography on energy-generating users of biomass of agricultural origin was compiled thanks to close cooperation between the various directorates-general of the Commission of the European Communities.

In fact it was due to the information tools supplied by Directorate-General XIII (Information market and Innovation) that the Directorate-General for Agriculture was able to carry out this study.

The working method was as follows: the "Centre for agricultural publishing and documentation" (PUDOC - Wageningen - Netherlands) acted as an interface between our needs as user and the various data bases in Europe and the United States by assembling all the available information within a specific field.

The competent departments within the Directorate-General for Agriculture began by working out the search strategy for the subject/ and accompanied it by its research environment.

Specialists at the "Centre for agricultural publishing and documentation" were responsible for the final formula of the search strategy and for extracting the references from the data bases. The data bases queried were:

AGREP (Permanent Inventory of Agricultural Research Projects in the European Community;

AGRICOLA (National Agricultural Library - U.S.A.); AGRIS (International information system for the agricultural

sciences and technology - F.A.O.); BIOSIS PREVIEWS (Biosciences Information Service - U.S.A.); CAB ABSTRACTS (Commonwealth Agricultural Bureaux - United Kingdom); CHEMICAL ABSTRACTS (Chemical Abstracts Service - U.S.A.); ENERGYLINE (Environment Information Center Inc. U.S.A.); ENVIROLINE (Environment Information Center U.S.A.); PASCAL (Informascience:CNRS - France); RESEDA (Network of socio-economic documentation for agriculture

France). We made inquiries to Ministries of Agriculture and documentation centres representative of the Member States of the Community with a view to assembling much of the European literature on the subject. The information produced by this inquiry was added to the information collected from the data bases.

Page 90: Farm and Forest Biomass

II

Extensive sorting was then needed in order to obtain a non-redundant product which was immediately accessible to the final user.

The aim of this bibliography is to provide access, by means of a simple, fast search, to comprehensive information on all fields relating to energy-generating users of biomass at international level. Our main preoccupation was to be throughly comprehensive. During our investigations we did, however, come across a series of studies already existing in the field and we tried to make our work complementary to these. For this reason any scientist, technician or researcher using the bibliography sould also be aware of the relevant information systems and studies which already exist:

the excellent bibliography by B.A. Stout and C.A.Myers "Energy for agriculture a computerized information retrieval system" December 1979. United States Department of Agriculture (2613 titles dating from 1973 to May 1979);

also "Solar energy and non fossil fuel research: a directory of projects related to agriculture, 1976-1979". Miscellaneous Publication 1378. United States Department of Agriculture;

and, lastly, the data bank of the International Energy Agency: Biomass conversion, Technical Information Service, housed at the National Board for Sciences and Technology in Dublin.

Our work is original in that it attempts to gather European information whilst keeping it in the international context of studies completed and still in progress, and it deals with the recent past (1975-80).

We have also tried to construct a manageable working instrument (1300 references arranged according to a classification sheme and accessible through several indexes; subject index, geographical index, author index), and hence it has been necessary to make a selection from the mass of information consulted.

The multidisciplinary nature of the field covered and the heterogeneity of sources has resulted in the final product being both multilingual (German, English, French, Italian, Dutch, etc.) and variable in its presentation of references.

Presentation and contents differ greatly as between structured summaries from computerized data bases, references gleaned during a search and data supplied by official authorities. This was not however our prime consideration, as we were essentially concerned with rapid access to information and creating a medium which a large number of potential users could easily employ.

Page 91: Farm and Forest Biomass

The work has therefore retained the multiplicity of characteristics we encountered and the user would have quite a task trying to standardize the pieces of information! (This confirms among other things the great need for international norms which would enable recorded data to be presented in a standardized form).

We hope that this work will promote the flow of information on the subject.

Page 92: Farm and Forest Biomass

IV

CLASSIFICATION SCHEME

- Generality - Research and development - Biomass potential

I Energy production using biomass - general studies

1.1. vegetable by products - general studies 1.1.1. straw 1.2. animal waste products - general studies or those covering

different animal excrement 1.2.1. cattle 1.2.2. pigs 1.3. forestry and forestry by products - general studies 1.3.1. forestry exploitation - residual products 1.3.2. wood-processing industry-residual products

II Energy crops

2.1 Energy crops - general studies or those covering several species 2.1.1. sugar or starch - based cultures 2.1.2. sugar beet 2.1.3. sugar cane 2.1.4. short rotation forestry 2.1.5. reeds - Arundo donax 2.1.6. euphorbia 2.1.7. water hyacirth 2.2. marine energy cultures 2.2.1. algae 2.2.2. micro algae

III Waste materials

3.1. wastes - general studies or those covering several types of waste 3.2. agricultural wastes 3.3. agro-industrial wastes 3.4. domestic wastes.

IV Technics using biomass, its collection and transport.

4.1. General studies, those covering several types 4.2. bioconversion

Page 93: Farm and Forest Biomass

4.2.1. hydrolysis and alcoholic fermentations 4.2.2. anaerobic digestion 4.2.3. aerobic fermentation 4.3. thermochemical conversion 4.3.1. general studies 4.3.2. pyrolysis 4.3.3. combustion 4.3.4. gasification

Biomass products - carburants and fuels.

5.1. General studies or those covering several products 5.2. 5.3. 5.4. 5.5. 5.6

methanol alcohol, ethanol gasohol methane fuels

VI Economic/ socialogical, political difficulties.

6.1. Political or sociological obstacles to competition for land use 6.2. economic analysis of prospects 6.3. environmental impacts 6.4. biomass and the developing countries.

Page 94: Farm and Forest Biomass
Page 95: Farm and Forest Biomass

BIBLIOGRAPHY

GENERALITY 1 SOLAR WORLD FORUM International SoLar Energy Society, Congress and exhibition 23-28 August 1981 UK - the Brighton Centre 2 NEW WAYS TO SAVE ENERGY Proceedings of the International Seminar organized by the Commission of the European Communities, held in Brussels, 21-25 October 1979, edited by A.S. STRUB and H. EHRINGER, Commission of the European Communities, Brussels, Q. REIDEL Publishing Company, 1980, XVI + 1252 pp., Cloth Dfl. 135,-/US S 71.05 ISBN 90-277-1078-3 3 INTERNATIONALES SYMPOSIUM Thema : Energieproduzent Land- und Forstwirtschaft vom 15. bis 17. Oktober 1979 in Reichenau an der Rax, Niederösterreich, SCHEIBER, E. editor, OSTERREICHISCHE GESELLSCHAFT FOR LAND- UND FORSTWIRTSCHAFTSPOLITIK, 1980, 190 p. 4 LES JOURNEES DU COMITE SCIENTIFIQUE "SOLS ET DECHETS SOLIDES" (Orléans, 15-16-17 mars 1977) - RESULTATS DE RECHERCHES 1973-1976, Collection Recherche Environnement, N° 11, éditée par la Mission des Etudes et de la Recherche du Ministère de l'Environnement et du Cadre de Vie, diffusée par la Docu­mentation Française, 29-31 Quai Voltaire, 75340 Paris Cedex 07, 30 cm, 528 p., nb. fig., et tabi. Après une ébauche de schéma général des aspects physiques des relations sols-déchets solides, sont présentées des études-recherches concernant huit thèmes: - produits pétroliers : leur évolution en lysimétrie, devenir des hydrocar­bures et biodégradation des déchets hydrocarbonés dans les sols, essais de biodégradation des boues residuai res de raffinerie par épandage sur terre arable;

- hauts polymères : modalités-résultats de la photodégradation des polymères VAN LEER, effets sur les plantes supérieures et sur les poumons, effets d'ingestion sur rats et cobayes;

- valorisation des déchets : perspectives d'utilisation de pâtes mécanochimi-ques dp sciure de pin maritime pour la fabrication de papiers, emballages et cartons, recherche de techniques de tri de mélanges simples de déchets résultant de collecte sélective ou de procédés de fabrication, évaluation des risques de nuisances liés à la mise en décharge des mâchefers produits par les usines d'incinération de déchets, utilisation dans l'industrie du caoutchouc de Lignines issues de liqueurs noires de papeterie;

- psycho-socio-économie des déchets solides : système de représentation, attitudes des industries, utilisation des modèles de prix pour évaluer le coût des nuisances engendrées par les unités de traitement de déchets strtides, souci des déchets lors des conception-fabrication des produits comportements à leur égard et leurs facteurs déterminants, déchets liés à l'alimentaire;

- boues résiduaires : caractérisation des boues en amont de leur incorpora­tion au sol, évolution du mélange boues + sol, incidences ' sur les végé­taux; * composts : processus de dégradation biologique des déchets broyés, physiocttffmie de leur évolution et conséquences sur l'environnement, méthode de détermination de I'adenosine tri-phosphate, utilisation des résidus urbains et des boues de traitement des eaux comme amendements organiques et effets sur les nematodes, compostage conjoint d'ordures ménagères et de boues d'épuration, compost d'ordures ménagères comme support de cultures maraîchères, risques de phytotoxicité dus au bore, valorisation des déchets

Page 96: Farm and Forest Biomass

­ 2 ­

organiques par lombrici ens, physico­chimie du cadmium dans les sols, transformation des déchets de sucrerie dans le sol; ­ lisiers : épandage du lisier de porc et incidences sur sols eaux et plantes, comparaison tech­nico­économique d'élevages sans et sur paille, origine de l'odeur et désodorisation du lisier de porc, valorisation par action de champignons flamenteux, bilan de trois ans de relations sols limoneux­lisier de porc; ­ divers : aspects cinétiques de la fermentation anaérobie, programme national de recherche­développement sur l'économie des déchets et des matières premières secondaires. Analyse dans BI.CNEEMA N° 265 février 1980. 5 RAPPORT DE STAGE DE 3EME ANNEE ET MEMOIRE DE RECHERCHE = La Biomasse ­les nouvelles voies d'exploitation au sein de petites unités et leurs perspectives économiques et sociales. AMAT C. mémoire HEC ­ 1980 ­ 145 p. + Annexes. 6 THOUROUDE (D.), CNEEMA, "L'AGRICULTURE SOURCE D'ENERGIE DE DEMAIN AVEC LA VALORISATION DE LA BIOMASSE", Bulletin d'information du CNEEMA N° 265 ­ février 1980 ­ pp. 33­36. 7 LUCAS (S.), L'ENERGIE SOLAIRE EN AGRICULTURE, Bull. d'Information du CNEEMA, mars­avril 1980, pp. 19­20. 8 HEALY (S.), LA BIOMASSE, RESSOURCE PREVISIBLE EN ENERGIE DE L'IRLANDE " Bord na Mona, Dublin 2, Colloque International CENECA, Paris, 27, 28, 29 février 1980, pp. 521. 9 CHARTIER (P.) MERIAUX (S.), LA BIOMASSE, La Recherche, n° 113, 1980, Paris 10 BOYELDIEU (S.), LA PHOTOSYNTHESE, L'AGRICULTURE ET LA PRODUCTION VEGETALE, Institut National Agronomique, Grignon, Colloque International CENECA, Agriculture et Energie, Paris 27, 28, 29 février 1980, pp. 227. 11 BONNIER (Ch.), Discours de M. le Recteur Ch. BONNIER ­ Gembloux 1979­1980 ­20 p. roneo. 12 HJORTSHOJ NIELSEN (Α.), BESOINS EN ENERGIE DE L'AGRICULTURE DANOISE ET ROLE POSSIBLE DE CELLE­CI POUR LA PRODUCTION D'ENERGIES DE SUBSTITUTION, Université royale agricole vétérinaire, Copenhague. Colloque International CENECA. Agriculture et Energie, Paris 27, 28, 29 février 1980, pp. 2210. 13 FAHRNBERGER (Α.). L'ENERGIE A PARTIR DE LA BIOMASSE : UN IMPERATIF POUR L'ECONOMIE AUTRICHIENNE. Institut de Politique agraire ­ Vienne. Colloque International CENECA. Agriculture et énergie. Paris 27, 28, 29 février 1980, pp. 125. 14 ENERGY FROM THE BIOLOGICAL CONVERSION OF SOLAR ENERGY. Author : Boardman, Ν.Κ.. Location : Div. Plant Ind., Common«. Sci. Ind. Res. Organ., Canberra, Australia. Journal : Philos. Trans. R. Soc. London. Ser. A. Pubi.: 80. Series: 295. Issue: 1414.Pages: 477­89. . CHEMICAL ABSTRACTS.

Page 97: Farm and Forest Biomass

­ 3 ­

15 "AGRARWIRTSCHAFT UND ENERGIE". Vortragstagung vom November 1978 In München veranstaltet vom Dachverband wissenschaftlicher Gesellschaften der Agrar­/ Forst­/ Ernährungs­/ Veterinär­ und Umweltforschung e.V. Berichte über Landwirtschaft n° 195/ 1979/ p. 304. 16 ENERGY FROM BIOMASS. Conference at Brighton Centre ­ 4­7 November 1980. Organised by : Commission of the European Communities in cooperation with the Department of Energy London. 17 HALL (D.O.). ISSUE PAPER ON BIOMASS ENERGY. United Nations conference on new and renewable sources of energy. Technical panel on Biomass Energy. First session. New York ­ 4­8 fév. 1980/ 157 p. 18 SHELL BRIEFING SERVICE. Energy from biomass. London/ février 1980/ 8 p. 19 ESSAI DE RECONCILIATION ENTRE LA MATIERE INANIMEE/ LA MATIERE VIVANTE ET LA SOCIETE DES HOMMES. ROLE DE L'AGRICULTURE ET DU MACHINISME AGRICOLE. CARILLON (R.). Etudes du CNEEMA ­ N° 452 ­ juin 1979. 20 CHARTIER (P.). COMMENT CULTIVER L'ENERGIE. INRA ­ Versailles/ 1979/ 9 p. 21 FORUM AGRICULTURE ET SOLEIL. Montpellier 21­22 juin 1979. USTL­ENSAM. Organisé par l'Institut des Aménagement Régionaux et de l'Environnement/ les Amis de la Terre/ Nature et Progrès, l'Institut National de la Recherche Agronomique. 22 JAYET (P.A.)/ SOURIE (J.C.). LA BIOMASSE SOURCE D'ENERGIE ­ QUELQUES ELEMENTS SUR L'ETAT DES CONNAIS­SANCES, QUELQUES REFLEXIONS SUR LA FAISABILITE. Paris, INRA ­ pour l'OCDE ­nov. 79 ­ 60 p. 23 Dossier : LES ENERGIES. ­ File : THE ENERGIES. MAGNAN (R.); POTRÓN (Α.); MAUGARD (Α.); MARIE (J.­P.). URBANISME; FRA; Date : 1979; N°: 172; p.: 62­71; Résumé:ENG/SPA; Langue : Français. Dans son dossier sur les énergies/ urbanisme consacre 4 articles à l'énergie solaire: la biomasse/ énergie verte; le droit au soleil; l'héliothermie; de l'architecture solaire à l'urbanisme climatique. Chacun d'eux fait le point sur l'état des connaissances ou de l'art en la matière. (CSTB). PASCAL. 24 CTRY : XE­FR. TYPL : J/AS. LANG: Fr. AUTH: Tassot/ J. TITL: (Biomass : a way of cultivating energy). LA BIOMASSE : UNE MANIERE DE CULTIVER L'ENERGIE. JRNL: Agri­Sept (France). IMPR: (6 Jul 1979). ISSN :issN 0339­4441. CLLT : (no.740) p. 23. AGRIS.

Η· JFLUENCE DES CHOIX ENERGETIQUES QUANT AUX ROLES FUTURS DE L'AGRICULTURE. TIREL (J.C.). Economie rurale ­ 1979 ­ N° 133 pp. 8­12.

Page 98: Farm and Forest Biomass

­4­

26 THE AUTONOMOUS HOUSE. ­ LA MAISON AUTONOME ­. VALE (BRENOA); VALE (ROBERT); AVELINE (MARIE­FRANCE, TR.) FRA; Ed: PARIS: MONITEUR; Date : 1979; 251 P.h.t.; 10 P.; 2­86282­054­7; Loc: CSTB­A1790875­L31814­697.6; Langue: Anglais et Type : TL, LM, MV. CC: 730.C.01. Présentation d'une nouvelle conception de l'habitat et de la vie domestique, préservant au maximum le capital énergétique conventionnel et exploitant les sources d'énergie renouvelables: soleil, vent, pluie. Une maison ainsi conçue est totalement indépendante des réseaux de distribution de gaz, d'électricité, d'eau et d'assainissement, car elle est équipée pour capter et stocker l'énergie solaire et éolienne, produire du gaz à partir du recyclage des déchets, et comporte des batteries et des piles à combustion. Description de ces divers procédés et équipements, illustrée par plus de 100 figures, PASCAL

et graphiq

ues· <CSTB).

B7 LES SOURCES D'ENERGIE. LES ENERGIES VENANT DU SOLEIL. II : DE L'ARBRE A LA BACTERIE. ­ ENERGY SOURCES. ENERGIES FROM THE SUN. II. FROM TREE TO BACTERIA ­VITOUX (J.). REV. PALAIS DECOUV.: FRA; Date : 1979; Vol: 7; No: 70; p.: 36­45; 15 REF.; Langue : Français. Aperçu sur la synthèse chlorophylienne. Procédés d'utilisation des végétaux: combustion, méthanisation, liquéfaction. Matériaux utilisables : déchets agro­alimentaires et boues urbaines, arbres et arbustes à croissance rapide, cannes à sucre et cactées, jacinthes d'eau et algues. Action des bactéries sur les plantes PASCAL. 28 COLLECTIF. Berichte über Landwirtschaft ­ Agrarwirtschaft und Energie. Mit 123 Abbildungen und 92 Tabellen. Berlin ­ P. Parey. 1979. 29 VERWERTUNG VON NACHWACHSENDEN ROHSTOFFEN. Symposium, München (Febr. 1979). Verbindungsstelle Landwirtschaft­Industrie e.V., Essen. 30 MICROBIOLOGY APPLIED TO BIOTECHNOLOGY. DECHEMA­MONOGR.; DEU; Date : 1979; Vol: 83; p.: 1­237; DISSEM.; Τ INTERNATIONAL CONGRESS OF MICROBIOLOGY. 12/1978/MUNICH; Langue: Anglais. Ensemble des communications présentées à ce congrès. PASCAL.

31 YES D. "ALTERNATIVE ENERGIEN"; Hoffmann und Campe 1979. 32 MEINHOLD, Κ. et al. "BETRIEBSWIRTSCHAFTLICHE BEURTEILUNG DES ENERGIEEINSATZES IN DER LANDWIRT­SCHAFT"; in Landbauforschung Völkenrode, Sonderheft 49 (1979). 33 THIER, E. "BIOMASSE ALS ALTERNATIVE ENERGIEQUELLE UND LIEFERANT ORGANISCHER BASIS­CHEMIKALIEN"; August 1979. 34 POWER PRODUCTION. SOLAR ENERGY FOR DEVELOPMENT. INTERNATIONAL CONFERENCE/1979/ VARESE; NLD; Ed: THE HAGUE: MARTINUS NIJHOFF/BOSTON: MARTINUS NIJHOFF/LONDON: MARTINUS NIJHOFF; Date: 1979; p.: 59­76; Τ EUR­6377­EN, FR; Langue: Anglais. Rapport de synthèse de communications relatives à la production d'énergie électrique à partir de l'énergie solaire directe ou indirecte (biomasse, énergie éolienne, petite centrale hydroélectrique). PASCAL.

Page 99: Farm and Forest Biomass

-5-

I» 6ÖLAR ENERGY CONVERSION Collons, P.Q.; Tomkins, R. Dep. Management Sci., Imperial Coll. Sci. Technol., London, UK. Electronics ind Power, 1979, 25.7., 480-484. Languages : En. 4 fig. The principles and problems of using solar energy are described, including fuel cells and the use of energy from biomass. CAB ABS. & )LAR ENERGY USE THROUGH BIOLOGY; PAST, PRESENT AND FUTURE.HALL (D.O.) AFF: UNIV. LONDON KING 'S COLL., LONDON SE24 9 JF, GBR. SOLAR ENERGY; USA; bate: 1979; Vol: 22; No: 4; p.: 307-328; 147 REF. Langue: Anglais Type: TP, LA. Evolution passée de la photosynthèse et production des combustibles fossiles. Importance actuelle de la photosynthèse. Etudes en cours dans différents pays pour l'utilisation de la biomasse. Aperçu sur les possibilités à long terme de production d'hydrogène ou de fixation de carbone par des systèmes biolo­giques. PASCAL. 37 THE PROSPECTS OF A BIOLOGICAL-PHOTOCHEMICAL APPROACH FOR THE UTILIZATION OF SOLAR ENERGY. HALL (D.O.); COOMBS (J.). AFF: UNIV. LONDON, KING'S COLLEGE, LONDON, GBR. I.E.E. CONF. PUBL.: GBR; Date: 1979; No. 171; p.: 48-53; 5 REF.; T. INTERNATIONAL CONFERENCE ON FUTURE ENERGY CONCEPTS/1979/L0ND0N; Langue: Anglais. Principe de la photo­synthèse et perspective d'utilisation des systèmes de conversion de type photochimique ou photobiologique. Tableaux résumant des données statistiques sur les réserves énergétiques, les procédés de conversion et les produits obtenus, les coûts basés sur les biomasses par comparaison avec les coûts classiques. PASCAL. 38 HALL, David 0. SOLAR ENERGY CONVERSION THROUGH BIOLOGY. COULD IT BE A PRACTICAL ENERGY SOURCE? Biologist 26(1979) 2:67-74, schema's. 70 refs. Vorming van cellulose onder invloed van fotosynthese en gebruik van cellulose uit huishoudelijk afval als energiebron; vorming van alcohol hieruit; algen als dierlijk voedsel, voor fermentaţie voor methaan en voor verbranding voor electriciteitspro-duktie; Bacteriorhodopsin membramen. (Doe.) 39 GROWING CROPS FOR FUEL - DREAM OR FACT? LUMBERS, (J.), Power Farming Magazine, 1979, 88,10, 17-19, 22-23 Languages : En, 4 fig., 4 tab. Research on the economics of potential alternative energy sources is described briefly, including the production of alcohol for fuel from biomass, the utilization of waste straw, sawdust and other plant residues, and the production of methane from animal wastes. CAB ABS. ' 40 AN INCREMENTAL MODEL FOR CONVERSION OF SOLAR ENERGY IN AGRICULTURAL SYSTEMS. SANAI (M.), AFF: ARYA MEHR UNIV. TECHNOL., MECH. ENG. DEP., TEHRAN, XRN. ENERGY CONVERS.; GBR; Date : 1979, Vol: 19; No: 1, p.: 9-13, 10 REF.; Langue : Anglais, Type : TP, LA. Construction d'un modèle à onze compartiments dont chacun représente un paramètre ayant un effet direct ou indirect sur la croissance des plantes. Vérification du modèle sur une culture d'alfa. Calcul des rendements de la photosynthèse et comparaison avec des données expérimentales. PASCAL. 41 ENERGIE UIT BIOMASSA. Essobron 29(1979)10: 6-12 afbn. PUDOC.

Page 100: Farm and Forest Biomass

-6-

42 GASSEN BRAENDER, BONNESEN (H.), Edit. ANDELSFORLAGET VISTOFT , 1979. 43 BIOGAS I DANMARK, BRANDBJERG Hdjskole 79. 44 THE PEATLANDS OF IRELAND, HAMMOND, R.F. Soil Survey Bulletin No. 35, An Foras Taluntais, Dublin, p37, 1979. 45 INTERDEPARTMENTAL COMMITTEE TO CONSIDER POSSIBLE USES OF BORD NA MONA CUT-OVER PEATS. Stationery Office, Dublin. July 1979. 46 BIOMASS ENERGY CONVERSION AS AN ALTERNATE ENERGY SOURCE (Biological solar energy conversion through agriculture and forestry in the United States). GOODMAN N.,; PIMENTEL, D. Emmaus. Compost science/land utilization, v. 20 (1), Jan/Feb 1979. p. 28-31, ill. ISSN 0010-4388. Languages : English. Geographic Location : U S A . Document Type : ARTICLE. AGRICOLA. 47 STRUCTURING A SMALL NATIONAL OR STATE SOLAR ENERGY PROGRAM. JONES (W.H.); YAROSH (M.M.). AFF: UNIV. WEST FLORIDA, PENSACOLA FL 32920, USA. SOLAR ENERGY; USA; Date: 1979; Vol: 22; No: 1; p.: 1-7; 14 REF.; Langue : Anglais. Description de la méthode utilisée pour l'établissement d'un plan d'utilisation de l'énergie naturelle (solaire, biomasse, énergie thermique d e s océans) en Floride. PASCAL. 48 BIOMASS AS A NON-FOSSIL FUEL SOURCE. PROCEEDINGS. SYMPOSIUM, HONOLULU, APRIL 1-6, 1979. KLASS (D.L.) AMER. CHEM. SOC, DIV. PETROLEUM CHEM., PREPR.; USA; Date: 1979; Vol: 24; . L a

n g u e : Anglais

. Textes des communications présentées. 49 WASTES AND BIOMASS AS ENERGY RESOURCES. KLASS D.L., IGT, CHICAGO. Presented at Intl Gas Union World Gas 14th Conf. Toronto, May 27-JUN 1, 79(14). Survey Report: Waste materials and biomass are promising alternatives to natural gas and petroleum derived fuels for meeting future energy requirements. A state of the art analysis of wastes and biomass as energy resources is presented. The physical, biological, and thermochemical processes involved in converting these resources to various types of energy are described. As the world supply of non-renewable natural resources continues to diminish, wastes and biomass will inevitably be fully developed and commercialized as sources of energy-intensive products and synfuels. (1 diagram, 5 references, 5 tables). ENERGYLINE. 50 SOLAR ENERGY: RENEWABLE, CLEAN ENERGY FROM THE SUN. REDFIELD (D.) ACHIEVEMENTS IN PERSPECTIVE. ENERGY TECHNOLOGY 6. ENERGY TECHNOLOGY CONFERENCE. 6/1979 WASHINGTON DC; USA; Ed: WASHINGTON: GOVERNMENT INSTITUTES; Díte: 1979; p.: 105-110; Langue: Anglais. Conclusions et recommandations de l'IEEE Energy Committee en faveur d'un développement rapide aux Etats-Unis de l'utilisation directe de l'énergie solaire directe et dérivée (énergie éclienne, biomasse, énergie hydraulique, énergie thermique des mers). rA5LAL■ 51 USDA. GROWING ENERGY - LAND FOR BIOMASS FARMS. Washington DC June 79 - 35 p.

Page 101: Farm and Forest Biomass

­7­

52 ENERGY COMMUNICATIONS v. 5 (2), 1979, p. 101­108, ill. ISSN 0097­8159. Languages : English. Sponsoring Agency : U.S. Dept. of Energy. 7 ref. Geographic Location : South Central States (USA). Document Type: ARTICLE. Producing black locust (Robinia pseudoacacia) biomass for fuel on southern Appalachian iurface mines. CARPENTER, S.B.; GRAVES, D.H., New York, M. DEKKER. AGRICOLA. 53 MEETING ON­FARM ENERGY DEMAND THROUGH BIOMASS CONVERSION. WILLIAMS, DOUGLAS W.; MCANIFF RICHARD J.; LARSON DENNIS L. UNIV. OF ARIZ. Presented at Information Transfer INC/ET AL Technology for Energy Conservation Conf., Tucson, Jan 23­25, 79, P582 (10). Technical feature : the on­farm energy demand for major irrigated crops in 10 western states is determined, and the feasibility of meeting this demand through the use of animal and agricultural waste energy resources is examined. Crop residue conversion by gasification and animal manure conversion by anaerobic digestion are described. Irrigated corn represents the highest potential for crop residue energy utilization. Beef feedlots represent the highest potential for animal manure energy utilization. (22 references, 5 tables) ENERGYLINE. 54 CTRY: JP. TYPL: J/AS. LANG: En. SUBC: P05 F60. Auth: MIYAMOTO, K. (Osaka Univ., Suita (Japan). Faculty of Pharmaceutical Sciences); HALLENBECK, P.C.; BENEMANN, J.R.; TITL. : Solar energy conversion by nitrogen­limited cultures of Anabaena cylindrica. JRNL: Journal of Fermentation Technology (Japan). IMPR: (Aug 1979). ISSN: ISSN 0385­6380. NOTE: 13 réf.; Summary (En). CLLT: v. 57(A) p. 287­293. 55 Jean Roger Mercier. ENERGIE ET AGRICULTURE: LE CHOIX ECOLOGIQUE ­Editions Debard, 1978. 56 EXTRAITS D'UNE TRADUCTION RAPIDE D'UN RAPPORT SUR L'ENERGIE POUR L'AGRICULTURE MONDIALE. STOUT (Β.Α.); MYERS (CA.); HURAND (A.) et al. Etudes du CNEEMA ­ N° 442­443­444­ août­sept.­oct.1978 ­ 3 vol. 57 MINAG­PERIO. WALTER, J.F., UTILISATION DE L'ENERGIE EN AGRICULTURE : MAINTENANT ET POUR L'AVENIR. Bulletin d'information du CNEEMA. N. 250; 1978/11; pp. 55­88. Utilisation de l'énergie en agriculture aux Etats­Unis­quantité d'énergie utilisés par la production agricole, la transformation des aliments, la préparation commerciale et à domicile. Les différentes sources d'énergie. Moyens d'économie d'énergie, réduction du travail du sol, herbicides, lutte contre les ennemis des cultures, engrais, déjections animales, serres, biomasse, rendement énergétique dans la production animale. Approvisionnement en énergie au niveau de l'exploitation agricole. RESEDA. 58 MEINH0LD,K. "PROBLEMANALYSE ZUM BEREICH BIOMASSEPRODUKTION UND TECHNOLOGIE FOR NICHT­NAHRUNGSMITTEL"; FAL Braunschweig­Völkenrode 1978. 59 SOLAR RADIATION AND BI0C0NVERSI0 Ν (Energy sources and agriculture) Radiazione solare e bioconversion. PORCELLI S.; Bologna, Edagricole, Colture protette v. 7 (6/7), June/July 1978, p. 27­32, ill. ISSN 0390­0444; Languages : Italian, 12 réf., geographic location : Italy. Document Type: ARTICLE. AGRICOLA.

Page 102: Farm and Forest Biomass

­8­

60 CALVIN, G.J. & M. CALVIN. THE ONLY SOURCE OF OIL. Garden 2(1978) 1: 2­3 afbn. Eeen mogelijkheid om gewassen te gebruiken als energieleveran­ciers is te vinden in de produktie van alcohol. Een andere mogelijkheid is te vinden bij de melksaphoudende planten. Niet alleen rubber is hieruit te winnen, maar ook een olie, in samenstelling veel gelijkend op ruwe olie. In vergelijking met de plantaardige olie is de ruwe olie nu nog te goedkoop (resp. t 20 en 13 per barrel), maar verwacht kan worden dat de ruwe olie duurder zal worden. Vooral Euphorbia­soorten zijn, wat dit betreft, van belang. Hieronder bevindt zich ook de als sierplant gekweekte Poinstttoa.(Boe) PUDOC. 61 SOLAR ENERGY CONVERSION THROUGH BIOLOGY ­ COULD IT BE A PRACTICAL ENERGY ' SOURCE. HALL (D.O.). Aff. : Univ. London King's Coll., London SE 24 9JF, UK. Fuel: G.B.; Date: 1978; Vol:57; No: 6, p.: 322­333; 135 Ref.; Langue: Anglais. Synthèse bibliographique sur les études concernant l'utilisation de la bio­masse, la photolyse biocatalytique de l'eau ou la réalisation de cellules photoelectrochimiques à l'aide de membranes artificielles à chlorophyle ou de membranes bactériennes. PASCAL. 62 COLLOQUE; SYMPOSIUM BIOLOGICAL SOLAR ENERGY, Conversion ­ 27.10.1978; Université Limburgs ­ 1978, 102 p. 63 HJORTSHOJ­NIELSEN (Α.). THE ENERGY DEMAND OF DANISH AGRICULTURE AND ITS POTENTIAL ROLE A PRODUCER OF ALTERNATIVE ENERGY 1978. Institut de l'Economie, Thorvalsdensvey 40, 1871 Copenhague V (Denmark). 64 BIOMASS­ A CASH CROP FOR THE FUTURE? Midwest Research Institute. Battelle Memorial Institute. Columbus Laboratories. (Kansas City, Mo.). The Institute, 1978. Missouri iii, 349 p. : charts : 28 cm. C0NF: 770368. Languages: English. Includes bibliographical references. Document type: Monograph. AGRICOLA. 65 ENERGY CONTENT OF PLANT MATERIAL (Vegetation biomass, including wood). COCHRAN, B.J.; CH00NG, E.T. , Baton Rouge, Annual forestry symposium Louisiana State University, School of Forestry and Wildlife Management, 1978 (27th), 1978; p. 37­50; ill.; ISSN 0076­1095; Languages: English; 23 réf.: Document type: ARTICLE. AGRICOLA. 66 ANCHE L'AGRICOLTURA PRODUCE ENERGIA. FIORELLI (V.E.); Tecniche VIII; 29 jan. 1978 ­ 1 p. 67 SYMPOSIUM PAPERS ENERGY FROM BIOMASS ANS WASTES; Pres. August 14­18 1978. Washington; Symposium Chairm. D.L. KLASS; WHITE, J.W. C W. McGREW (Eds). Institute of Gas technology. S.I., 1978. 868 p. refs. PUDOC. 68 PAPERS/SYMPOSIUM ENERGY FROM BIOMASS ANO WASTES, AUGUST 14­18, 1978 WASHINGTON D.C. Institute of gas technology, Chicago, II. CS: Institute of gas technology, Chicago, II. Symposium Energy from Biomass and wastes/1978­08­14/WASHINGTON; USA; Ed: Chicago; Institute of gas technology; Date: 1978; VIII­868 p.; 23 CMh.t.; Langue: Anglais. Textes des quarante­cinq communications présentées. PASCAL.

Page 103: Farm and Forest Biomass

­9­

69 UTILIZATION OF AGRICULTURAL CROP RESIDUES. An annotated bibliography of selected publications 1966­76. HAN, Y.W.; SMITH, S.K. Agrie. Res. Service, US Dep. Agrie. Western region, Berkeley, Cal. 94705,USA. Research Report, Western region, Agricultural Research Service, United States Department of Agriculture, 1978, No. ARS W­53, 120 pp. Languages:EN. This publication illustrates the great diversity of problems involved in utilizing agricultural crop residues and offers a guide to some of the important investigations in this field. Data was collected from a large number of US and foreign publications. 642 titles were selected from Chemical Abstracts, Biological Abstracts, the National Agricultural Library Catalogue (CAIN), and Food Science and Technology Abstracts published from 1966 to 1976. Abstracts were made either from other abstracts or from the original journal articles. Agricultural crop residues, which consist mainly of cellulose, hemicellulose, lignin, pectin, and other plant carbohydrates can best be utilized as fuel, fibre, fertilizer, feed and food. These utilization methods are broadly grouped into four categories : direct uses, mechanical, chemical and biological conversions. Subject and author indexes are given. CAB ABS. 70 ALTERNATE FEEDSTOCKS FOR 0R6ANIC CHEMICALS (Includes organic biomass products, energy sources). MAISEL, D.S.; Baton Rouge; Annual forestry symposium Louisiana State University, Scool of Forestry and Wildlife Management, 1978. (27th), 1978, p. 13­21, 111. ISSN 0076­1095; Languages: English. Geographic location : USA. Document type : ARTICLE. AGRICOLA. 71 INTERNATIONAL CONFERENCE. Bio­energy ­ energy from living systems. 12­13 Jan. 1978, Zürich. Gottlieb Duttweiler Institut, Zurich, 281 p. 72 "MÖGLICHKEITEN ZUR GEWINNUNG VON ENERGIE AUS BIOGENEN ROHSTOFFEN IN OSTIRREICH", Studie im Auftrag des BMWF, 1978. 73 SCHMIDT, Α.; BAUER, H.; MÖGLICHKEITEN ZUR GEWINNUNG VON ENERGIE AUS BIO­GENEN ROHSTOFFEN IN OSTERREICH. CÁBELA, E.; BESTANDESAUFNAHME OBER FORSCHUNGSAKTIVITATEN UND ZUSAMMENSTELLUNG STATISTISCHER DATEN OBER ENERGIE­MASSIG VERWERTBARE BIOMASSE IN OSTERREICH. Wien 1978. 74 BIO­ENERGIE ­ UNERSCHÖPFLICHE QUELLE AUS LEBENDEN SYSTEMEN"; fischer­alter­nativ 4014, Magazin Brennpunkte 13, 1978. 75 ELF­AQUITAINE. LES ENERGIES NOUVELLES. Elf­Aquitaine n° 5, 25 mai 1977, pp. 4­19. 76 MUNRO, CG. UTILISATION DE L'ENERGIE DANS L'EXPLOITATION AGRICOLE. L'agriculture dans le monde. N. 1, 1977/­/­, pp. 53­60. Utilisation de l'énergie dans l'exploitation agricole. Agriculture utilisateur et pro­ducteur, les rendements, les possibilités d'amélioration. MINAG­PERIO. RESEDA. 77 RIFIUTI DA NON RIFIUTARE. GANAPINI (W.). H.P. Energia, N° 19 (1977). 78 CALVIN, M. PHOTOSYNTHESIS AS A RESOURCE FOR ENERGY AND MATERIALS. Planters' Bulletin of the Rubber Research Institute of Malaysia (1975) 141:145­152. PUDOC

Page 104: Farm and Forest Biomass

79 BIOLOGICAL SOURCES OF CO ERCIAL ENERGY. HAYES D. Bioscience 27(1977) 8: 540­546. lit. opgn. biz. 545 546. Mogelijkheden om energie te winnen uit o.a. landbouwafval en s eciaal daarvoor geproduceerde gewassen en hout. In sommige gevallen treedt er dan konkurrentie met voedselgewassen op.(Doe). PUDOC. 80 ENERGY FROM BIOMASS, M. EE A and G. LYONS. Report on Contract 055­76­ESEIR 1977. Neostyled 1 4 ρ ges. 81 AVFALL SOM ENERGIRESSURS, D LAKE , 0. og Ρ. HEGGEN, 1977, 90 s. (Med bibi.) 82 BOGEN OM ALTERNATIVE E ER I LDER. EGG RS­LURA, Α., 1977. Heri: Biologisk energifremmstilli g, p. 231 2 4. 83 ALTERNATIV ENERGI I LA D U T ­studiekreds rapport/af Jette Larsen, (et al.). København : Den kg . Veterinaer­ og Land oh4jskole, Jordbrugsteknisk Institut, 1977 ­ 214 p. : ill.; 30 cm. 84 DET ORGANISKE AFFALD FRA LAN RUG 06 INDUSTRI MÅ UDNYTTES BEDRE. REXEN, F. Ingenieren, 13. ma' 1977, nr. 1 , s.2 23. 85 UDNYTTELSEL AF ALTERNATI E E IKILDER I BOLIGEN. Kompendium om vind/sol og affaidsenergi. R S % , J., 1976, 131 s. (Med bibl.). 86 PROCEEDINGS OF IN ER ATIO A IOMA S ENERGY CONFERENCE; WINNIPEG, Cenada, May 13­15, 1973. Communi ations à la Con érence Internationale sur L'énergie de la biomasse, Winnip g, Can , 13­15 mai 1973. Winnipeg, Manit.; Ed: Biomass Energy Inst., D te: S.D.; p.: (254 p.); Dissem.; Lang e:Anglais. Textes de toutes les c un c tions m ins une présentées à cette conférence ayant pour sujet Les te hnique d'utilisation de La biomasse comme source d'énergie et leur valeur économique. C mpte rendu des discussions. PASCAL. 87 STEPNYE PROSTORY. 1976, No. 3, 16­17. Sec. jnl. Source: Referativnyi Zhurnal, 5(1976), 546. Languages · Ru. In irrigated trials in Kazan' region, trans­Ural zone, application o NPK rates calculated for targeted yields of 6.5 t grain/ha in winter rye cv. Khar'kovskaya 55, 8 t grain/ha in winter wheat cv. Mironovskaya 808 and 100 t fre h fodder/ha in the accumulation of photo­synthetically acti e radiat η by them was 2.1 ­ 4.79X and the energy value of their biomass was 55, 59.9 and 76.4 milion kcal/ha. A trial on cultivation of cereals for targeted yields. CAB ABS. 88 ENERGY FROM BIOMASS IN EUROPE.edited by W. PALZ and P. CHARTIER, Research Division, Commission of the European Communities, Brussels, Belgium. 6x9" (15.5 χ 23 cm), iv + 248 pages. 145 ill. 1980. This study arises from a requirement by the Co mission of the Eu opean Communities Solar Energy R and D programme; Project E, 'E ergy from Biomass', to assess the overall prospects for the development of the use of biomass as a source of energy in the countries of the community. The study not only examines prospects for bio­mass as a direct supply of energy, it also examines the conversion of bio­mass to other fuels in the l'g t of general factors affecting its productivity in Europe, and in relation to the ind stries and the situations in which they arise. It reviews energy­fro ­biomass methods and programmes of research in

Page 105: Farm and Forest Biomass

-11-

these, concluding with recommendations regarding future research strategies. The study deals with all sources of grown biomass, including natural vegetation/ agricultural and forest wastes and surpluses, and specially grown energy crops of all types. Some urban and industrial wastes are considered as potential sources of nutrient for biomass production schemes. However, because of the intimate relationship of animal wastes with farm vegetable wastes, these are included in the study. ISBN 0853349347. Abstract made by Applied Science Publishers. 89 BIOMASS FOR ENERGY. Proceedings of UK-ISES Technical Meeting (C20)> sponsored by the Commission of the European Communities (Directorate General for Research, Science % Education), held at the Royal Society, London, on July 3, 1979, in association with the British Photobiological Society. Eight papers, 99 pp, 12 figures, 27 tables, price t6.50 (b2.50 (UK-ISES members only).

RESEARCH AND DEVELOPMENT 90 EUROPEAN COMMUNITY'S BIOMASS PROGRAMME, CHARTIER P., Institut National de la Recherche Agronomique, France, presented *t Commission of European Communities Biomass for Energy Conf, London, Jul 3, 79, Ρ 90 (10). Survey Report : The EEC project on Biomass received 8Ί.2Μ during 1975-79. An expansion for the next four-year programme to 16.6M has been proposed. Biomass resources in EEC countries are estimated. EEC biomass projects have concentrated on : the use of straw as an energy feedstock; forestry products, wood wastes, and short rotation forestry; algal energy production systems; gasification of wood, straw, and other agricultural residues; and anaerobic digestion of animal wastes and algae-research efforts in these areas are reviewed. (1 graph, 5 tables). Descriptors : Bioconversion R S D ; European Economic Community; Energy Research & Devel., Non U S; Agricultural Waste Energy; Animal Waste Energy; Algae; Fuel Crops; Wood energy; Gasification R S D; Anaerobic Systems; Fermentation; Forestry; Mari culture; Conf. paper. ENVIR0LINE. 91 PROCEEDINGS OF THE THIRD COORDINATION MEETING OF CONTRACTORS "ENERGY FROM BIOMASS" (projet E). Solar Energy R & D Programme 6-8 June 1979. CEC - DG XII. Taormina - Italie + 200 p. 92 PREVISION ET EVALUATION DANS LE DOMAINE DE LA SCIENCE ET DE LA TECHNOLOGIE. Le programme de travail FAST, programme A Emploi-Travail, Programme B Société de l'information, Programme C Bio-société. CEC DG XII, FAST, Bruxelles, 4 vol. + annexes de contrats - 1980. 93 ENERGY. SOLAR ENERGY PROGRAMME OF THE COMMISSION OF THE EUROPEAN COMMUNITIES. Commission of the European Communities. EUR 6959 EN. 1980, 167 p. 94 SUB-PROGRAMME BIO-SOCIETY. Research activities.FAST - Nov. 1980, 52 p. Commission of the European Communities. DG XII Research, science and education. 95 A COMMUNITY STRATEGY FOR EUROPEAN BIOTECHNOLOGY. BEHRENS, D., REHM, H.J. DECHEMA, Frankfurt 97. Recherche en cours 1980-1982.

Page 106: Farm and Forest Biomass

­12­

96 CONFERENZA SULL'USO DELL'ENERGIA ALTERNATIVA IN AGRICOLTURA ­ Region Lazio ­Roma. 24.11.1979, 45 p. Presentazione del 2° programma R.e. S della Com­missione delle C E . nel settore dell'energia (con particolare riferimento alle applicazioni dell'energia solare nel settore agricolo). GRASSI G. CEE­DG XII. 97 WORLD BIOMASS : AN OVERVIEW. HALL, D.O., King's College, London, presented at Commission of European Communities Biomass for Energy Conf, London, Jul 3, 79 p1 (14). Survey Report : it is not widely appreciated that one­sixth of the world's annual fuel supplies are biomass and that about half of all the trees cut down are'used as fuel for cooking and heating. Evidence is amassed to show that fuels produced by solar energy conversion are a very important source of energy now and will continue to be so for the foresee­able future. The advantages of and problems with biomass energy systems are summarized. R & D programmes in the US, Canada, Brazil, Europe, the Sahel region, India, the Philippines, Australia, New Zealand, China and S. Korea are mentioned. Biomass and energy product costs in various countries are estimated (40 references, 5 tables). ENVIROLINE. 98 U.K. DEPARTMENT OF ENERGY SOLAR BIOLOGICALPROGRAM­BIOFUELS. KING G.H. AERE HARWELL, UK. Presented at Commission of European Communities Biomass for Energy Conf., London, Jul. 3, 79, P15 (11). Survey report : at least in principle, waste represents a significant source of useful fuels for the U.K.; about 90 million metric ton/yr of organic residues are produced on farms, in forests, in industry, and in the home. These residues contain energy equivalent to 60 million metric ton/yr of coal. The energy technology support unit, on behalf of the U.K. Dept. of Energy, is looking closely at biofuels to establish a realistic estimate of their potential contribution and to define an R&D program. Objectives of the assessment program and findings of the first study year are discussed. In addition to allocating land for energy plantations. There is scope for augmenting the feedstock resource by growing opportunity crops within the present pattern of agriculture in the U.K. (1 graph, 4 tables). ENVIROLINE. 99 POSSIBLE USES OF SOLAR ENERGY IN EUROPEAN AGRICULTURE. Final Report. VECCHIA (Α.), FORMISANO (F.), PASSARO (F.), ROSSELLI (V.), RUGGÌ (D.). CTIP Solar ­ Via Po, 22, Rome, Italy. Prepared for the Commission of the European Communities, Directorate General for Research, Science and Education, contract n° 707/78 ­ 10 ­ESI, April 1979. 100 AGENCY:SAES KAN; Period: 29 Jul 66 to 30 Juh 81, Invest: FAN L T; HALL R.C., Project: KAN00737, Perf. Org.: Chemical Engineering, Location : Kansas State Univ. Manhattan Kan. OPTIMIZATION TECHNIQUES FOR AGRICULTURAL PROBLEMS. Objectives : Demonstrate applicability of methods of system analysis and synthesis to a variety of agricultural problems including fertilizer production and application, food production and consumption, biomass energy resources conversion and utilization, and water utilization and conser­vation. The ultimate goal of analysis and synthesis of any system is to optimize its performance. Approach: Multiobjective optimization techniques will be used to simultaneously minimiee or maximize two or more objective functions such as production costs and energy efficiency. Experimental optimization techniques will also be used in the optimal design of equip­ment and apparatus for implementing the predicted optimal policies. USDA CRIS.

Page 107: Farm and Forest Biomass

­13­

101 BASIC RESEARCH IN BIOMASS PRODUCTION : SCIENTIFIC OPPORTUNITIES AND ORGANIZATIONAL CHALLENGES. Author: ZELITCH, Israël. Location: Dep.Biochem., Connecticut Agrie. Exp. Stn., New Haven , CT 06504/ USA. Journal: Linking Res. Crop Prod. (Proc. Boyce Thompson Inst. Plant Res. Conf.) Pubi.:80. Pages: 101­14. Meeting date : 79. Publisher: Plenum. Address: New York/ N.Y. CHEMICAL ABSTRACTS. 102 COMES ­ Commissariat à l'énergie solaire. Document sur l'énergie verte préparé par la Mission Consultative "Biomasse et énergie" auprès du Commis­sariat à l'énergie solaire. Paris, janv. 1980 ­ multip. env. 150 p. 103 TIREL U.C.); LA RECHERCHE AGRONOMIQUE FACE AUX DEFIS ALIMENTAIRES ET ENERGIQUES DU FUTUR. Agriculture n° 441/ mal 1980/ pp. 184­187. 104 LES TRAVAUX ET LES AVIS DU CNEEMA SUR LA VALORISATION ENERGETIQUE DE LA BIOMASSE. LUCAS (J.); RAYNAUD (R.): MOLLE (J.F.) et al. Etudes du CNEEMA N° 460, fév. 1980 ­ 73 p. 105 LES RECHERCHES DE L'INRA DANS LE DOMAINE DE L'ENERGIE ET DE LA BIOMASSE. INRA. Paris ­ fév. 1980 ­ 15 p. 106 ENERGIMINISTERIETS BIOGASPROGRAM. STUB­ Samarbejdsgruppen for teknologisk udvikling af biogasanlaeg. Biogasnyt n° 5 ­ Aug. 1980. 107 AN EXPERIMENTAL ASSESSMENT OF NATIVE AND NATURALISED SPECIES OF PLANTS AS RENEWABLE SOURCES OF ENERGY IN GREAT BRITAIN. Contractor DG XII, CEC; CALLAGHAN et al; LAWSON et al; JEFFERS J.N.R., UK Department of energy; Programme 1979­1983. Project E = Energy from biomass. 108 L'ENERGIE SOLAIRE. REALISATIONS ET PERSPECTIVES FRANÇAISES. SOLAR ENERGY. FRENCH ACHIEVEMENTS AND PROSPECTS. Premier Ministre, Service d'Information et de Diffusion, Paris, Fra­Comes, Paris, Fra. Ed: Paris: Premier Ministre, SID; Date: 1979; 60 P.h.t.; 30 CMh.t.; 3 P.; 2; Langue: Français. Brochure faisant le point sur l'état actuel de la recherche en matière d'énergie solaire en France, les réalisations, les orientations, les organismes compétents, les ouvrages de base. (CSTB). PASCAL. 109 POUR UNE AGRICULTURE PLUS ECONOME ET PLUS AUTONOME. Chambres d'Agriculture (Fra.). Ν.644/ 1979/02. 1978/09/12. 30 P. Synthèse de 3 groupes de travail dans le cadre de la préparation de la loi d'orientation: connaissances du milieu physique et des ressources naturelles, contraintes et perspectives de développement de nos principaux systèmes agricoles (systèmes de productions animales, végétales et cultures spécialisées), état des connaissances et du savoir­faire sur les possibilités de mieux valoriser les sous­produits ou déchets du secteur agro­alimentaires. POLY, J. RESEDA. 110 LA POLITIQUE SOLAIRE FRANÇAISE. ­ THE FRENCH SOLAR POLICY. DURAND (H.). Tech, de l'énergie.; Fra; Date: 1979; No. 25; p. 9­10; Langue: Français. Programme à moyen terme de R et D en matière d'utilisation d'énergie solaire et de la biomasse. Budgets 1978 et 1979 avec leur répartition. PASCAL.

Page 108: Farm and Forest Biomass

­14­

111 CTRY: XE­FR. TYPL: B/AM. LANG: Fr. SUBC: P05 F40. Auth: CHARTIER, P. (INRA Centre National de Recherches Agronomiques, 78 Versailles (France). Dept. de Bioclimatologie). CORP: Association pour la Promotion Industrie­Agriculture, 75­Paris (France). Titl:(Energy potential of biomass (generali­ties, situation in France)). POTENTIEL ENERGETIQUE DE LA BIOMASSE (GENERA­LITES, SITUATION EN FRANCE). Mttl: (Energy valorization of agricultural by­products. Results and balance­sheets of actions of VEDA commission (Energy valorization of agricultural wastes) ­ Meeting 13­14 March 1979, Paris (France)). Valorisation énergétique des sous­produits agricoles. Résultats et bilan des actions du comité VEDA (Valorisation énergétique des déchets agricoles) ­ Journées d'études et de réflexions, 13­14 mars 1979, Paris (France). Conf: Journées d'Etudes et de Réflexions ­ Direction Générale à la Recherche Scientifique et Technique (DBRST). 75­Paris (France) 13­14 Mar 1979. Impr: 75 ­ Paris (France) Apria, 1979. Note : 11 tables. Cllt : p. 3­37. AGRIS. 112 Ctry : XE­FR. Typl: J/AS. Lang: Fr. Auth: ANTONY, P.J. Titl: FEATURE: SOLAR ENERGY IN FRANCE AS THE YEAR 2000 NEARS (BIOMASS). Dossier : le solaire en France à l'horizon 2000 (la biomasse). Jrnl: Recherche (France). Impr: Jun 1979. ISSN: ISSN 0336­9498. Cllt: v. 10(101) p. 692­698. AGRIS. 113 MINAG­PERIO. B0URNAS, L. ACTIVITES DU CNEEMA EN MATIERE D'ECONOMIE D'ENERGIE. Bulletin d'information du CNEEMA (Fra). Ν. 259­260. 1979/08­09. p. 41­44. Les activités du CNEEMA en matière d'économie d'énergie. La lutte contre le gaspillage avec les actions d'informations auprès des agriculteurs (diffusion de plaquettes, contrôles des consommations). L'utilisation de techniques et de matériel plus économe en énergie (séchage des gratines et fourrages). Utilisation des ressources locales d'énergie: l'énergie solaire, l'énergie éolienne, la biomasse. RESEDA. 114 LA BIOENERGETIQUE ET LA BIOMASSE EN FRANCE ­ The Bioenergetic and the biomass in France ­. Tech, de l'énerg.: Fra; Date: 1979; No: 25; p. 25­27. Langue: Français. Programmes de recherche : recherches fondamentales, recherches appliquées concernant les cultures spécifiquement énergétiques, valorisation des sous­produits agricoles. Présentation succinte de diverses méthodes de valorisation énergétique du bois: chauffage par combustion, production combinée de chaleur et de force motrice, valorisation par distillation. PASCAL. 115 ENERGIERELEVANTE AGRARFORSCHUNG. Berichte aus den Arbeiten des gleichnamigen FAL­Forschungsschwerpunktes. Kurzfassungen. Braunschweig­Völkenrode: Bundesforschungsanstalt für Landwirtschaft (Sept. 1979). 116 Ctry: XE­DE. Typl: J/AS. Lang.: De. Auth.: FELGENTRAEGER, W. Titl.: (Energy recycling from cloudy damp also in direct­fired brewing plants). ENERGIEROCKGEWINNUNG AUS SCHWADENDUNST AUCH BEI DIREKTBEFEUERTEN SUDWERKEN. Jrnl: Brauwelt, Ausgabe A (Germany, F.R.). Impr: (1979). Note: 2 tables. Summary (De). Cllt: v. 119(34) p. 1209­1210. AGRIS.

Page 109: Farm and Forest Biomass

­15­

117 GAS NOW AND IN THE FUTURE. BUTTERS (J.U.); HATTON (U.D.); PALMER (R.D.). In: Towards Energy Policy Aust.' Conf. Energy; Canberra; 1977; BARTON; Ed: Inst. Ing. Aust.; Date: S.D.; p.: 143­164; 10 réf.; Langue: Anglais. Réserves de combustibles fossiles et d'uranium en Australie. Potentiels des sources d'énergie naturelle. Utilisation du gaz naturel. Politique du gaz naturel. Traitement du gaz naturel. Technologies diverses de production de Gns. Programme de R et D en matière de gazéification; de production d'hydro­gène et de production de combustibles a partir de la biomasse. PASCAL. 118 Holding Library; AGL; AGL. ΒΙΟ­ENERGY DIRECTORY. BENTE, Paul F., ed. Bio­energy Council. (2d. ed.). Washington, The Bio­Energy Council, 1979 District of Columbia, ix, 533 p. : ill. Languages : English. Subfile : OTHER US. (Not exp stn. Ext, USDA; Since 12/76); Ref. (Reference Collection); Document Type: MONOGRAPH. Biomass energy, Canada ~ Directories. AGRICOLA 119 ALTERNATIVE ENERGY TECHNOLOGY AND SYSTEMS. Trans. Am. Nuci. Soc;0003­018X; USA; Date: 1979; Vol: 33; p.: 2­24; Dissent.; Tamerican Nuclear Society. 1979 winter meeting/1979/SAN FRANCISCO Ca.; Langue: Anglais. Résumés étendus d'une série de communications consacrées à l'état actuel des technologies pour l'utilisation des énergies de remplacement: énergie solaire, énergie géother­mique, biomasse, charbon, schiste bitumineux. PASCAL. 120 The Department of energy program (Fuels from Biomass) : OBJECTIVES AND REPRESENTATIVE STUDIES (Includes silviculture energy farms). FEGE, A.S.; North America's Forests : Gateway to Opportunity 1978 Washington, The Society. Proceedings Society of American Foresters. 1979. 1979. p. 129­131. Languages: English. 3 ref. Geographic Location: USA. Subfile: OTHER US. (NOT EXP STN, EXT, USDA; SINCE 12/76); Document Type: ARTICLE. AGRICOLA. 121 Agency: ARS 3505. Period : 25 Jun 79 to 25 Jun 83. Invest: LINDSTRÖM M.J.; HOLT R.F.. Project: 3505­20750­008. Perf. Org.: USDA­ARS TILLAGE WATER USE & SOIL­ PLANT­ATMOS RES. Location: Nc Soil Conservation Res. Lab. Morris Min. ASSESSMENT OF THE EFFECT OF RESIDUE HARVESTING ON THE SOIL SYSTEM. Objectives: To determine the effect of residue removal for energy production on water runoff, soil erosion, nutrient transport, and soil physical and chemical changes. Approach: Triplicate runoff plots equipped to measure runoff, sedi­ment, and nutrient transport will be established at Madison, South Dakota and Morris, Minnesota. Residue removal will be based on the calculated (USLE) amounts of residue needed (Y) to maintain soil loss levels at the soil loss tolerance (T) level for a conservation tillage system. Residue levels will be Y, 2Y, and 1/2Y. Tillage systems will include a conventional fall plow, spring disk, and harrow, a conservation, and a no till system. Base soil physical and chemical properties will be measured at the initiation of the experiment and monitored and monitored for changes with time for the various residue and tillage systems. USDA CRIS. 122 ENERGY PRODUCTION FROM BIOMASS. U.S. Dept. Agrie. Misc. Pubi.; USA; Date: 1979; No: 1378; p.: 1.51­1.94; Langue: Anglais. Description succincte des projets de recherche pour l'utilisation en agriculture de l'énergie produite à partir de la biomasse pendant la période 1976­1979 aux Etats­Unis et dans d'autres pays. PASCAL.

Page 110: Farm and Forest Biomass

­ΙΟ­

Ι 23 SOLAR ENERGY AND NONFOSSIL FUEL RESEARCH. A DIRECTORY OF RELATED TO AGRICULTURE 1976­1979. U.S. Dep. Agrie, Misc. PubL.; USA; Date: 1979; No: 1378; 293 p.; Langue: anglais. Description succincte des projets de recherche pour l'utilisation en agriculture des diverses sources d'énergie naturelle solaire, biomasse, géothermique, éolienne, etc.) aux Etats­Unis et dans d'autres pays. PASCAL. 124 SOLAR ENERGY UP­DATE: AN IN­DEPTH LOOK AT BOTH TECHNICAL AND NONTECHNICAL ASPECTS. YELLOTT (J.L.). Aff: Arizona State Univ., Tempe Az. USA. Heatg Pipg Air Conditiong; USA; Date: 1979; Vol: 51; No: 1; p.: 55­63; 4 réf.; Cote: 3988; Langue: Anglais. Revue des initiatives prises a l'échelon fédéral et des états pour promouvoir l'utilisation de l'énergie solaire. Travaux de R et D en matière de conditionnement d'air, de cellules et de centrales solaires et d'autres sources d'énergie naturelle dérivées de l'énergie solaire en 1978. PASCAL. 125 Ctry : XL­XL. Typl: B/M. Liti: Ζ V. Lang".: Es.; Corp: IICA, San Jose (Costa Rica). Titl: (Biomass and other sources of non­conventional energy. Bibliographical research in progress). BIOMASA Y OTRAS FUENTES DE ENERGIA NO CONVENCIONALES: INVESTIGACIÓN BIBLIOGRAFICA EN CURSO. Impr: San Jose (Costa Rica). 1979. Note: 1850 ref. Cllt: 148 p. AGRIS. 126 REPORT ON THE DEVELOPMENT OF SOLAR ENERGY IN FRANCE. DEVIN (B.); PHELINE (J.); CEA, Paris 75015, Fra. Sun, Mankind's future source of energy. International solar energy society Congress/1978­01­00/NEW DELHI; USA; Ed: New York; Pergamon Press; Date: 1978; Vol: 1; p.: 54­58; Cote: Y15166; Langue: Anglais. Organisation de la recherche. Programme de R et D. Réalisations et projets concernant l'utilisation de l'énergie solaire et de la Biomasse en France. PASCAL. 127 LE CNRS ET L'ENERGIE SOLAIRE. ­ The Centre National de la Recherche Scienti­fique and the solar energy. RODOT (M.). Industr. du Pétrole; Fra; Date: 1978; Vol: 46; No: 496; p.: 33­39; Langue: Français. Revue d'ensemble des activités pour le développement de l'énergie solaire (programme PIRDES). PASCAL. 128 COMMENT VALORISER LES RESULTATS DE L'ANALYSE ENERGETIQUE EN AGRICULTURE? Quelques réflexions méthodologiques. TIREL (J.C.); Sept. 78, 62 p. INRA, Paris. 129 LA BIOCONVERSION. ­ The Bioconversion ­. JAYET (P.A.). Nuis, et environne­ment; Fr.; Date: 1978; No: 68; p.: 45­47; 15 réf., Cote: 15119; Langue: Français. Aperçu sur un programme de R et D en matière de valorisation de déchets agricoles. PASCAL. 130 SOLAR ENERGY DEVELOPMENTS IN IRELAND. LEWIS (J.O.). Univ. College Dublin, Sch. Archit., Dublin 2, Irl. SUN, Mankind's Future Source of Energy. International Solar Energy Society Congress/1978­01­00/New Delhi; USA; Ed: New York: Pergamon Press; Date: 1978; Vol: 1; p.: 118­122; 14 réf.; Langue: Anglais; Type: TC, LA. Travaux de R et D en Eire pour l'utilisation de la biomasse, de l'énergie éolienne, de l'énergie des vagues et de l'énergie solaires, chauffage et production d'eau chaude). Evolution des

Page 111: Farm and Forest Biomass

­17­

dépenses engagées de 1974 a 1977 avec leur répartition. PASCAL. 131 DE LANDBOUW ALS PRODUCENT VAN ENERGIE. 28e P.U.O.­dag R.U.G., Fak. Landbouw­wetenschappen. L'agriculture productrice d'énergie. 6­12­1978. 28e journée de l'Université de Gent, Faculté des Sciences Agronomiques. 6­12­1978. STEVENS (M.); CALUWE (R.). 132 ENERGY IN THE PHILIPPINES. Sunworld; GRB; Date; 1978; Vol: 2; No: 4; p.; 100­105; Langue: Anglais. Aperçu sur les projets de R et D du Bureau of Energy Development of Philippines en matière d'utilisation d'énergie solaire, et énergie éolienne et de la biomasse. PASCAL. 133 AREAS FOR ACCELERATING SOLAR ENERGY UTILIZATION IN INDIA. MATHUR (K.N.); ASHOK CHANDKA. National Phys. Lab., New Delhi, Ind. SUN, Mankind's Future Source of Energy. International Solar Energy Society Congress/1978­01­00/ New Delhi; USA; Ed: New York: Pergamon Press; Date: 1978; Vol: 3; p.: 2163­2164; 4 réf.; Langue: Anglais. Domaines de travaux de R et D préconisés (collecteurs solaires, dessalement, pompage, digestion anaérobie) pour mettre au point des installations peu coûteuses. PASCAL. 134 ΒΙΟ­ENERGY DIRECTORY. Bio­energy Council. Washington, Bio­Energy Council, 1978 District of Columbia, iv, 219 p.; Languages: English. Subfile: OTHER US (NOT EXP STN, EXT, USDA; SINCE 12/76); EL 78/11/17; RK; 78/11/20; Document Type : MONOGRAPH. AGRICOLA. 135 ENERGY FROM BIOMASS AND WASTES : symposium papers presented August 14­18, 1978, Washington D.C., USA. Institute of Gas Technology. Pubi.: Chicago, III., USA; Institute of Gas Technology, 1978, 868 pp., Price: S60.00. Languages: English. The 45 papers given at the Institute of Gas Technology's symposium in Washington, D.C., August 14­18, 1978, on energy from biomass and wastes are contained in this volume. The symposium papers assess current research and development results with respect to factors affecting both early and long­range applications of biomass energy, review and correlate information on new developments and achievements in the field, and provide an overview that relates specific biomass energy areas to the overall energy supply situation. CAB ABS. 136 SYSTEMS ENGINEERING APPLIED TO ENERGY AND WASTE MANAGEMENT IN AGRICULTURE. Agency : CSRS ORE, Period: 29 Oct 74 to 30 Sep 79. Invest: English M.J.; Project: 0RE00197. Perf. Org. : Agri Engineering. Location ; Oregon State Univ. Corvallis, Ore. Objectives : Analyze large scale agricultural systems; develop mathematical formulations and systems models in the following agricultural areas. Animal feedlot runoff impoundment and disposal: utilization of energy in agricultural systems, and grassland straw disposal and management substitutes. Approach: A general mathematical formulation of each agricultural system will be constructed. From each formulation, a model will be developed that utilizes one or more of the following systems tools : linear programming, dynamic programming, mixed integer programming, network analysis, simulation and computer programming. Where applicable, the general systems model will contain unique variable input formats capable of accomodating specific agricultural enterprises within the agricultural system. USDA CRIS.

Page 112: Farm and Forest Biomass

­18­

137 BIOMASS FUELS ­ PAST, PRESENT AND FUTURE. JEWELL, W.J., 1978. Plenary Session. Proceedings of the 1978 Annual Meeting of the American Section of the Inter­national Solar Energy Society, Inc. Denver, Colorado. August 28­31. Pages USDA CRIS. x

138 THE ACCOMPLISHMENTS OF THE UNITED STATES FEDERAL SOLAR ENER6Y PROGRAM. LLOYD (O.H.). Energy Res. Dev. Administration, Washington DC 20545, USA SUN, Mankind's Future Source of Energy. International Solar Energy Society Congress/1978­01­00/New Delhi; USA; Ed: New York; Pergamon Press; Date: 1978; Vol: 1; p.: 64­67; Langue: Anglais. Description succincte du programme de R et D en matière d'énergie solaire aux Etats­Unis. Réalisations et projets concernant l'énergie solaire, l'énergie éolienne, l'énergie thermique des océans et l'utilisation de la biomasse. PASCAL. 139 BIOLOGICAL AND CHEMICAL CONVERSION 0F SOLAR ENERGY AT SERI. SEIBERT (M.); CONNOLLY (J.S.); MILNE (T.Α.); REED (T.B.) A.I.CH.E. Symp.Ser.; USA; Date: 1978; Vol: 74; No: 181; p.: 42­46; 15 réf.; Langue: Anglais. Aperçu sur le programme de recherches du Solar Energy Research Institute en matière de conversion de la biomasse, de photolyse de l'eau et de conversion thermochimique de l'énergie solaire. PASCAL. 140 SOLAR ELECTRIC SYSTEMS. A TECHNOLOGICAL OVERVIEW. MARVIN (H.H.). U.S.Dep. Energy Division Solar Energy, Washington DC, USA. American Institute of Aeronautics and Astronautics. Annual Meeting and Technical Display. 14/1978/ Washington DC, USA; Ed: New York: AIAA; Date: 1978; 78­290; 4 P.h.t.; Langue: Anglais. Type: TC, LA. Programme de R et D en matière d'utilisation de l'énergie solaire directe et indirecte (éolienne, thermique des océans et biomasse) aux Etats­Unis. Etat actuel des travaux. PASCAL. 141 RECHERCHE AGRONOMIQUE, REALITE ET PERSPECTIVES. PODY (J.). INRA ­ Paris, juin 1977, 72 p. 142 Agency: OCI IDAZ, Period: 1 May 76 to 31 Mar 77, Invest: Johnson L.R.; Project: IDA­ES­0121, Perf.org. Forestry & Wildlife; Location: Univ. of Idaho, Moscow IDA. INVESTIGATION OF UNCONVENTIONAL SOURCES OF ENERGY. Objectives: Determine quantities and costs of energy available from uncon­ventional energy sources in the Pacific Northwest (Washington, Oregon, Idaho) and the state of knowledge in converting these energy sources (forest biomass) to usable forms of energy. Approach: Review published literature and ongoing studies for state of knowledge regarding conversion systems, quantities, and costs. Using this information, determine the cost and quan­tities of energy available (realistically) to the Pacific Northwest from unconventional sources. The most promising are then subjected to detailed study regarding their use and potential impact of these sources on future Northwest needs. Progress: 78/01 78/12. Project investigated the potential of alternative energy sources for the Pacific Northwest. Specific areas investigated in detail include wood residue, municipal wastes, geo­thermal water, wind, and direct solar radiation. Wood residue has immediate potential, probably within the forest products industry. Municipal wastes can be converted to energy but the scattered population of the northwest will limit the areas where it will prove economical. Actual sources of geo­thermal water are not known with certainty. When an industrial facility can be located close to the water source, it may be economical. Wind generated

Page 113: Farm and Forest Biomass

­19­

electricity is competitive with conventional sources now. Direct solar radiation will be best used in the near term for space heat, but economics of its use in the northwest are not always favorable. Publications : 78/01 78/12. JOHNSON, L.B.; G. SIMMONS AND J. PATTERSON. 1977. Energy supply and environmental impacts ­ unconventional sources. Northwest Energy Policy Project. Final Report. NTS pubi. Number PB­268 301/WE. April. 275 pp. SIMMONS G. 1977. Economics and projections for geothermal development in the northwest. Geothermal Energy Magazine. Vol. 5, Mo 10, December. USDA CRIS. 143 ERDA'S SOLAR ENERGY RESEARCH AND DEVELOPMENT PROGRAM. HIRSCH (R.L.); MALVIN (H.H.); BLASY (J.A.) In: Energy Technol. Conf. 4. Proc; Washington; 1977; Washington; Ed: Gov. Inst.; Date: 1977; p.: 112­135; Langue: Anglais. Revue des différents domaines de recherche et de développement de l'ERDA ­pour l'utilisation de l'énergie solaire: chauffage et réfrigération des bâtiments, production de puissance par l'intermédiaire de l'énergie ther­mique, systèmes photovoltaiques, utilisation de l'énergie thermique des océans, énergie éolienne, combustibles à partir de biomasses. PASCAL. 144 GROWING FEDERAL SUPPORT FOR SOLAR ENERGY APPLICATIONS. ­ Contribution fédérale croissante pour le développement des applications de l'énergie solaire.­ HERWIG (L.O.). Aff: Nati. Sci. Found., Washington, D.C. 20550. In: Energy Crisis Energy Sun. Symp. Sol. Energy Util. Panel Discuss. Sol. Energy Programs Prog, pap.; Washington, D.C; 1974; Mount Prospect, III.; Ed: Inst. Environ. Sci.; Date: 1974; p.: 93­103; Langue: Anglais. Programme de recherches pour 1973­1976 couvrant les domaines suivants : chauffage et réfrigération d'immeubles, conversion thermo­électrique, conversion photo­électrique, production et conversion de biomasse, con­version de l'énergie éolienne, conversion de l'énergie thermique des mers. Pour chacun des domaines évolution des budgets de recherche et développement de 1971 a 1975. PASCAL. 145 Agency : Saes Col. Period: 1 Jun 76. Invest: HANSEN R.W.; HARPER J.M.; MURPHY V.G.; Project: C0LO0064. Perf Org: Agri Engineering; Location : Colorado State Univ, Fort Collins, Col. ALTERNATIVE ENERGY SOURCES FOR AGRICULTURAL APPLICATIONS. Objectives : Investigate alternate energy sources for agricultural applications. Develop and test a multiple­use solar heat collection; storage and application system for agricultural uses. Investigate applications of wind energy for agricultural energy needs. Investigate potential fuel production from agricultural waste material. Approach: This project will investigate the possible applications of solar energy to grain drying, livestock building space heating. Water heating for dairy use and similar applications. Wind energy will be investigated for potential agricultural applications. Organic waste materials will be investigated as a material for the biological production of fuel gases such as methane, utilizing new techniques to produce bio­gas. USDA CRIS. 146 THE BIOMASS ENERGY INSTITUTE INC., Winnipeg. 60ALS OF THE BIOMASS ENERGY INSTITUTE. ­ Le Biomass Energy Institute, Winnipeg, Canada. Buts de cet Institut de Recherches., Dever (D.Α.). Aff: Canada Grains Counc, Winnipeg. In: Proc. Int. Biomass Energy Conf.; Winnipeg, Can.; 1973; Winnipeg, Maii.it.; Ed: Biomass Energy Inst.; Date : S.D.; p.:VII.1­VII.6; Langue: Anglais. Présentation d'ordre général des buts poursuivis par cet Institut de Recherches par le Secrétaire Général du Canada Grains Council. PASCAL.

Page 114: Farm and Forest Biomass

­20­

BIOMASS POTENTIAL π? CHARTIER (P.); LE POTENTIEL ENERGETIQUE DE LA BIOMASSE. Futuri b Les, jan. 1980 ­ 15 p. 148 NEW ENERGY FUTURE. III. Author: SONG, KIL YEUNG. Location: CoLL. Eng.; Korea Univ., Seoul, S. Korea. Journal: Chongi Hakhoe Chi; Coden: CGHCA5. Pubi.: 80, Series: 29; Issue: 2; Pages: 77­84; Language: Korean. Identifiers: review biomass energy source. CHEMICAL ABSTRACTS. 149 CHARTIER (P.); Etude sur l'évaluation des applications et du marché potentiel de l'énergie solaire dans la communauté économique européenne. Pour la CEE DG XII. 14 p. ronéoté ­ 1979. 150 WHITE (L.P.); PLASKETT CL.P.); LOW (J.B.). OVERVIEW OF OPPORTUNITIES FOR ENERGY FROM BIOMASS IN THE EUROPEAN COMMUNITIES. Sept. 79, 220 p.; General Technology Systems Limited Forge House, 20 Market Place. Brentford, Middlesex ­ TW8 ­ 8EQ. 151 SLESSER, M. S C. LEWIS. BIOLOGICAL ENERGM RESOURCES. Spon, 1979, pp. 200. Diag. Ref. Index. fc8.50. ISBN 0 419 113401. PUDOC. 152 Ministère de l'Agriculture; 75007­PARIS (Fra). AGRICULTURE, PETROLE ET ENERGIE, 1979. 5 p. Ce que l'agriculture française consomme d'énergie mais aussi ce qu'elle peut produire (en matière d'énergie; biomasse Usier, alcool). RESEDA. 153 MINAG­M9271. OREAC­Organisation d'Etudes d'Aménagement de la Région Centre; Orléans (Fra.). POTENTIEL ENERGETIQUE DE LA BIOMASSE EN REGION CENTRE UNE PREMIERE EVALUATION. 1979/06­09. 35 p. Inventaire des résidus urbains et des sous produits de récolte, de l'élevage ou des forêts de la région centre en vue d'utiliser ce potentiel pour la production d'énergie. Mise en valeur des ressources en paille et de la possibilité de faire des cultures énergé­tiques à proximité des centrales nucléaires avec les rejets thermiques (culture de la jacinthe d'eau). Biomasse et énergie en région centre: analyse des filières locales, inventaire plus fin du potentiel. RESEDA. 154 SOLAR BACTERIAL BIOMASS BYPASSES EFFICIENCY LIMITS OF PHOTOSYNTHESIS. Author: TRIBUTSCH, Helmut. Location: Fritz Haber­Inst., Max­Planck Ges., Berlin, D­1000/33, Fed. Rep. Ger. Journal: Nature (London). Series: 281. Issue: 5732. Pages: 555­6. Identifiers : solar energy biomass, bacteria biomass technol, Thiobacillus biomass energy technol, iron exidn bacterial biomass. CHEMICAL ABSTRACTS. 155 ENERGIE UIT BIOMASSA. Essobron 29(1979)10: 6­12 afbn. Beschrijving van potentiële middelen tot dekking van de energiebehoefte door de land­ en bosbouw. De beschreven middelen moeten nog op hun technische uitvoerbaarheid worden onderzocht. (Doe.) PUDOC.

Page 115: Farm and Forest Biomass

-21-156 BATHER (D.M.) "AN ASSESSMENT OF THE POTENTIAL FOR U.K. AGRICULTURE FOR PRODUCING PLANT MATERIAL FOR USE AS AN ENERGY SOURCE" 1979 - Contractor's Report to Energy, Technology Support Unit HARWELL U.K.

157 BIOMASS POTENTIAL ON BORD NA MONA CUTAWAY BOG. The role of biomass in Ireland's energy future. HEALY, J.; Conference Solar Energy Society of Ireland, Dublin. 10th May, 1979. Published by Irish Management Institute, Dublin. 158 CHEMICALS AND FUELS FROM SEMI-ARID ZONE BIOMASS. BENEMANN, J.R.; New York; Plenum Press. Environmental science research, v. 14, 1979, p. 309-331. NAL: TD172.E55. Languages: English. 50 ref. Document type: Article. AGRICOLA. 159 THE POTENTIAL FOR SOLAR ENERGY DEVELOPMENT. GLASER (P.E.). TechnoI. In Soc; GBR; Date: 1979; Vol: 1; No: 1; p.: 55-66; 12 réf.; Langue: Anglais. Evaluation des coûts actuels et futurs de l'utilisation de l'énergie solaire directe ou indirecte (éolienne, thermique des océans, biomasse). Prévision de la production d'énergie électrique à partir de ces diverses sources aux Etats-Unis en 2000 et 2020. PASCAL. 160 QUANTITIES AND COSTS OF WOOD BIOMASS IN IDAHO (Conversion to usable energy forms). JOHNSON, L.R.; Moscow, Idaho., The Station. Bulletin, Idaho. Forest, Wildlife and Range Experiment Station. Apr. 1979 (30), Apr 1979, 10 p. iLL., maps. Languages : English. Geographic Location: Idaho. Subfile : EXP STN. (State Exper. Stn); Document Type: Article. AGRICOLA. 161 HIGH-GRADE FUELS FROM BIOMASS FARMING : POTENTIALS AND CONSTRAINTS. WEISZ, P.B.; MARSHALL, J.F. Wasgington D.C.; American Association for the Advancement of Science. Science, v. 206 (4414), Oct 5, 1979. p.: 24-29. III. ISSN 0036-8075; Languages : English. 25 ref. Subfile: OTHER US. (Not exp. Stn, Ext, USDA; Since 12/76); Document type : Article. AGRICOLA. 162 POTENTIAL OF BIOMASS UTILIZATION IN CANADA. OVEREND (R.); A.CS. SYMP. SER., USA; Date: 1979; Vol: 90; p.: 165-182; 25 réf.; Langue: Anglais. Production annuelle de déchets de bois, de déchets agricoles, et de déchets d'animaux au Canada avec leur équivalent énergétique. Techniques de conver­sion utilisables. Programme de R et D à entreprendre. PASCAL. 163 LIQUID FUEL PRODUCTION FROM AGRICULTURE AND FORESTRY IN AUSTRALIA. Resume of a survey of the national potential. STEWART (G.A.); GARTSIDE (G); GIFFORD (R.M.); NIX (H.A.); RAWLINS (W.H.M.); SIEMON (J.R.). CSIRO Div. Chem. TechnoI., Canberra, Aus. Search; Aus; Date: 1979; Vol: 10; No: 11; p.: 382-387; 27 réf.; Langue : anglais. Evaluation du potentiel annuelle d'éthanol et de methanol à partir de résidus agricoles et de plantations énergétiques en Australie. Prix de revient prévisionnel en fonction de la matière première. PASCAL. 164 WELCHE ENERGIESTRATEGIE KÖNNEN WIR WAHLEN? - Quelle stratégie d'énergie pouvons-nous choisir? - Which energy strategy in there to adopt? PENCZYNSKI (P.). Aff: Siemens AG, Erlangen 8520, Deu. Atomwirtsch. Atom-Tech.; DEU; Date: 1978; Vol: 23; No: 10; p.: 461-464; 9 réf.; Langue: Allemand. Discussion des possibilotés offertes par les sources d'énergie

Page 116: Farm and Forest Biomass

­22­

non conventionnel lesCsof t path"), telles que l'énergie solaire, le vent, la végétation pour couvrir les besoins futurs du monde en énergie. PASCAL. 165 GRUNEWALD, H. REFERAT AUF DER "World Conference on Future Sources of Organic Raw Materials" ­ III. Chemrawn ­ Konferenz in Toronto, Ontario Kanada Juli 1978 (s. Handelsblatt 18. Juli 1978 und 20. Juli 1978), zitiert bei (9).

166 BIOLOGICAL SOLAR ENERGY CONVERSION AND U.S. ENERGY POLICY. PIMENTEL (D.); NAFUS (D.); VERGARA (W.); PAPAJ (D.); JACONETTA (L.>; WULFE (M.);0LSVIG (L.); FRECH (K.); LOYE (M.); MENDOZA (E.). Aff: Cornelie Univ. New York State Coli. Agrie. Life Sci., Ithaca NY 14853, USA. Bioscience; USA; Date: 1978; Vol: 28; No: 6; p.: 376­382; 47 réf.; Langue: Anglais. Tonnages de bio­masse disponible pour la conversion en énergie aux Etats­Unis répartie par type. Possibilités d'utilisation de plantations énergétiques ou de plantes à hydrocarbures. PASCAL. 167 BIOMASS, PRESENT AND FUTURE (Agriculture, fuel sources). SHEN­MILLER J.; New York, Plenum Press. NATO advances study institutes series. ­Series A. ­Life sciences. V.A22, 1978, p. 475­478. NAL: ÖH301.N32. Languages : English. 9 réf., Document Type : Article. AGRICOLA. 168 SOLTES, E.J., 1978. POTENTIALS FOR ENERGY FROM BIOMASS IN TEXAS. TX­SES Technical Bulletin, 2(1)4. USDA CRIS. 169 A STUDY OF THE ENERGY POTENTIAL OF FUELS FROM LAND BIOMASS IN FIVE COUNTRIES. Energy from biomass and wastes : symposium papers presented August 14­18, 1978. Washington D.C.» USA.; VERGARA, W.; PIMENTEL, D. Agricultural' Engineering Department, Cornell University, Ithaca, New York 14853, USA. Pubi: Chicago, III., USA : Institute of Gas Technology, 1978. 87­105. Languages : English; 40 réf., 9 tab. The energy potential of biomass con­version to fuels has been evaluated for the United States, Brazil, India, Sudan and Sweden. The following aspects of biomass energy conversion are considered : (1) the potential of biological materials for biomass energy conversion, (2) the amount of solar energy conversion represented by agricultural and forestry products. (3) the energy efficiencies of conversion technologies such as ethanol fermentation, anaerobic digestion pyrolysis and direct combustion, and (4) the environmental and social constraints in biological solar energy conversion. The net output of biomass energy conversion in the United States, Brazil, India, Sudan and Sweden is estimated as 442 χ 1012 Kcal, 1191 χ 1012 Kcal, 509 χ 1012 Kcal, 251 χ 1012 Kcal and 49 χ 1012 Kcal which represent 2,5%, 186%, 36%, 584% and 14% of their actual energy consumption respectively. CAB ABS. 170 SOLAR BIOMASS ENERGY : AN OVERVIEW OF U.S. POTENTIAL. BURWELL, C.C.; Science 199 (1978) 4333: 1041­1048, grfk, tabn. lit. opgn. biz. 1047­1048. Overzicht van de in principe oogstbare afavllen van de plantaardige en dier­lijke produkt i e in de VSA. 25X van het totale energieverbruik zou op deze wijze geleverd kunnen worden. (Doe.) PUDOC.

Page 117: Farm and Forest Biomass

-23-

171 ENERGY OUTPUT OF BIOMASS - A PRELIMINARY STUDY. Author; ETTALA, Juha; ASPLUND, Dan; EKMAN, Erkki. Location : Espoo; Finland. Journal: Tied. Valt. Tek. Tutkimuskeskus, Poltto-Voitelualnelab. Pubi.: 78. Series: 15, Pages: 69 pp. Language : Finnish. Identifiers: energy biomass Finland, fuel biomass Finland. CHEMICAL ABSTRACTS. 172 ENVIRONMENTAL ASSESSMENT OF WASTE-TO-ENERGY PROCESSES SOURCE ASSESSMENT DOCUMENT. ΑΝΑΝΤΗ, K.P.; Cincinnati, Industrial Environmental Research Laboratory; Office of Research and Development, US. Environmental Protection Agency, Springfield, Va, for sale by the National Technical Information Service, 1977 ohu viii, 710 p. : ill. Interagency energy - environmental research and development series : no. 77-078. Languages : English. Document Type: Monograph; Bibliograph AGRICOLA. 173 PROCEEDINGS OF A SYMPOSIUM ON THE POTENTIAL FOR ENERGY FARMING IN NEW ZEALAND, HELD AT PHYSICS AND ENGINEERING LABORATORY, D.S.I.I*, Lower Hutt, New Zealand, November 1975. Wellington. D.S.I.R. 1976; 130 biz. lit. opga. Information series. D.S.I.R. New Zealand department of scientific and industrial research, no. 117. PUDOC. 174 TECHNICAL AND ECONOMICAL FEASIBILITY OF BIOMASS UTILIZATION AS ENERGY SOURCE IN CALIFORMNIA. CERVINKA (V.); Aff: California Dep. Food Agrie; In: Pacific Chem. Eng. Congr. 2 Proc; Denver, Colo.; 1977; New York; Ed: Am. Inst. Chem. Eng.; Date: S.D.; Vol: 2; p.: 752-758; 11 Ref.; Langue: Anglais. Etude de praticabilité de l'utilisation des diverses sources de biomasse (par gazéification) en Californie. Détermination de la surface à utiliser pour des cultures énergétiques donnant une indépendance énergétique a l'agriculture Californienne. PASCAL. 175 ENERGY POTENTIAL FROM AGRICULTURAL FIELD RESIDUES; AN INVITED PAPER FOR THE SPECIAL NON-NUCLEAR TECHNOLOGY SESSION OF THE AMERICAN NUCLEAR SOCIETY, NEW ORLEANS, Louisiana, June 9-13, 1975. GREEN, F.L. Warren, General Motors Technical Center, 1975, III, 26 biz. afbn. grtkn. De hoeveelheid organische stof, die op het land achterblijft na de oogst van de produkten komt in de VSA overeen met de helft van de warmtewaarde van de steenkool in dat land per jaar gedolven. Binnen 20 jaar zal die waarde verdubbeld zijn. Uit een oogpunt van energie zou dan ook minstens twee-derde van dat materiaal van het land verwijderd moeten worden en worden aangewend voor het winnen van energie, hetgeen op verschillende manieren kan gebeuren. (Doe.) PUDOC.

I. ENERGY PRODUCTION USING BIOMASS. GENERAL STUDIES 176 ~~~ BIOMASSE ET ENERGIE. Préface CHARTIER Ph. , INRA - Paris - Grignon. Mars 1980. 138 p. 177 STRAW AND ANIMAL RESIDUES AVAILABLE FOR ENERGY. REXEN, F.P.; Summary : Energy from agricultural residues and wastes could make an important contribution to our present needs. In EEC the total amount of waste destroyed each year is more than 1.5 billion tons. One possibility is the manufacture of briquettes of waste materials as an efficient fuel. Straw 1s

Page 118: Farm and Forest Biomass

-24-

increasingly being utilized in farm straw furnaces and in industry. Animal Manure may provide energy by anaerobic fermentation or by composting. Perhaps high quality residues - e.g. straw - is even better utilized as an alternative to petrochemical feedstock in a time with steeply rising raw material cost. International Conference on energy from biomass, Brighton, 4-7 November 1980. Commission of the European Communities, in co-operation with the Department of Energy, London. 178 VALORISATION ENERGETIQUE DES SOUS-PRODUITS AGRICOLES : RESULTATS ET BILANS DES ACTIONS DU COMITE V.E.D.A. (VALORISATION ENERGETIQUE DES DECHETS AGRICOLES). - Energetic beneficiation of agricultural by-products. Results of V.E.D.A. Committee Actions. Association pour la Promotion Industrie-Agricul­ture, Paris, Fra.; Délégation Générale à la recherche Scientifique et Tech­nique, Paris (Fra.) (PATR.).; Fra; Date; 1979; DGRST-79 7 0217; 265 p. Action concertée : Valorisation énergétique des déchets agricoles; valorisation énergétique des sous-produits agricoles/1979-03-13/Paris, Langue: Français. Potentiel énergétique de la biomasse. Utilisation énergé­tique des pailles et fumiers. Etudes et perspectives pour la production de méthane. La fermentation méthanique appliquée à la valorisation énergétique des déchets agricoles. Pyrolyse et gazéification des produits cellulosiques et ligneux. Pyrolyse et gazéification des déchets végétaux. Pistes d'utilisation des déchets cellulosiques et ligneux. PASCAL. 179 Ctry: XE-FR., Typl: J/AS; Langue: Fr.; Sube: P05 F00 LOO; Auth: GAC, A. Titl: (Using agricultural waste for making energy (refuse)). VALORISATION ENERGETIQUE DES DECHETS AGRICOLES. Jrnl: Comptes Rendues des Séances de l'Académie d'Agriculture de France (France). Impr: (May 1979). ISSN : ISSN 0152-1335. C Ut: v. 65(10) p. 800-808. AGRIS. 180 L'UTILISATION ENERGETIQUE DES PAILLES ET FUMIERS: ASPECTS AGRONOMIQUES, ENERGETIQUES ET ECONOMIQUES. SOURIE, J.C.; 1979, 34 p.; 1979/03/13-14; Etude Agronomique, Technologique et Energétique préparant une analyse économique de l'utilisation. INRA GRI. RESEDA. 181 ENERGY PRODUCTION USING STRAW AND ANIMAL WASTES AS FEEDSTOCKS. Contractor DG XII CEC; CHASSIN (P.); Programme 1979-1983. INRA- Paris - France. Project E : Energy from biomass. 182 BIOCONVERSION : ENERGIE ET AGRICULTURE. - Bioconversion : Energy and Agriculture. JAYET (P.A.) , Aff: INRA, Fra.; Rev. Energ.: Fra; Date: 1979; Vol: 30; No: 313; p.: 267-278; Résumé: ENG., Langue: Français. Sous-produits è base de carbone renouvelables en France : tonnages annuels, utilisation actuelle et utilisations envisageables. Caractéristiques des divers systèmes de conversion thermochimique de la biomasse : combustion, gazéification et pyrolyse. PASCAL. 183 Ctry : XE-FR., Typl: J/AS; Lang: Fr.; Sube: P05; Auth: SOURIE, J.C. (INRA Institut National Agronomique Paris-Grignon, 78 - Thi verva l-Gri gnon (France). Lab. d'Economie Rurale). Titl: (Biomass economy (using agricultural by-products as source of energy)). L'ECONOMIE PAR LA BIOMASSE (VALORISATION ENERGETIQUE DES SOUS-PRODUITS AGRICOLES). Jrnl: Nuisances et Environnement (France). Impr: (Sep-Oct 1979). ISSN : ISSN 0337-8535. Cllt: (no.83) p. 26-30. AGRIS.

Page 119: Farm and Forest Biomass

­25­

184 BEISPIELE FOR ENERGIEGEWINNUNG AUS BIOMASSE UND ABFALLEN ­ Exemples de production d'énergie à partir des "biomasses" et des déchets. ­ Examples of energy production from biomass and wastes. BAUER (K.>. Bundesministerium Forschung Technol., Bonn 5300, Deu. V.D.I. Ber.; Deu; Date: 1979; No: 338; p.: 45­53; 12 Ref.; Τ Energietechnik­Grundlage einer sicheren Energie­versorgung. Tagung/1979/NORNBERG; Langee : Allemand. Problèmes posés par la collecte et te transport des matières premières végétales et des déchets susceptibles d'être utilisés pour la production d'énergie. Principes de procédés de transformation thermiques, chimiques et biologiques. PASCAL. 185 MODELLING NITROGEN FROM FARM WASTES, edited by J.K.R. GASSER, Agricultural Research Council, London, England. 6 χ 9" (15.5 χ 23 cm), vii + 208 pages, 66 illutì. 1979. Proceedings of a Seminar in the EEC Programme of Coor­dination of Research on Animal Effluents, held at the Université Catholique de Louvain, Belgium, October 10­11, 1978, and sponsored by the Commission of the European Communities, Directorate­General for Agriculture, Coordination of Agricultural Research. ISBN ­ 085 334 8693. Contents : 1. The use of open soil system and mathematical models to study in reactions and movement in soils. 2.Conversion and degradation of organic and inorganic nitrogen compounds from heavily loaded waste waters in amphibie soils. 3. The effect of nitrogen in pig slurry spread out at different application times. 4. Mathematical modelling of complex reactions and solute movement through soils. 5. The use of tracers to determine the dynamic nature of organic matter. 6. Mathematical modelling of nitrogen transformations in soil. 7. Nitrate production movement and losses in eoi Is. 8. Nitrogen mineralisation and nitrification of pig slurry added to soil in laboratory conditions. 9. Conclusions and recommandations. APPLIED SCIENCE PUBLISHERS. 186 HILLS, D.J., and ROBERTS, D.W. 1978. METHANE GAS PRODUCTION FROM LIVESTOCK MANURE AND CARBONACEOUS WASTES. Research Progress Report for U.C. Appropriate Technology, Davis, 14 pages, including 3 tables and 3 figures. USDA CRIS.

I ljj yeaeţable_b^grodu£ţs-;_fleneral_aţydi>eş

187 RECUPERATION DE "BIOCOMBUSTIBLES" DANS QUELQUES SYSTEMES DE CULTURE. QUELQUES DONNEES AGRONOMIQUES ET TECHNIQUES. HUTTER (W.). INRA - Toulouse. Colloque International CENECA - Agriculture et Energie, Paris, 27,28, 29 février 1980, pp. 221. 188 Agency : CSRS SD.; Period : 10 Oct 79 to 30 Sep 84; Invest : MIDDAUfitf P.R.; Project: SD00885, Perf. Org.: Microbiology, Location : S Dakota State Univ. Brookings SD. PRODUCTION OF ALCOHOL FUELS FROM LIGN0-CELLUL0SIC CROP RESIDUES AND DAMAGE CEREAL STARCHES. Objectives : Use the existing pilot plant to determine the actual production costs of producing 190 proof, 95%, alcohol fuel and the net energy balance of producing a gallon of fuel alcohol as a farm and community scale plant using corn and grains, especially damaged and high moisture crops, and the recovery costs for concentrating the by-product high protein animal feed for wet feeding of livestock. Use newly developed technology for determining the cost of fuel alcohol per gallon and the input-output net energy balance for conversion of cellulosic crop residues Including farm crop residues, straws, corn stover, sawdust, beet pulp, etc. and for connunities, of

Page 120: Farm and Forest Biomass

-26-

converting Land-fill plugging waste properand materials such as elevator grain dust to fuel alcohol. Perfect and determine the cost of producing cellulose enzymes to carry out the cellulose conversions to sugars and to fuel alcohol for objective. 2. Commercial cellulose is available at a prohibitively high cost. The experiments would be statistically designed and evaluated. USDA CRIS. 189 Agency : CSRS NO. Period: 1 Sep 79 to 30 Sep 84. Invest: LINDLEY J.Α.; BACKER L.F.; JOHNSON R.; Project: ND01438. Perf. Org.: Agri Engineering; Location: North Dakota State University Fargo ND. BIOMASS UTILIZATION AS AN ENERGY SOURCE. Objectives: Evaluate systems for collecting residue from field crops. Evaluate systems for densification of biomass. Evaluate systems for the direct combustion and gasification of biomass. Determine the economics and energy balance of collecting and utilizing biomass. Review availability of biomass residue and impact of removal in North Dakota. Approach: Various methods for collecting sunflower residue will be tried. Evaluate successful methods in terms of time, energy and residue collection efficiencies. Evaluate parameters affecting briquetting. Review potential of other methods of densification. Review combustion process and select appropriate technology for direct combustion of biomass. May design and construct new system. Determine optimum biomass form and evaluate combustion of biomass as a method or providing on-farm energy. Determine the economic of the various steps from residue removal to energy utilization. Review literature and data from agronomy and soils to predict quantities of residue produced and available for use as an energy source. USDA CRIS. 190 Agency : CSRS CALB. Period: 30 May 79 to 29 May 84. Invest: WILLIAMS L.A.; Project: CA-D*-VIT-3841-H; Perf Org: Viticulture & Enology; Location: Univ of California, Davis Cal., BYCONVERSION OF DISTILLERY AND WINERY WASTE. Objectives: Develop bioconversion processes based on winery and distillery wastes which allow economic recovery of by-products or energy while reducing pollution problems. Approach: Servey and chemically characterize winery and distillery waste streams. Survey and screen for organisms which perform interesting bioconversions of waste or its major components. Determine important bioconversion process parameters such as kinetic constants, yield factors, temperature limits, etc. in laboratory scale equipment. Perform economic analysis to determine desirability of pilot. USDA CRIS. 191 FLUIDIZED-BED ENERGY TECHNOLOGY FOR BIOMASS CONVERSION. Author: LEPORI, Wayne Α.; ANTHONY, R.G.; LALK, T.R.; CRAIG, Joe; GROVES, John. Location: Texas A and M Univ., Tx USA.; Journal: Tech.Bull. - Tex. Eng. Exp. Stn. Pubi: 80. Series: 80-2, Pages 32-40. Identifiers: cotton gin waste combustion gasification, fluidized bed combustion gasification cotton, combustion cotton waste fluidized bed, gasification cotton waste fluidized bed, fuel gas manuf cotton waste. CHEMICAL ABSTRACTS. 192 PRODUCCIÓN DE COMBUSTIBLE POR PIROLISIS DEL BAGAZO DE LA UVA: RENDIMIENTO Y PODER CALORIFICO ALTO. - Production de Combustible par pyrolyse de la bagasse de raisins ; rendement et pouvoir calorifique élevés. - Production of fuel by pyrolysis of the bagasse of grapes : high yield and calorific value. - F0USSARD (J.N.); TALAYRACH (B.); BES0MBES VAILHE <J.). INSA LAB. PHYS.-CHIM. APL., Toulouse, 31077 Fra. Afinidad: Esp.; Date: 1979; Vol: 36; No: 362; p. 335-337; Résumé: ENG/CAT; 10 réf.; Langue: Espagnol.

Page 121: Farm and Forest Biomass

­27­

Traitement préliminaire de la bagasse. Etude expérimentale de la pyrolyse dans un réacteur tubulaire de Laboratoire. Influence de la température sur la production de composés liquides. PASCAL. 193 RECUPERATION D'ENERGIE A PARTIR DE PRODUITS ET DECHETS VEGETAUX ­ Energy recovery from vegetable products and wastes ­. PILLARD ( J . O ; ABRIL (P.). Tech. Med.; 0040­1250, Fra; Date: 1979; Vol: 71; No: 11; p.: 60­62; Résumé : Eng; Langue: Français; Aperçu sur divers types de brûleurs de déchets végétaux et deux types de gazogènes. Schéma d'un four tournant de carboni­sation. PASCAL. 194 ENERGIEEINSATZ UND ENERGIEUMSATZ IM BEREICH DER PFLANZENPRODUKTION. HEYLAND, K.­U. et al. In Berichte über Landwirtschaft, Sonderheft 195 (1979) "Agrarwirtschaft und Energie", herausgegeben vom BML. 195 ABFALLHOLZ UND STROH, ENERGIETRÄGER DER ZUKUNFT?. STREHLER, A. In Agrar­technik international 1979. 196 GRAPE RESIDUE ­ A SOURCE FOR ENERGY AND HUMUS. Rebenstrester ­ Lieferant für Energie und Humus. RASP, H.; WALTER, Β. Neustadt an der Weinstrasse. Deutscher Weinwirtschaftsverlag Meininger GmbH & Co.; Die Weinwirtschaft, v. 115 (40), Oct. 5, 1979, p. 1237, ill. AGRICOLA. 197 ARE CROP RESIDUES PRACTICAL RENEWABLE SOURCES OF ENERGY ?. HITZHUSEN, F.J, S ABDALLAH, M. Ohio Report 64(1979)3: 39­41. PUDOC. 198 ARE CROP RESIDUES PRACTICAL RENEWABLE SOURCES OF ENERGY? HITZHUSEN, F.J. S ABDALLAH, M. Wooster, Ohio Agricultural Research and Development Center. Ohio Report on research and development in agriculture, home economics, and natural resources, v. 64 (3), May/June 1979, p. 39­41. Languages: English. Subfile: EXP. STN (State Exper. STN); Document type: Article. AGRICOLA. 199 TEA LEAF POWER! (Processing spect tea leaves tor fuel, waste (recycling). LEMAIRE, W.H.; Philadelphia. Food Engineering v. 51 (3), Mar 1979, p. 116­117, ill. ISSN 0015­637X; Languages: English; Document type : Article. AGRICOLA. 200 PHOTOSYNTHETIC PATHWAY AND BIOMASS ENERGY PRODUCTION (CASSAVA, SUGARCANE, AND PINEAPPLE). MARZOLA, D.L.; BARTOLOMEW, D.P.; Washington D.C.; American Association for the Advancement of Science. Science , v. 205 (4406), Aug. 10, 1979, p. 555­559, ill. ISSN 0036­8075; Languages : English, 61 ref. Subfile : Other US, (Not Exp Stn Ext USDA; Since 12/76); Document Type : Article. AGRICOLA. 201 AMERICAN AGRICULTURE ­ THE ENERGY PRODUCTION SYSTEM­GASOHOL. Soleta BOB. Natl Gasohol Commission, presented at AGA/EPRI/NCA/GAS RESEARCH Inst. 6th Energy Technology Conf, Wash DC; Feb 26­28, 79, P1026 (3). Survey Report: The production of gasohol from agricultural crops is surveyed.

Page 122: Farm and Forest Biomass

­28­

Starch and sugar crops are the most effective feedstocks for ethanol generation. The Brazilian gasohol program is briefly reviewed. ENERGYLINE. 202 ENERGY HOPES FROM REEDS. BJORK, S.; GRANELI/ U.; Inst. Limnology, Lund Univ., Sweden. Building Services S Environmental Engineer, 1979, 1.7, 6­7. Languages: English. 24 réf., 1 fig. The possible use of reed biomass as an energy source is discussed. Its cost is estimated to be similar to current oil costs in Sweden. CAB ABS. 203 UTILISATION DES TIGES ET FEUILLES DE MAIS. Agriculture, N. 415, 1978/1­; pp. 11­12, Utilisation des tiges et feuilles de mais, MINAG­PERIO. RESEDA. 204 GREEN FIRE OR PILOT LIGHT? Energy from plant biomass (Forestry). Grünes Feuer oder Sparflamme? Energie aud pflanzlicher Biomasse. KRAPFENBAUER, Α.; Wien, Österreichischer Agrarverlag. Allgemeine Forst— zeitung, v. 89 (8), Aug 1978, p. 269­271. ISSN 0002­5879; Languages : German, 10 ref. AGRICOLA. 205 BIOGAS PRODUCTION BY ANAEROBIC DIGESTION OF FRUIT AND VEGETABLE WASTE. A PRELIMINARY STUDY. KNOL, W.; MOST, M.M. van der; WAART, J. de.; Cent. Inst. f. Nutr. Foods Res. TNO, Zeist, Netherlands. Jourhal of the Science of Food and Agriculture, 1978, 29, 9, 822­830. Languages : En. 13 ref, 4 fig., 4 tab. Waste of apples, asparagus, carrots, green peas, French beans, spinach and strawberries from a canning factory have been screened on mesophilic anaerobic digestion in 90­day experiments at loading rates varying between 0.80 and 1.60 kg volatile solids (VS)/m3, day at a retention time of 32 days. Average biogas yiels varied from 0.30 to 0.58 m3/kg VS. day. High percentages of reduction in VS, carbohydrate and crude fibre were obtained in most experiments. Some waste materials showed unbalanced digestion as might be expected from carbohydrate­rich substrates. In those cases alkali addition, feed interruption and mixing with a nitrogen­rich substrate were used to overcome unbalanced digestion. Residual solids in the digested sludges were removed by flocculation with a polyelectrolyte and cent ri fugati on : liquids with lower COD remained after flocculation. CAB ABS. 206 YANG, P.Y. 1978. MANAGEMENT AND UTILIZATION OF WASTES FROM MASS REARING OF FRUIT FLIES. Research Report, Hawaiian Fruit Flies Lab., SEA, USDA. USDA CRIS. 207 HILLS, D.J. 1978. RESEARCH RECOMMENDATIONS FOR ON­SITE COMPOSTING GIN TRASH SCREENINGS. Report prepared for Cotton Incorporated, North Carolina. 8 pages including 1 table. USDA CRIS. 208 SYSTEMS STUDY OF FUELS FROM GRAINS AND GRASSES­PHASE I. BENSON, W.; ALLEN / ATHEY, R.; MCELROY, Α.; DAVIS M., Midwest Research Inst., MO. NTIS Report Alo­3729­1, Feb. 24, 78 (270). Special report : Examined is the technical and economic feasibility of supplying a significant percentage of U.S. energy needs from grasses and grains by the photosynthetic production of

Page 123: Farm and Forest Biomass

-29-

biomass. The scope of the study encompasses grain crop residues, who Le plant biomass from grain crops and nongrain crops on cropland, and whole plant biomass from grasses on pasture, rangeland, and federal range. Current total biomass generation from the various grasses and grains is assessed. The possibilities for introducing new crops and expanding production to marginal or presently idle land are evaluated. Proposed reasonable scenarios for actually harvesting biomass from selected combinations of crop residues, forages and hays, and new crops from land now in production are developed. ENERGYLINE. 209 ENERGY POTENTIAL OF TEXAS CROPS AND AGRICULTURAL RESIDUES. 0URSB0URN, CD.; LE PORI, W.A.; College Station, Tex., The Station. MP Texas, Agricultural Experiment Station, Feb. 1978 (1361), Feb. 1978, 82 p. Languages : English. Includes references. Geographic Location : Texas. Abstract : Energy avail­able in the crop residues of sorghum, cotton, wheat, corn, and rice represents over 64 percent of total energy input for Texas agriculture in 1973. More than SO percent of these residues are located on the Texas High Plains. Field collection and transportation of sorghum, wheat, and corn residues on the High Plains to a central location range from 81.37 to 81.45 per million BTU or MFC of natural gas. Cotton gin trash is centralized at gin location, hence, a readily available and economically the most feasible crop residue energy supply. Economic factors require that agricultural residues for energy be used very near where they are produced. AGRICOLA. 210 ENERGY POTENTIAL FROM AGRICULTURAL RESIDUES IN TEXAS. 0URSB0URN, C ; LACEUELL, R.D. Lexington, Ky., Southern Agricultural Economics Assoc, Southern Journal of agricultural economics v. 10 (2) Dec 1978, p. 73-78. ISSN 0081-3052, Languages: English. Includes references. Geographic Location : Texas. Extract : Fuel shortages, along with dramatic increases in the price of energy, have placed considerable emphasis on the development of new and competitive energy supplies.' In irrigated regions, the in­creased price and threat of curtailed supplies of natural gas have serious economic implications for the farm firm. Agriculture has the potential of replacing part of the energy it uses in the form of agricultural residues. The purpose of this article is to evaluate the use of residues from crop production in Texas as a feasible energy source. AGRICOLA. 211 RAILLARD, D.; GUIRAUD, D. RAMASSAGE, MANUTENTION ET VALORISATION DES RESIDUS DE RECOLTE, LES AUTRES RESIDUS RECUPERABLES. 8/3/1977, 11.8/3/1977 S 1, pp. 28-35. Récolte et utilisations des tiges ou rafles de mais et des collets ou feuilles de betterave industrielle. Valoration fourragère et industrielle par traitement mécanique et chimique des déchets de mais. Utilisation des résidus de betteraves par enfouissement ou consommation animale. MINAG-BR 7327. RESEDA. 212 UTILIZATION OF CELLULOSIC AGRICULTURAL WASTES BY MICROBES : FOR ENERGY OR BIOMASS CONVERSION (FOR MUSHROOM CULTIVATION), BY SOLID STATE OR SUBMERGES CULTURE. WANG, H.H.; LIU, C.H. Symposium on Sewage Treatment Tainan 2d Taipei, T'ai-wan yang ku tsa schi she. T'av-wan yang ku. -Taiwan mushrooms, v. 1 (4), Dec 1977, p. 101-108, ill. Languages: Chinese;, English. 15 ref. Document type : Article. AGRICOLA.

Page 124: Farm and Forest Biomass

­30­

213 ENERGY AND INDUSTRIAL MATERIALS FROM CROP RESIDUES. MEHTA, P.K. & N. PITT. Resource covery and Conservation 2(1976) 1: 23­38. afbn., grfkn., tabn., 9 lit. opgn. OogstafvaUen zoals rijstkaf, behoeven niet op het veld ver­brand te worden ­ met als nadeel luchtverontreiniging ­ maar kunnnen ook in speciale installaties verbrand worden met een nuttig gebruik van de daarbij vrijkomende energie. In de as zit silicium, bruikbaar als vul­materiaal voor rubber of cement (Doe.) PUDOC.

1.1.1. Straw 214 ENERGY FROM STRAW. Contractor DG XII­CEC. Programme 1979­1983. Project E= Energy from biomass. STREHLER (Α.), Bayerische Landesanstalt fur Landtechnik ­ TUMünchen, Vöttingerstr. 36, D­8050 Freising­Weihenstephan, RFA. 215 ENERGY FROM STRAW AND WOOD. STREHLER, Α., Technical University of Munich. Session IV, Paper IV/1. International Conference on Energy from Biomass, Brighton, 4­7 November 1980. Commission of the European Communities, in co­operation with the Department of Energy, London. 216 SOURIE (J.C); JAYET (P.A.). UNE EXPLORATION DE L'INTERET ECONOMIQUE DE DEUX UTILISATIONS ENERGETIQUES DES PAILLES, LE CHAUFFAGE DOMESTIQUE ET LE SECHAGE DU MAIS. Colloque CENECA, 27­28 février 1980, Paris, fév. 80 ­ 14 p. 217 FARM STRAW AS FUEL. THRING, M.W., Queen Mary College, London. Session IV, Paper IV/2. International Conference on Energy, from Biomass, Brighton, 4­7 November 1980, Commission oí the European Communities, in co­operation with the Department of Energy, London. 218 SOURIE, J.C. LA PAILLE, SOURCE D'ENERGIE BIENTOT RENTABLE? La France Agricole (Fra), η. 1774, 1979/06/29, p. 27, Le point sur la paille comme source d'énergie. MINAG­PERIO. RESEDA. 219 SOURIE U.C.); TROIZIER (N.). LES ASPECTS ECONOMIQUES DE LA COLLECTE DES PAILLES, Bull. Techn. d'information , juHlet^août 1979, 361­371. 220 SOMMER, W. HOCHDRUCKVERDICHTUNG VON STROH UND HOLZABFALLEN ZU RIESELFÄHIGEM SCHOTTGUT; MAN und Landtechnik Weihenstephan 1979. 221 UTILIZATION OF STRAW (AS A SOURCE OF ENERGY ON FARMS), OLKI Hyodyksi. ORAVA, R.; Helsinki, Tyotehoseura, Teho 1979, (1>, 1979, p. 22­25, iLL. Languages : Finnish; English. 5 réf., Document type : Article. AGRICOLA. 222 EXPERIENCES WITH THE USE OF DOMESTIC FUEL (FINDING A SUBSTITUTE FOR OIL, INCLUDES BURNING STRAW). Kot imai set poltteaineet kaytossa jo monella tilalla KALLIO­MANNILA, R.; KETTUNEN, P., Helsinki, Tyotehoseura, Teho 1979,(5), 1979, p. 22­26, ill., map. Languages: Finnish; English. Geographic Location: Finland. Document type: Article. AGRICOLA.

Page 125: Farm and Forest Biomass

­31­

223 SOURIE, J.C; TROIZIER, M. LA PAILLE, UNE SOURCE D'ENERGIE, REALITE OU UTOPIE? 1978, 25 p., 1978/09/04­09. Résultats technologiques obtenus peuvent repondre à la question utopie mais demeurent insuffisants pour un approvisionnement qui rendrait concurrentielles les installations de transformations de la paille, à l'échelon agricole et industriel. INRA GRI. RESEDA. 224 HERIAUX (S.). Action CEE "énergie solai re­biomasse". Production photo­synthétique de matière organique Groupe E ­ première phase ­ 1976­1977.

225 PRODUCTION DE PAILLE DE CEREALES ET DE TIGES DE MAIS A DES FINS ENERGETIQUES. Action CEE "Energie solaire ­ Biomasse". S. HERIAUX. INRA. Rapport de synthèse, septembre 1978, 75 p. 226 HEATING THANKS TO STRAW (AS FUEL). Se chauffer grâce à la paille. WEHRUNG, F.; Paris. Fermes modernes Nov. 1978, (69), Nov 1978, p. 38­39, ill. Languages : French. Document type : Article. AGRICOLA. 227 STROHPREIS, STROHMENGEN, STROHBERGUNG, ­ LEITUNGSBEDARF ZUR STROHAUFBEREITUNG, BMFT Studie 1978, Institut für Landtechnik, Freising­Weihenstephan. 228 UTILIZATION OF STRAW AND COMBUSTABLE WASTE FOR HEATING PURPOSES (Energy Sources). Udnyttelse af halm og andet braendbart affald til fyringsformal. SAMS, T.; Horsholm; Statens byggeforskningsinstitut, 1978. Energiudvinding og energibesparende foranstaltninger i landbruget, NJF­seminar 1977 / redaktion Borge Mortensen, Jan S. Strom, — p. 91­95, ill. Languages : Danish. Document type : Article. AGRICOLA. 229 DIE MÖGLICHKEIT DER STROHVERWERTUNG. La possibilité de valoriser la paille. The possibility of straw valorisation. KÜHTREIBER (F.); REHRL (K.); VECSEI (K.). Äff: Univ. Bodenkult. Inst. Landtech. Energiewirtsch., Wien 1190, Aut. Osterr. Ingr­Z.; Aut.; Date : 1978; Vol: 21; No: 12; p.: 436­442; 9 réf.; Langue : allemand. Applications à la chimie organique (furfurol, etc;). L'emploi comme combustibles est le plus prometteur. Fabrication de pellets de paille. On pourrait tirer de la production de paille, en Autriche, une énergie égale à 6% des énergies fossiles consommées. PASCAL. 230 ETUDE DES POSSIBILITES DE COLLECTE, DE STOCKAGE, DE TRANSPORT ET DE CONDITION­NEMENT DES PAILLES EN VUE DE LEUR VALORISATION ENERGETIQUE AU NIVEAU REGIONAL. D'ARNOUX, MICHARD, LAFFINEUR, STEVENARD, septembre 1977. Département de l'Indre : 73 p., Département de la Marne : 83 p. Synthèse : 90 p. Α · Γ · Κ · Χ · Α · 231 DOLZ, J.; DULPHY, J.P.; VENABLES, C , LUCAS, J. RAMASSAGE, MANUTENTION ET VALORISATION DES RESIDUS DE RECOLTE, LES UTILISATIONS DES SOUS­PRODUITS DE RECOLTE. 8/3/1977 iL/8/3/1977 S 1, pp. 36­73. Utilisation et transformation industrielle des sous­produits de récolte ­ agglomération des tiges de mais, traitement à la soude des pailles. Perspectives et possibilités d'utilisation des déchets de cultures. Les utilisations de la paille dans l'industrie, champignonnistes, panneaux, emballage, papeterie, voie chimique et dérives

Page 126: Farm and Forest Biomass

­32­

de La cellulose, des hémicelluloses, xylose, furfural, lignine> obtention de protéines par culture de micro organismes, alcool. La paille comme combustible : chaudière à granulés et brûleur à gazéification et post combustion. MINAG­BR 7327. RESEDA. 232 PRODUCTION OF CEREAL STRAW AS SOURCE OF FUEL AND RELATED PRODUCTS. CHARTIER (Ph.), 1977, INRA Versailles. 233 LUCAS (J.). L'UTILISATION DES SOUS­PRODUITS AGRICOLES. Tracteurs et machines agricoles. N. 6, 1977/6/­, pp. 31­39. Considérations énergétiques et économiques sur l'utilisation des sous­produits de l'agriculture ­valorisation par la biologie, la chimie, cas des pailles, influences de l'humidité. MINAG­PERIO. RESEDA. 234 PRODUCTION OF ENERGY FROM STRAW (ascertainment of the quantity of straw, determination of the calorific value, combustional systems, methods of hauling, transport and storage of straw). STREHLER (Α.), 1977. Bayerische Landesanstalt für Landtechnik, Technische Universität München, D 8050 FREISING, F.R.G. 235 STRO, EEN PROBLEEM DAT WAARSCHIJNLIJK SPOEDIG IS OPGELOST. BOSCHER (Η.). De Voor 8(1977) 36: 2­4 afbn. PUDOC 236 THE UTILISATION OF STRAW FOR HEATING AND OTHER PURPOSES. TOUGAARD­PEDBRSEN (T.) 1977. Institute of Agricultural Engineering, Royal Veterinary and Agricultural University, Copengahen, Denmark. 237 MANAGEMENT OFRICE STRAW FOR UTILIZATION. DOBIE, J.B.; MILLER, JR^.G.E.; and PARSONS, P.S. 1977. Transactions of the American Society of Agricultural Engineers 20(6): 1022­1028. USDA CRIS. 238 Agency: CSRS GEOX. Period: 30 Jun 71 to Feb 77. Invest: FIELDS C.L.; ABE, R.K. Project: Geo­FVSC­CSRS­05. Perf Org: Agriculture. Location: Fort Valley State College, Fort Valley GA. THE USE OF WHEAT STRAW AS ENERGY SOURCE FOR FINISHING YEARLING STEERS. Objectives : Evaluate the replacement of the energy component of finishing ration with limited amounts of wheat straw and compare the feeding value with that of a conventional mixture. Approach: Thirty­six steers will be used on three treatments. Wheat straw will be used in experi­mental rations at two levels as a roughage source. The control ration will use coastal bermudagrass hay as the roughage. Rations are to be i soni tro­genous. Progress: 74/01 74/12. Thirty­two (32) mixed yearling beef steers were used in a feeding study to evaluate the use of a limited amount of wheat straw as an energy component of a finishing beef cattle ration. Two dietary treatments containing either 20X ground Coastal bermudagrass hay or 20% ground wheat straw were fed to the steers (16 per treatment, 2 replicates per treatment) for a test period of 56 days. There were no significant differences in average daily gain, daily dry matter intake, or feed efficiency between the ground hay and ground wheat straw diets. The dressing percentage was significantly high (P>.05) for those steers fed the groundhay diet. Hot carcass weight, quality grade, yield grade and marbling score were not affected by dietary treatment. It was concluded that 20X

Page 127: Farm and Forest Biomass

­33­

ground wheat straw could serve a satisfactory replacement for 20% ground Coastal bermudagrass hay In a finishing diet for yearling cattle. Publication« : 74/01 74/12. No publications reported this period. USDA CRIS. 239 UNTERSUCHUNG DER VERBRENNUNGSTECHNISCHEN EIGENSCHAFTEN VON GETREIDESTROH. ORTH, H.W. Grundlagen der Landtechnik 26(1976) 6: 230­234. afbn. grfn. schema. 2 lit. opgn. PUDOC 240 MÖGLICHKEITEN DER ENERGIEGEWINNUNG AUS GETREIDESTROH. STREHLER, A. Präsentation für BMFT, Nov. 1976, KFA Jülich, zitiert bei (26) 241 ANVENDELSE AF HALM SOM BRAENDSEL TIL OPVARMNING AF BEBOELSER M.V. Use of straw as fuel for domestic heating, etc. Evaluation of alternative uses and methods of use; mechanization and improvement of physical efficiency; grasses and forage crops in general; other waste products; thermodynamics (heat and mass transfer); technology. KLAUSEN, Κ.G. Landbrugets Bamraad for Forskning og Forsoeg (the joint Committee for Agricultural Research and Experiments). (Axelborg; Vesterbrogade 4A, 4.Sal, Vaer. 19; 1620 Köbenhavn V. Statens Redskabsproever. (Bygholm 8700 Horsens). 1976. AGREP. 242 Agency: ARS 1109. Period: 24 Jun 75 to 23 Jun 76. Invest: HORSFIELD B., CARNS, H.R. Project: 1090­16063­002(C. Location: Univ. of California, Davis Cat. ASSESSMENT OF UTILIZING RICE STRAW FOR 0N­THE­ FARM POWER. Objectives : Obtain a technilogical and economic assessment of the utilization of rice straw residue from the California Sacramento Valley for on­the­farm generation. Approach: This study will provide an evaluation of the economic feasibility of rice straw foi—on­the­farm or local agricultural communities being converted to a utilizable energy form, including the cost of collection and transportation: an assessment of the existing and proposed hardware including basic design parameters. Recommendations will be made for research and development efforts to reduce or eliminate environmental, sociological, or institutional constraints; recommendations for or against the concepts of energy recovery from rice straw. If the concept appears promising, the study will include recommendations for equipment development and systems operations. USDA CRIS. 243 BRENNVERHALTEN VON STROH BEI UNTERSCHIEDLICHEN TECHNISCHEN BETRIEBSBEDINGUNGEN UNTER BESONDERER BERÜCKSICHTIGUNG DER EMISSION VON SCHADSTOFFEN UND DER FREI­SETZUNG VON WAERME. Research on burning of straw, regarding environmental control and energy utilization. Protection against pollution; developing efficient methods for processing by­products and wastes; other waste products; thermodynamics(heat and mass transfer); Processing: Public Health Engineering. ORTH, H.W. Bundesforschungsanstalt für Landwirtschaft, Braunschweig­Völkenrode. (3300 Braunschweig; Bundesallee 50, Institut für Landmaschinenforschung. 1974. AGREP. 244 STUDIE ZUR SINNVOLLEN VERWENDUNG ÜBERSCHÜSSIGER STROHABFALLE AUF BUNDES­DEUTSCHEM GEBIET; Studie der ERN0 Raumfahrtechnik GmbH Im Auftrag des BMFT 1974.

Page 128: Farm and Forest Biomass

-34-

245 STROH ALS ENERGETISCHER ROHSTOFF. STUTZER, D. Landtechnik 30(1975)6:277. 1 kg stro geeft 3400 kcal; vergeleken met prijzen van huisbrandolie van 0,25 DM/liter en meer is stro als brandstof al economisch; in Denemarken is daar een speciale verbrandingsketel voor ontworpen. Stro is ook geschikt voor de papierfabri kage, speciaal in tijden met hoge papierprijzen, maar de opslagruimte drukt op de aconomie. Met succes zijn 5 cm dikke bouw­platen uit stro vervaardigd, die heel goed in de dakbedekking verwerkt kunnen worden en veel minder brandgevaarlijk zijn als werd aangenomen. (Doe). PUDOC. 246 FREMSTILLING AF METANGAS FRA HALM. Production of methane from straw. MIKKELSEN (J.P.).; SKOTTE (H.). Statens Forsøgsvirksomhed i Plantekultur. Statens Planteavls-Laboratorium (Aage Henriksen). Bakteriologisk afdeling (T.Vincents Nissen). Tidsskrift for Plantiad. 1978(5) pp. 652-56-1974.

1.2. Animal waste products - general studies or those covering different animal excrement.

247 Agency: CSRS VA. Period: 1 Jul 79 to 30 Sep 84. Invest: B0NTET0T J.P.; DIRNEGAY, E.T.; LAMM, W.D. Project: VA-0622345, Perf Org: Animal Science, Location: Virginia Poly Inst, Blacksburg Va. ANIMAL WASTE UTILIZATION AND TREATMENT SYSTEMS. Objectives: Determine optimum harvesting, storing and processing procedures in utilizing animal wastes as feedstuffs,sources of energy and culture media and determine the response of animals to diets containing animal waste products and process by-products. Approach : Various wastes, such as broiler litter, caged layer waste, swine waste and cattle waste, will be ensiled at different moisture levels with and without other feedstuffs and additives. Ensiling characteristics and nutritive value will be measured. USDA CRIS. 248 Agency: CSRS GEO. Period: 1 Jul 79 to 30 Sep 84. Invest: NEWTON, G.L., Project: GE000322. Perf Org: Animal Science. Location: Georgia Coastal Plain Expt Sta, Ti fton GA. ANIMAL WASTE UTILIZATION AND TREATMENT SYSTEMS. Objectives : Determine optimum harvesting, storing and processing procedures in utilizing animal wastes as feedstuffs, sources of energy and culture media and determine the response of animals to diets containing animal waste products and process by-products. Determine biological and chemical responses that occur in the soil, plant and hydrologie-systems when animal wastes are applied to the major soil types of the region as plant fertilizers or as part of treatment or disposal schemes. Optimize waste treatment processes and management techniques to minimize energy requirements, improve uti lizating and enhance management efficiency, and evaluate methods of improving air and water quality in systems which recirculate waste water. Approach : Swine fecal solids, separated from the effluent of a flush system will be evaluated as a feedstuff. Liquid swine wastes will be applied to field plots which are instrumented to measure and sample runoff and sub­surface flow in order to determine mass balances of nutrients over several cropping systems for several years. The effect which solids removal from the effluent of a flush cleaned swine facility has on lagoon performance and recycled flush water will be determined as well as the effect of chemical additives on abatement of odor associated with the recycled water. USDA CRIS.

Page 129: Farm and Forest Biomass

-35-

249 Agency: CSRS MIS, Period : 1 Jul 79 to 30 Sep 84. Invest : RAMSEY, D.S.; KENNEDY, M.V.; ARNOLD, B.L. Project: HIS-0402. Perf Org: Dairy Science. Location: Mississippi State Univ., Mississippi State Mis. ANIMAL WASTE UTILIZATION AND TREATMENT SYSTEMS. Objectives : Determine optimum harvesting, storing and processing procedures in utilizing animal wastes as feedstuffs, sources of energy and culture media and determine the response of animals to diets containing animal waste products and process by-products. Optimize waste treatment processes and management techniques to minimize energy requirements, improve utilization and enhance manage­ment efficiency, and evaluate methods of improving air and water quality in systems which recirculate waste water. Approach : Separated solids from dairy waste will be subjected to enzymatic degradation by micro­organisms. The resulting culture will be used as a growth media for algae and/or higher plants. Special emphasis will be on degradation of cellulose by cellulase enzyme. Conversion at ambiet temperatures will be stressed. Nutrient content of cultures will be determined; three cell and two cell lagoon systems will be used to study recirculated effluent. Water usage will be measured and excess water removed by irrigation. Microbiological examination will be by APHA methodology and by techniques to be developed for the microtiter system. USDA CRIS. 250 Agency: CSRS ALA. Period: 1 JUL 79 to 30 Sep 84. Invest : HILL D.T., Project: ALA00501. Perf Org: Agri Engineering. Location: Auburn Univ.; Auburn, Ala. ANIMAL WASTE UTILIZATION AND TREATMENT SYSTEMS. Objective: Determine optimum harvesting, storing and processing procedures in utilizing animal wastes as feedstuffs, sources of energy and culture media and determine the response of animals to diets containing animal waste products and process by-products. Optimize waste treatment processes and management techniques to minimize energy requirements, improve utilization and enhance management efficiency, and evaluate methods of improving air and water quality in systems which recirculate waste water. Approach: Collection efficiency of cattle waste on slatted and solid concrete floors will be studied. Cattle waste will be fermented under controlled conditions and mixed with other feed ingredients to study conversion efficiency. Studies on cattle and poultry manure as fish feeds and pond fertilizer will be conducted. Research on algae production and feeding and refeeding anaerobic digestion residues and optimization of these processed will occur. Solid-liquid separation and utilization of these components of flushed waste will be studied. USDA CRIS. 251 Agency : CSRS SC. Period : 1 Jul 79 to 30 Sep 84. Invest : HEGG R.O., BARTH, CL.; KING, T.G. Project : SC00398. Perf Org: Agri Engineering. Location: Clemson Univ., Clemson, SC. ANIMAL WASTE UTILIZATION AND TREATMENT SYSTEMS. Objectives : Determine optimum harvesting, storing and processing procedures in utilizing animal wastes as feedstuffs, sources of energy and culture media and determine the response of animals to diets containing animal waste products and process by-products. Determine biological and chemical responses that occur in the soil, plant and hydrologie systems when animal wastes are applied to the major soil types of the region. Optimize waste treatment processes and management techniques to minimize energy requirements improve utilization and enhance management efficiency, and evaluate methods of improving air and water quality in systems which recir­culate waste water. Approach : South Carolina approaches will include : Combining cage-layer manure and dry feeds for ensiling and recycling thcough steers, application of swines lagoons effluent onto pine or hardwood forest, overland flow treatment of beef feedlot runoff,land application of animal

Page 130: Farm and Forest Biomass

-36-

manure and analysis of animal waste lagoons for utilization of the liquids and sludges. USDA CRIS. 252 Agency : CSRS NY.C. Period : 18 Dec 78 to 30 Sep 81. Invest : SOBEL A.T.; MUCK, R.E. Project : NYC-123422. Perf Org : Agri Engineering. Location : Cornell Univ. Ithaca, NY. ENERGY IN ANIMAL MANURES. Objectives : Investigate the utilization of biologically released heat from animal manures for on-farm applications. Specifically investigate the effect of heat energy released from in-barn stores manure on the quality of the environment within the barn. Approach : Agricultural by-products, animal manure being a specific example, represent a considerable quantity of energy. These by-products represent to the Agricultural Engineer a challenge to make use of this energy to supplement our dwingling and increasingly more costly energy sources. The purpose of this research project is to take an overall look at energy from animal manures vith specific emphasis on utilizing biologically produced heat and to provide some basic concepts into the magnitude of heat energy available, the conditions favorable to Its release, and potential means of utilizing this energy. A comparison of the various forms of energy will be made to determine the efficiencies of energy utilization systems. ' USDA CRIS. 253 Agency : ARS 1307. Period : 10 Feb 78 to 10 Feb 81. Invest : MUCK, R.E., Project : 1307-20400-002. Perf. Org : USDA-ARS Anim Waste Disp Res, 114 Riley-Robb Hall. Location : Cornell Univ., Ithaca NY. IMPROVING DAIRY WASTE MANAGEMENT SYSTEMS TO CONSERVE NITROGEN AND ENERGY. Objectives : Identify dairy waste management practices which will provide practical nitrogen conservation. Quantify the transformations and losses of manurial nitrogen, from excretion through land application, for various waste management systems. Approach : Through a combination of laboratory and field experiments nitrogen transformations and losses will be determined in relation to environmental conditions, energy, and labor Inputs for animal waste management systems. These data will be used with computer models to predict performance of waste managements systems for various situations. Current technology for dairy waste managements will be reviewed and evaluated in relation to research results. Modifications to systems will be developed to imptove their performance. Keywords: Nitrogen waste-management manures nitrification waste-handling losses denitrification animal-waste dairy-cattle management-systems engineering conservation waste-utilization ammonia performance mineralization volatilization. Progress : 77/10 78/09. A literature search of dairy waste management systems was made, particularly noting nitrogen transformation in those systems. For most waste management systems nitrogen conservation data is available; however, little was found dealing with the effects of manage­ment decisions and environmental factors on nitrogen losses from these systems. A laboratory study was Initiated to compare ammonia volatilization rates from dairy manure treated by different waste management methods (fresh, anaerobic digestor, oxidation ditch, deep ditch storage). Five hundred g samples are placed in shallow trays with air movement over the samples (1-20 kph), humidity (100%), and temperature (10, 20, 30 degrees C) being controlled. Initial and final ammonia, nitrate, and organic nitrogen contents of the manure are being measured along with periodic pH measure­ments and ammonia being scrubbed daily from the air passing over the samples. Publications : 77/10 78/09. No publications reported this period. USDA CRIS.

Page 131: Farm and Forest Biomass

-37-

254 Agency : CSRS IOW. Period : 1 Jul 75 to 30 Sep 80. Invest : SMITH, R.J.; HAMMOND E.G.; VETTER, R.L. Project : I0W02126. Pert Org : Agri Engineering. Location : Iowa State Univ., Ames low. ANIMAL WASTE MANAGEMENT SYSTEMS FOR THE 1980's. Objectives : Conceptualize, develop, analyze and optimize animal manure management systems with least cost and energy requirements for pollution control compatible with changing socio-politico-economic patterns. Specific objectives are : Develop optimal animal manure management systems to meet the evolving environmental and economic require­ments and be compatible with the increasing needs of our nation and the world for animal protein. Characterize atmospheric contaminants and develop abatement methods to eliminate the contaminants potentially harmful effects on human and animal health. Investigate use of by-products of animal manure management systems for energy sources, feed ingredients, plant nutrients for crop production and other potential uses with consideration of the human, animal and plant health factors. Approach : Pilot scale work on surface aeration of lagoons will be scaled up for a full size lagoon. Results ebtained from a 100 gallon existing anaerobic digester will be extended to a pilot scale unit for several beef animals. Cooperative work with animal scientists will determine the feasibility of using digester effluent to produce stover silage. Observer panels will correlate odors from various livestock production systems with chemical odor standards. USDA CRIS.

255 Agency : CSRS MO. Period : 1 Jul 70 to 30 Jun 80. Invest : SIEVERS, D.M.; FISCHER, J.R.; IANN0TTI, E.L. Project : MO-00080. Perf Org : Agri Engineer­ing. Location : Univ of Missouri, Columbia, Mo. LIVESTOCK RESIDUE UTILIZATION SYSTEMS. Objectives : Develop livestock residue management systems which are adaptable to Missouri's conditions and maximize resource utilization. Approach : Livestock residue utilization systems holding most promise for adoption under Missouri conditions will be incorporated into existing and future animal production facilities on university farms to study their value for pollution abatement and resource utilization. Systems will be installed and studied as components; e.g., collection, treatment, processing and utilization components. Components to be studied include hydraulic flushing, solids-liquid separation, settling basins, anaerobic lagoons, soil-plant filters, anaerobic digesters, oxidation ditches and irrigation equipment. Cooperative research with private pro­ducers will be used where appropriate opportunities exist to evaluate unique components or systems and where field installations can serve as demonstrations to the farming community. USDA CRIS. 256 Agency : CSRS MICL. Period : 1 Jul 71 to 30 Sep 80. Invest : THOMAS, J.W. Project : MICL01078. Perf Org : Dairy. Location : Michigan State Univ. East Lansing, Mic. ANIMAL WASTE MANAGEMENT SYSTEM FOR THE 1980'S. Objectives : Conceptualize, develop, analyze and optimize animal manure management systems with least cost and energy requirements for pollution control compatible with changing sociopolitico-economic patterns. Develop optimal animal manure management systems to meet the evolving environmental and economic requirements and be compatible with the increasing needs of our nation and the world for animal protein. Characterize atmospheric contaminants and to develop abatement methods to eliminate the contaminants potentially harmful effects on human and animal health. Investigate use of by-products of animal manure management systems for energy sources, feed ingredients, plant nutrients for crop production and other potential uses with consideration of the human, animal and plant health factors.

Page 132: Farm and Forest Biomass

-38-

Approach : Manure simulating that in Liquid manure pits but held in laboratory jars will be treated with chemicals and odor evaluated by several persons. Nitrogen loss will be measured. Excreta of different types (varying animal source and fresh or dried, etc.) and dry matter contents will be added to corn forage and the mixture ensiled. Silage characteristics and animal acceptability and performance will be measured. USDA CRIS. 257 Agency : CSBS MICL. Period : 23 Feb 71 to 30 Sep 80. Invest : Y0K0YAMA M.T., Project: MUCL01074. Perf Org : Animal Husbandry. Location : Michigan State Univ; East Lansing, Mic. ANIMAL WASTE MANAGEMENT SYSTEMS FOR THE 1980'S -UTILIZATION OF LIVESTOCK WASTE THROUGH NUTRIENT REC. Objectives : Investigate use of by-products of animal manure management systems for energy sources, feed ingredients, plant nutrients for crop production and other potential uses with consideration of the human, animal and plant health factors. Approach : Livestock waste will be evaluated by standard analyses as to their nutritional composition, and methods of processing tested.for applicability on conserving, concentrating or potentiating desired nutritional components. Possibility of producing or concentrating toxic factors, or removing toxic factors by processing procedures will be investigated. The effectivness of the mode of refeeding to nutrient utilization will be explored. Experimentally test for sub-clinical toxicity as a result of livestock waste feeding. Progress : 78/01 78/12. (I) We have concluded our 180 days feeding study with dehydrated poultry waste and all of our data on physiological parameters, hematology, urinalysis, drug metabolizing enzyme activity and histopathology have not shown any adverse effects activity and histopathology have not shown any adverse effects of recycling poultry waste by refeeding to cattle. In retrospect, we have not covered many areas of concern (i.e. immuno-sensitivity , reproduction, transmission of pathogens, etc.); however, it was evident from the parameters we examined that there was no deviation from the norm. (II); When chickens were injecred with 14C-phenol, and the radioactivity recovered in the feces, it was found that the phenol was detoxified to a more polar metabolite. Infusion of this 14C-metabolite into the rumen of a sheep, resulted in radioactivity appearing in the sheep's urine. This suggests that the metabolite was either (1) absorbed unchanged, or (2) retoxified by rumen bacteria, then absorbed and detoxified again by the sheep. This mechanism is being investigated further, and would have implications in drug and feed additive residues in poultry feces. Publications : 78/01 78/12. No publications reported this period. USDA CRIS.

258 Agency : CSRS COL. Period : 1 Jul 70 to 30 Jun 80. Invest :M0RRIS0N, S.M.; WARD, J.C.; HANSEN R.W. Project: COL00222. Perf Org : Veterinary Medicine. Location : Colorado State Univ; Fort Collins, Col. ANIMAL WASTE MANAGEMENT SYSTEMS FOR THE 1980'S. Objectives : Develop optimal animal manure management systems to meet the evolving environmental and economic requirements and be compatible with the increasing needs of our nation and the world for animal protein; investigate use of by-products of animal manure management systems for energy sources, feed ingredients, plant nutrients for crop production and other potential uses. Approach : Examine the role of feedlot waste (FLW) particle size on chemically modifying manure for fermentations and explore the dual culture (mold and yeast) fermentations process as a means of converting cellulosics to carbohydrates for yeast protein growth. The fermentation of fractionated and pretreated manures are used to increase bio-mass in an energy self-sufficient system to enhance the value of manure for refeeding : study to improve the protein recovery from FLW. Study harvesting Practices to provide greatest retention of valuable manure constituents while minimizing detrimental environmental impacts. Modified manures are to be

Page 133: Farm and Forest Biomass

-39-

examined as substrate for optimizing bacterial methane production. Make further evaluation of the sodium content in feeds to reduce runoff salt pollution by better management of feeds. Use of solar radiation transparent coverings over feedlot area to eliminate precipitation, evaporate feedlot moisture and reduce volume of manure to manage as well as odors is to be examined. USDA CRIS. 259 Agency : CSRS GEO. Period : 1 Jul 75 to 1 Jul 80. Invest : NEWTON G.L. Project : GE000271. Perf Org : Animal Science. Location : Georgia Coastal Plain Expt Sta, Tifton Ga. RESOURCE RECOVERY FRON LIVESTOCK WASTES. Objectives : Determine if deep-pit stored manure can be used for methane production and the feeding value of digestef sludge. Develop means of reducing the nitrogen loss from oxidation ditsches. Develop ways of utilizing fibrous materials removed from the stream of a flush waste removal system. Determine If certain algae can be used effectively to produce a usable product from waste waters. Incorporate procedures for resource recovery into systems and evaluate the practicality. Approach : Waste from beef, dairy and swine research units will be available for research on recovery of livestock waste material. Both laboratory and' larger scale research studies will be initiated to evaluate the component parts of the waste material for feed, fertilizer and gas production. At the saae time, environmental pollution will be monitored. USDA CRIS. 260 Agency : CSRS IND. Period : 1 Jul 75 to 30 Sep 80. Invest : NYE J.C. Project : IND46033A. Perf Org : Agri Engineering. Location : Purdue Univ. Lafayette, Ind. ANIMAL WASTE MANAGEMENT SYSTEMS FOR THE 1980'S. Objectives : Develop optimal animal manure management systems to meet evolving environmental and economic requirements; investigate use of by-products of animal manure management systems for energy sources, feed ingredients, plant nutrients for crop production and other potential uses. Approach : Complete flushing systems In conjunction with one, two and three-stage lagoons are to be tried for swine production systems. Observations are to be made on a run-off storage and irrigation system for a dairy cow operation. Response of crops to various levels of application of swine and dairy cattle manure are to be observed. The synthesis of wastes by single cell bacteria is to be continued. Methane production research is to be continued. USDA CRIS. 261 Agency : CSRS WIS. Period : 1 Jul 63 to 30 Sep 80. Invest : CONVERSE J.C; BUBENZER G.D. Project : WIS05008-6008. Perf Org : Agri Engineering. Location : Univ of Wisconsin, Madison, Wis. ANIMAL WASTE MANAGEMENT SYSTEMS FOR THE 1980'S. Objectives : Develop optimal animal manure management systems to meet the evolving environmental and economic requirements and be compatible with the increasing needs of our nation and the world for animal protein. Investigate use of by-products of animal manure management systems for energy source feed ingredients, plant nutrients for crop production and other potential uses with consideration of the human, animal and plant health factors. Characterize the non-point population water runoff sources from livestock and poultry enterprises on pasture production systems and land areas with manure application and to further develop guidelines for abatement of non-pollution sources from animal manure. Approach : Anaerobic digesters for poultry and dairy cattle manure are being evaluated for energy inputs and outputs, solids degradation, of gas composition and fertilizer value. A liquid manure handling system Is

Page 134: Farm and Forest Biomass

-40-

being developed for dairy replacements utilizing manure scraping with and without slatted floors. A manure nutrient runoff model is being developed to predict nutrient movement of winter applied manure during spring runoff. Barnyard runoff and nutrient movement is being evaluated for medium size dairy herds on earthen lots for five different soil conditions. Protein production utilizing photosynethic bacteria and anaerobic digested effluents is being evaluated. USDA CRIS. 262 THE PRODUCTION OF FEEDSTUFF BIOMASS FROM LIQUID ORGANIC WASTES BY FERMENTATION. Author : GRAY, P; BERRY, D.R. Location : Dep. Appi. Microbiol., Univ. Strathclyde, Glasgow. Scot. Journal : Handb. Org. Waste Convers. Pubi. : 80, Pages: 339-82. Publisher : Van Nostrand-Reinhold, Address : New York, N.Y. Avail : Bewick, Michael W.M. Identifiers : review waste fermn feed food. CHEMICAL ABSTRACTS. 263 EFFLUENTS FROM LIVESTOCK edited by J.K.R. GASSER, Agricultural Research Council, London, England. Assisted by J.C. Hawkins, J.R. O'Callaghan and B.F. Pain. 6x9" <15'6 χ 23 cm), v+712 pages, 127 illus. 1980. Proceedings of a seminar in the EEC programme of Effluents from Intensive Livestock, held at Bad Zwischenahn, West Germany, 2-5 October 1979, and sponsored by the Commission of the European Communities, Directorate-General for Agriculture, Co-ordination of Agricultural Research, Discussions were held for the majority of the papers. Table of contents : Session I : Slurry Characterisation and its Use for Arable Crops. Session II : The Use of Slurry for Grassland and Forage Crops. Session III : Problems of Copper in Slurry; Modelling; Treatment of Slurry. Session IV: Odour Characterisation and Measurement. Session V : Review of the Effluents from Intensive Livestock· Programme. Closing remarks. List of participants. CIP : 628'.7TD930. b40.00 plus b1.45 post/packing. Abstract made by Applied Science Publishers. 264 COLLOQUE. Congrès International sur le thème : Traitement et utilisation des déjections zootechniques - Mantoue - 20-21 mars 1980. + 200 pages. 265 S0UTY. PERSPECTIVES D'ECONOMIES ET DE PRODUCTION D'ENERGIE DANS LES INSTALLATIONS D'ELEVAGE. Constructions Rurales, Bull. Doc. Février 1980, pp. 3-17. 266 FUMIERS ET LISIERS : UNE MATIERE PREMIERE QUI S'IGNORE. AUBART (Ch.) Société Commerciale des Potasses et de l'Azote. Centre de Recherche 68700 FERNAY. Cultiv, sept. 1980, pp. 60-61. 267 une centrale thermo-ELECTRIQUE D'UNE PUISSANCE DE 20 UGB. LAFON (P.). L'élevage bovin - ovin - caprin. N° 86, juillet 1979. 268 L'AVENIR DU GAZ DE FUMIER. LAFON (P.). L'élevage bovin- ovin - caprin, n° 92, pp. 67, février 1980. 269 ECONOMIC ASPECTS 0F THE PRODUCTION 0F BIOGAS FROM ANIMAL WASTES. W. KLEINHANB, Institut für Betriebswirtschaft. Session III Paper III/32. International Conference on Energy from biomass, Brighton 4-7 November 1980. Commission of the European Communities, in co-operation with the Department of Energy, London.

Page 135: Farm and Forest Biomass

-41-

270 RAPPORT DE VISITE D'INSTALLATIONS DE PRODUCTION DE METHANE BIOLOGIQUE AU DEPART DE LISIER DE PORCS ET DE LISIER DE BOVINS. Ministère de l'Agriculture - Service du Génie Rural, Wageningen. 19 février 1980. 271 CONSOMMATIONS D'ENERGIE DES EXPLOITATIONS AGRICOLES ET POTENTIALITES ENERGETIQUES DE LA BIOMASSE (FUMIERS ET LISIERS) Oct. 79, CAEN - ANERA -. Résumé : analyse èicro-économique de la commune de Marchesieux dans la Manche. 272 SENZA INQUINARE PRODUZIONE DI BIOGAS DAL RICICLAGGIO DEI REFLUI DI STALLA. LACO (G.). 273 METANO DAI RIFIUTI DI ALLEVAMENTO. ALFONSO (L.) 3 p. 274 MOUNTAIN HOME GEOTHERMAL PROJECT-Α DIRECT GEOTHERMAL APPLICATION TO AN INTEGRATED LIVESTOCK COMPLEX IN IDAHO. LONGYEAR Alfred B. Lahontan Inc, Sacramento. Presented at Geothermal Resources Council 3rd Annual Meeting, Reno, Sep 24-27 , 79, V3, P373 (3). Technical Report : The engineering and economics of the direct application of a geothermal resource to a vertically integrated Livestock complex in Adaho was investigated. A system of feed production, swine raising, slaughter, potato processing, and waste management was selected for the study based on market trends, regional practices, commercial hardware, and resource characteristics. The yearly production amounts to 150.000 hogs, 28 million LB of processed potatoes, 7300 tons of fertilizer, and 1000 continuous horsepower from methane '1 diagram, 1 graph, 7 references, 2 tables). ENERGYLINE. 275 METHANE PRODUCTION FROM ANIMAL WASTES AND ITS PROSPECTS IN JAPAN. HAGA, Κ. et al. Agricultural Wastes 1(1979) 1:45-55. Grfk. schema's, tabn. tekn. 4 refs. samenv. Bespreking van de vooruitzichten in Japan; schatting van de mogelijke gasprodukt i e (Doc). PUDOC. 276 POSSIBILITIES AND PROSPECTS OF OBTAINING ENERGY WITH THE AID OF METHANE FERMENTATION (OF MANURE). KREPIS, I.B. Moskva, "Nauka". Izvestiia Akademi i nauk SSSR, seriia biologicheskaia Akademiia nauk SSSR. Jan/Feb 1979. (1), Jan/Feb 1979. p. 103-112, ill. ISSN 0002-3329. NAL : 511 SA2B. Languages : Russian; English. 31 ref. Document type : Article. AGRICOLA. 277 STUDIES ON BIOGAS GENERATION FROM ANIMAL WASTES. Author : PARK, Y.D.; LIM, J.Η.; PARK, N.J., Location : Inst. Agrie. Eng. Util., Off. Rural Dev., Suweon, S. Korea. Journal : Nongsa Sihom Yongu Pogo. Pubi: 79. Series : 21. Issue : Hortic. Agr. Eng. Pages : A61-A68. Identifiers : biogas generation animal waste; CHEMICAL ABSTRACTS. 278 BIOGAS PLANTS — PROBLEMS AND PROSPECTS (Harnessing of manurial resources and providing renewable sources of energy in the villages). MAKHAN, D.S.; New Delhi, Fertiliser Association of India. Fertiliser News, v. 24 (4), Apr. 1979, p. 35-39, ill. ISSN 0015-0266. Languages : English. 1 ref. Geographic Location : India. Document Type : Article. AGRICOLA.

Page 136: Farm and Forest Biomass

­42­

279 BIOGAS AS AN ALTERNATIVE SOURCE OF ENERGY? (Use of animal and industrial waste products). Biogas als alternative Energiequelle. BRENNDORFER, M. Hildesheim, Arbeitsgemeinschaft Deutscher Tierzuchter. Der Tierzuchter, ν 30 (8), Aug 15,1978 , p. 353­355, III. ISSN 0040­7364. Languages : German. AGRICOLA. 280 RICERCA DI UNE CONVENIENTE MECCANIZZAZIONE DEL RICICLAGGIO A SCOPO ALIMENTARE­ZOOTECNICO DEI SOLIDI OTTENUTI PER SEPARAZIONE DELLE DEIEZIONI BOVINE IN FORMA LIQUIDA. Research of a suitable mechanization of recycling with feed live­stock as its aim, of solide obtained by separation of cattle dejection in a fluid form. Developing efficient methods for processing by­products and wastes; superfluous dung and urine; cattle; concentrates; mechanics, hydro­and aerodynamics; processing. COLZANI, G.; CONTE, L. Ministerio dell1 Agricoltura e delle Foreste. Istituto Sper. per la Meccanizzazione agri­cola (Via XX Settembre 98/ E; 00187 ROMA). 1978. AGREP. 281 FUEL GAS PRODUCTION FROM ANIMAL RESIDUE. II. An Economie assessment (mathematical models). ASHARE, E.; UENTUORTH, R.L. Amsterdam, Elsevier Scientific Pub. Co. Resource recovery and conservation v. 3 (4), Dec 1978, p. 359­386, ill. ISSN 0304­3967; Languages : English. 20 ref. Document type : Article. . AGRICOLA. 282 POWER CONSUMPTION IN AGRICULTURE : WHAT ARE THE ALTERNATIVES ? Consumi energetici in agricoltura : Quali alternative? VERONESI, G. 1st. Genio Rurale, Bologna, Italy. Genio Rurale, 1978, 41,12, 5­16. Languages : Fr. 7 fig. The alternative sources of power are reviewed with particular reference to recovery of waste heat from internal combustion engines, and industrial installations, conversion of solar radiation and gas production from organic waste. CAB ABS. 283 DE RECUPERATIE­ EN VERUERKINGSMOGELIJKHEDEN VAN DE EXCRETA VAN DE BIO­INDUSTRIE. (Varkens­ en kippemest). Literatuurlijst Pudoc (1978) 4088 : 4 blz. 61 lit. opgn. PUDOC 284 ENERGIE UIT AFVAL. Bedrijfsontwikkeling 9(1978) 5 : 405­406. Bakterien, wiertjes en schimmels die het zonder zuurstof uit de lucht kunnen stellen, spelen in dit verhaal de hoofdrol. Het afval betreft koeien­ en varkensmest, afval van kippenslachterijen, konservenindustrie, suiker­ en aardappelmeel­industrie. De anaerobe organismen kunnen flinke hoeveelheden energie (gas) hieruit vrijmaken en tegelijkertijd het water zuiveren waarmee de mest en ander afval worden weggespoeld. (Doe.) PUDOC 285 FUEL GAS PRODUCTION FROM ANIMAL RESIDUE. I. Technical perspective. WENTW0RTH, R.L.; ASHARE, E. Amsterdam, Elsevier Scientific Pub. Co. Resource recovery and conservation v. 3 (4); Dec. 1978, p. 343­358. ISSN 0304­3967: Languages : English. Bibliography p. 353­358. Document type : Article. AGRICOLA.

Page 137: Farm and Forest Biomass

-43-

286 Agency : CSRS WIS. Period : 1 Jul 74 to 30 Sep 78. Invest : ZEIKUS J.G.; ENSIGN J.C. Porject: WIS050Ö2. Pert Org : Bacteriology. Location : Univ. of Wisconsin, Madison WIS.. TREATMENT OF FARM MANURE AND ORGANIC WASTES. Objectives : Design and test a system for the bioconversion of organic wastes to methane and other useful products. Approach : An anaerobic fermenter suitable for a 15 animal confined dairy unit will be designed and the conditions for optimum production of methane will be determined. Additional units for gas purification and water purification by photo-synthetic and methylotrophic bacteria will be designed and conditions for optimal production of soil conditioners and/or single cell protein will be determined. USDA CRIS. 287 THERMOPHILIC METHANE PRODUCTION FROM POULTRY WASTE. Location : N. Carolina State Univ. Raleigh/ NC. Objectives : Isolation and selection of a methanogenic bacterial culture in a poultry waste-based medium at thermo­philic temperatures: adaptation of the methanogenic culture to a highly efficient methane producer and chemical analyses to fully characterize the wastes, the gas products, and the effluents from the reactor. Approach: A number of cultures of thermophilic bacteria will be screened to identify the strains that have the capability or producing large volumes of methane from poultry waste. Preliminary laboratory studies will be conducted to purify the strains and perfect the methane generation. Progress : 78/01 78/12. Different sources of microbial flora from the natural environment were tested to initiate a bacterial culture which could digest the broiler waste to generate methane gas at thermophilic temperatures (55 degrees-60 degrees). Finally a culture which was started with an inoculum from the salt marsh was isolated and maintained in the laboratory. At 10 day retention time, 3% VS loading, and 60 degrees C. the culture produced consistently 100-150 ml gas/day/500 ml mixture. Although this is not yet a very high rate of gas production before the optimization to be carried out, this demonstrated the possibility of bioconversion of poultry waste to methane at thermophilic temperatures with an inoculation of appropriate source of microbes. Simultaneously, analytical procedures were gradually set up in the laboratory. The procedures established were the determinations of total nitrogen, microbial protein, volatile acids, and total fats. The procedures under development are the gas chromatographic analysis of the gas mixture and the determination COD value. Publications : 78/01 78/12. No publications reported this period. USDA CRIS.

288 STUDIES ON THE BIOGAS PRODUCTION FROM SEVERAL ANIMAL FECES (of cattle, swine and chickens, valuable clean energy and organic fertilizers). KWON, I.K.; KIM, H.U. Suwon, Han'guk Ch'uksan Hakhoe. Han'guk Ch'uksan Hakhoe chi = Korean journal of animal sciences. Han'guk Ch'uksan Hakhoe. v. 20 (3), June 1978. p.: 233-242, ill. Languages: English: Korean (Use for related Korean languages and dialects). 12 ref. Document type : Article. AGRICOLA. 289 EIN GREIFBARES ZIEL : UMWELTFREUNDLICHE UND UNABHÄNGIGE ENERGIEVERSORGUNG DER LANDWIRTSCHAFT. SZENKUS, H. Agraringenieur (1977) 6:6-8. Huidige mogelijkheden met zonnestraling, wind- en waterkracht en gas uit mest en ander afval. (Doe). PUDOC.

Page 138: Farm and Forest Biomass

­44­

290 ERZUEGUNG TIERISCHER BIOMASSE DURCH VERMEHRUNG AUF LANDWIRTSCHAFTLICHEN RESTSTOFFEN. Production of animal biomass by propagation on agricultural residual matters. Developing efficient methods for processing by­products and wastes; other waste products; fungi, sea weed, algae, lichen, yeast; other foods; concentrates; population biology (e.g. population dynamics and genetics); processing. Author not yet known. Bundesforschungsanstalt für Landwirtschaft Braunschwelg­VÖlkenrode. (3300 Braunschwelg; Bundes­allee 50); Institut für Bodenbiologie. DE 201020 77 0009 1977. A6REP. 291 FONTI ENERGETICHE ALTERNATIVE : I RIFIUTI ORGANICI CONS FONTE DI METANO. GANAPINI (W.). Conferenza il 19/9/1977. Istituto di chimica Industriale dell'Università di Genova, pp. 41­49. 292 DEPURAZIONE DEI LIQUAMI. NAVAR0TT0 (P.L.). Suinicoltura, N° 1, 1977. 293 THE TREATMENT 0F HUMAN AND ANIMAL WASTE AND PRODUCTION OF SLOW RELEASE FERTILISER AND METHANE GAS. Developing efficient methods for processing by­products and wastes; superfluous dung and urine; organic fertilizers; other man­made resources; biochemistry (including enzymology) and bio­physics, chemistry ­general; processing. BROGAN, J.C.; MCDONNELL, P.; 0'SHEA, J.; SPILLANE, Τ.Α.; CONNOLLY, J.F.; BROGAN, J.C. An Foras Taluntais (19 Sandymount Avenue, Dublin 4); Dunsinea (Castleknock; Co Dublin). 1977. AGREP. 294 THE PRACTICE OF METHANE PRODUCTION FROM ANIMAL WASTES/Ministry of Agriculture and Fisheries; by A.J. DAKERS. ­ Hamilton : the Ministry, 1977 ­ 47 s.; 30 cm. 295 Agency : SAES COL. Period : 1 Jul 74 to 30 Jun 77. Invest : HARPER J.M.; Project : C0L00055. Perf Org : Agri Engineering; Location : Colorado State Univ., Fort Collins Col. ENERGY AND FOOD PRODUCTION FROM AGRICULTURAL WASTE PRODUCTS. Objectives : Evaluate fermentation processes for increased energy and/or food production from agricultural waste materials. Approach: Initial approaches will involve cattle manure as the agricultural waste material. Increase fermentation rate, the manure will be fractionated into a water soluble and insoluble fraction and the soluble fraction fermented. A thorough study of concentration, pH, nutrient levels, temperature and volatile solids will be made on methane production and gas quality. Secondly, hydro­oxidation will be used to partially hydrolyze cellulose and H gm'η in manure prior to fermentation. Process parameters will be studied and optimized. Techniques found beneficial on cattle manure will be tried on other similar agricultural wastes. USDA CRIS. 296 THE GENERATION OF METHANE FROM ANIMAL WASTES. Developing efficient methods for processing by­products and wastes; superfluous dung and urine; other man­made resources; chemistry ­ general; physics ­ general; processing. MCGRATH, D.; TUNNEY, H. An Foras Taluntais (19 Sandymount Avenue; Dublin 4); Jonstown Castle (Co Wexford). 1975. AGREP.

Page 139: Farm and Forest Biomass

­45­

297 GAS FROM WASTE ­ 2. THIS INDIAN POULTRY FARM RUNS ON METHANE. Poultry International 14 (1975) 3: 14, 16, 18, 20. Uit al het afval van de pluim­veehouderij produceert men op een bedrijf in India gas, door biologische omzettingen. Het gas dat ontstaat uit een uitgebalanceerde verhouding van afvalprodukten bevat 25 tot 35% C02, en 65 tot 75X methaan. (Doe). PUDOC. 298 Agency : SAES KAN. Period : 1 Jul 74 to 31 Dec 76. Invest ; LIPPER R.I. Project : Kan­05­384. Perf Org : Agri Engineering. Location : Kansas State Univ., Manhattan Kan. ENERGY REQUIREMENTS FOR OPERATING COMMERCIAL CATTLE FEEDLOTS. Objectives : Determine, define, categorize and quantify the energy uses within the physical confines of commercial cattle feedlots in Kansas for determining whether or not or to what extent the energy requirements of such feedlots may be met by utilizing the animal wastes as an energy source. Approach : Data gathered will be obtained by on­site surveys of feedlots that will provide access to records and that have adequate records to provide sufficiently detailed information. Where information available is insufficient in specific categories, on­site observations combined with engineering estimates will be used to classify categorize and quantify data. Feedlots studied will be those that prepare dry grains by steam rolling, grinding or other and those that ensile wet grains, ground or whole, for feeding without other extensive processing. Three feedlots in each of the above two categories will be studied. Feedlots will be selected that represent a cross section of the commercial cattle feeding industry in Kansas. Progress : 75/01 75/12. Interviews and on­site observation at 11 commercial cattle feedlots in Kansas provided data on use of diesel fuel, gasoline, natural gas, LP gas, and electricity for feed processing, feed handling, livestock watering, illumination, waste removal, administration, branding and thwaing, space heating, and miscel­laneous. The survey covered 30X ofKansas feedlots with capacities from 8.000 to 16.000 head and 20X of those over 16.000 head for a total of 25 feedlot­years of data. Feed processing methods (steam flake, "miconizing", dry roll, or ensiled) was responsible for the greatest variation in energy use. Publications :75/01 75/12. WELKER, d., ANSCHUTZ, J.Α., and LIPPER, R.I. Energy Used on Commercial Cattle Feedlots, Report of the 50th Annual Meeting, Kansas Committee on the Relation of Electricity to Agriculture 1974­75, June 1975.

299 LABORATORIUMONDERZOEK GERICHT OP EEN OPTIMALE WINNING VAN MICROBIELE BIOMASSA UIT MEST. Laboratory Research directed towards maximum production of microbial biomass from manure. Developing efficient methods for processing by­products and wastes; feeding stuffs and drinking water for animals in general; superfluous dung and urine; bacteria; population biology (e.g. population dynamics and genetics); processing. FAASSEN, H.G. VAN. Onder­

zoekinstellingen onder het Ministerie van Landbouw en Visserij (Research Institutes under the Ministry of Agriculture and Fisheries); Directie Landbouwkundig Onderzoek (Division for Agricultural Research). (Bezuiden­houtseweg 73, P.O.Box 20401, 2500 EK 'S­GRAVENHAGE); IB­Institutt voor Bodenvruchtbaarheid (Institute for soil fertility). Oosterweg 92; 9750 RA HAREN (Gr.) 1974. AGREP. 300 DE VERWERKING VAN PLUIMVEEMEST TOT METHAANGAS. Inst i tout voor de Pluimvee­teelt "Het Spelderholt", Literatuurlijst nr. 142, Beekbergen, 1974. 4 p. PUDOC.

Page 140: Farm and Forest Biomass

­46­

301 DE VERWERKING VAN PLUIMVEEMEST TOT METHAANGAS. Instituut voor de pluim­veeteelt "Het Spelderholt". Literatuurlijst nr. 142. Beekbergen, 1974, 4 p. PUDOC. 302 Agency : ARS URN. Period : 22 Jun 71 to 22 Oct 74. Invest : TURK M. Project : N1­1­371(C)A. Location : Hamilton Standard Div od UAC, Windsor Locks, Con. PRODUCTION OF POWER FUEL BY ANAEROBIC DIGESTION OF FEEDLOT^ WASTE. OBjectives : Study generation of fuel gas by anaerobic digestion of feedlot waste to determine if a continuous process is feasible as a method of pollution control. Approach : Establish fermentations to evaluate continuous production of a largely methane fuel gas by anaerobic fermentation of feedlot waste. For input material, use representative composite animal waste from feeding beef cattle a high­energy, low­fiber ration. Obtain information on fermentation parameters during stable digester operation and on changes in these parameters which accompany variation in loading or other operating conditions as a basis for a monitoring and correction system designed to maintain optimum fermentation. Conduct essentially continuous fermentations for 12 months. Based on results, derive conclusions, recommendations, and projected cost .data for field operation. USDA CRIS.

1.2i1i_Caţţle

303 BIOGAS PRODUCTION FROM DAIRY MANURE. H.D. BARTLETT, Professor, Agricultural Engineering Building, University Park, Pa 16802. Session VII, Paper VII/11. International Conference on Energy From Biomass, Brighton, 4­7 November 1980. Commission of the European Communities, in co­operation with the Department of Energy, London. 304 SOUTY, LE GAZ DE FUMIER : POINT DE VUE D'UN INGENIEUR η Génie rural, mai 1980, pp. 5­10. 305 30 BOVINS PEUVENT ASSURER CHAUFFAGE ET CUISSON POUR UNE FAMILLE. L'IMPORTANT EST DE FAIRE FERMENTER LES DECHETS ORGANIQUES DANS LES MEILLEURES CONDITIONS. ­ Vétérinaires français. Mars­avril 1980, pp. 53­55. 306 OPTIMIZATION OF AN INTEGRATED RENEWABLE ENERGY SYSTEM IN A DAIRY FARM. by PELLIZZI, G.; B0DRIA, CASTELLI, G.; SANGI0RGI, F. Istituto di Ingegneria Agraria dell'Università degli Studi di Milano, Via Celoria, 2 ­20133 Milano. Session VII, Paper VII/4. International Conference on Energy from Biomass, Brighton, 4­7 November 1980. Commission of the European Communities, in co­operation with the Department of Energy, London. 307 PRODUCTION DE BI0GAZ A PARTIR D'UN MELANGE RICHE EN MATIERES SECHES. D'excréments de vaches laitières et de déchets carbonés (addition de paille d'orge dans le digesteur, étude expérimentale). Biogas from dairy and carbonaceous wastes at high solids. HILLS. ASAE N° 79­4582. Décembre 1979, 21 p.

Page 141: Farm and Forest Biomass

-47-

308 Agency : CSVM COLV. Period : 15 Feb 78 to 14 Feb 83. Invest : TENGERDY, R.P., HARPER, J.H. Project : C0LV02880. Perf Org : Microbiology. Location : Colorado State Univ., Fort Collins, Col. CONVERSION OF FEEDLOT WASTE INTO SINGLE CELL PROTEIN ANIMAL FEED. Objectives : Convert feedlot waste (FLW) into animal feed and fuel. Approach : This will be accomplished in a two stage microbial fermentation process. Since the cellulose left in FLU after the ruminant digestion process is resistant to microbial degradation in an anaerobic digester, the cellulosid fraction of FLW will be separated, physically or chemically pretreated, and then fermented with Trichoderma viride in an anaerobic fermentation. This results in cellulase production and the conversion of cellulose to glucose, and in fungal biomass production. The soluble, nitrogen rich, fraction of FLW will be fermented in an anaerobic digester, using the residual glucose stream from the aerobic process to produce microbial single cell protein and methane. The fermentation will be controlled by the C/N ratio, volatile dry matter, pH temperature, retention time, and the microbial culture to maximize SCP production. The two feed product will be evaluated in nutritional studies. An engineering design for a pilot plant capable of handling 1500 kg FLW/day will conclude the research. USDA CRIS.

309 Agency : ARS 7902. Period : 24 Jan 78 to 24 Jan 81. Invest : CHILDS, R.E.; WHITEHEAD, W.K. Project : 7902-20831-013. Perf Org : R.B. Russel Agr Research Cntr. Location : P.O.Box 5677, Athens GA. DESIGN, CONSTRUCT, TEST NEW PROCESSING METHODS AND EQUIPMENT FOR COMMERCIAL, ANIMAL AND FOOD WASTES. Objectives : Convert commercial, agricultural and food processing wastes for safer, moreeffective uses as feed, energy, fertilizer and other uses that are economically feasible. Approach : Design, construct, and test equipment and instrumentation for grinding, shredding, mixing, fermenting, monitoring, cooking or other processes for converting agricultural and commercial waste substances into other useful products. Under a Cooperative Agreement with the University of Georgia, College of Veterinary Medicine, inoculate ground and mixed material (especially food scraps) with pathogenic and other organisms in laboratory experiments to determine end effects. Scale up processes to pilot plant prototype models , and ultimately, to commercial size and test for efficient and safe operation. Publish guidelines and design specifications for industry use. This project contributes to current Cooperative research with the University of Georgia to improve food waste for new uses. Progress : 78/01 78/09. Equipment has been designed and fabricated to grind and mi» food wastes for laboratory fermentation studies. Instrumentation has been developed to monitor and record with a data acquisition system the temperature, pH, and oxidation reduction potential of the food waste as it is being treated to destroy various bacteria and viruses. The fermen­tation processes are being conducted at four temperatures in containers with specially developed tops to accommodate pH, temperature and redox electrodes and access ports for sampling. Microbiologists and virologists with the College of Veterinary Medicine, University of Georgia are cooper­ating to determine the effectiveness of the fermentation process for destroying selected bacteria and virus in the waste. Publications : 78/01 78/09. No publications reported this period. USDA CRIS.

Page 142: Farm and Forest Biomass

­48­

31Q Agency : SAES LA.B, Period : 10 Sep 78 to 9 Sep 79. Invest : CULLEY, D.O., FRYE, J.B. Jr. Project : UA.B02022. Perf Org : Agricultural Exper.Station, Location : Louisiana State Univ., Baton Rouge, LA. PROPOSAL TO CONDUCT A FEASIBILITY STUDY OF THE CONVERSION OF ANIMAL FEEDLOT WASTES TO USEFUL ENERGY. Objectives : To determine if a dairy farm operation can design its waste management to include a fermentation system for energy production and lagoon system for the production of edible, high protein aquatic plants and be economically feasible or competi tve with current dairy farm waste management practices. Approach : Dairy manure will be fermented to generate methane for use as supplemental energy. Various sludge from the fermenter will be used as a nutrient source for aquatic plants. The plants will be cycled back into the animals feed as a protein supplement and the effluent from the lagoon will be used as washwater for t the feedlot. Techniques of plant harvest, transportation, and processing will be developed. An economic analysis of the total system will be undertaken to determine capital requirements, return on investment analysis, and cost and energy comparison between current dairy farm practices and a system in which wastes are managed for energy and aquatic plant production. USDA CRIS. 311 Agency : CSVM COLV. Period 1 Jun 76 to 31 May 79. Invest : HARPER, J.M.; TENGERDY, R.D. Project : C0LV02879. Perf Org : Agri Engineering. Location: Colorado State Univ., Fort Collins, Col. CONVERSION OF FEEDLOT WASTE INTO SINGLE CELL PROTEIN ANIMAL FEED. Objectives : Agricultural waste can be a resource for feed and fuel production instead of a pollution burden. Animal manure represents the most concentrated and most abundant form of this resource. Approach : The main Ingredients in feedlot waste are undigested cellulose and nitrogenous compounds. These ingredients may be converted to a valuable feed called single cell protein, or to fuel by microbial fermentation. USDA CRIS. 312 CONVERSION OF FEEDLOT WASTE INTO SINGLE CELL PROTEIN ANIMAL FEED. TENGERDY, R.P.; HARPER, J.M.; NESSE, Ν.; WALLICK, J. and ULMER, D.C. Presented at Joint USA­USSR Symposia on Single Cell Protein. June 1979. USDA CRIS. 313 MANURE GAS (Energy sources, methane). Le gaz de fumier. PREGERMAIN, J.; Paris. Le producteur agricole français v. 54 (239), Nov. 1, 1978. p. 17­29. ill. Languages : French. Document type : article. AGRICOLA. 314 COST EFFECTIVENESS OF BIO­GAS SYSTEMS FOR DAIRY FARMS. OPPENLANDER (J.C.); CASSELL (E.A.); DOWNER (R.N.). Aff : Univ. Vermont Dep. Civ. Eng., Burlington Vt. USA. Energy crisis­wbere do we go from here. University of Missouri­Rol la­Missouri Department of Natural Resources Annual Conference on Energy. 4/1977­10­11/ROLLA MO, USA; Ed : S.L.; Date: 1978; p. : 230­239; 28 CMh.t.; 5 Ref.; Langue : anglais. Description succincte d'une installation de digestion anaerobie de fumier. Analyse économique d'installations adaptées à des élevages de 20, 50, 100 et 200 vaches. PASCAL. 315 METHANE GAS PRODUCTION FROM LIVESTOCK MANURE AT MINIMAL WATER CONTENT. HILLS, D.J., 1978. Research Progress Report prepared for C.R.E.A., 2 p., including 1 table. USDA CRIS.

Page 143: Farm and Forest Biomass

-49-

316 WEALTH FRON WASTES - POTENTIAL SOURCE OF ENERGY. PATEL, A.R. Bank of Baroda, Bombay, India. Agriculture and Agro-Industries Journal. 1977. 10,10 3-7. Languages : English. This paper explains how cowdung san be utilized as a means of fertilizer and for producing cooking-gas. The economics of gobar gas as an alternative source of fuel'technology and the problems challenging the expansion of the scheme are discussed. The results of studies conducted by other institutions to examine the problems and prospects of gobar gas plants are presented. The problems faced in the rural areas in implementation of bio-gas schemes are malnutrition of cattle, which adversely affect the viability of gobar gas units, space near home where gas can be used, the deposition of carbon-dioxide produced by the plant, the atmospheric temperature, etc. Gobar gas plants of all sizes' were found to be economically viable Investments but the gains were marginal and the pay-back period of the Initial investment was very long for small plants. CAB ABS. 317 THE ECONOMICS OF COW-DUNG GAS PLANTS. SINGH, Raj inder, ed. New Delhi, Indian Council of Agricultural Research 1976 India. (6) 64 p. : one plate. Languages : English. Bibliography : p. (48) -50. «Government Source: undetermined. Document type : Monograph. AGRICOLA. 318 Agency : CSRS PEN. Period : 1 Jan 72 to 31 Dec 76. Invest : LONG, T.A.; WILSON, L.L.; BARTLETT, H.D. Project : PEN01957. Perf Org : Animal Science. Location : Pennsylvania State University. RECYCLING WASTES THROUGH RUMINANTS. Objectives : Determine the potential of agriculture, industrial and municipal waste as safe sources of nutrients for livestock. Approach : Combinations of wastes with and without additives and with and without physical treatment will be evaluated by laboratory methods. Criteria used will include proximate analysis, cell contents, in vitro digestibility of energy and protein. Waste combinations that appear to feasible for use as animal feeds will be evaluated by in vivo metabolism trials and growth-finishing trials with cattle and sheep. USDA CRIS. 319 A PROPOS D'ENERGIE ET PLUS SPECIALEMENT DU GAZ DE FUMIER. UNE METHODE ORIGINALE QUI PEUT REDONNER AUX AGRICULTBURS UNE AUTARCIE ENERGETIQUE ENVIABLE. ISMAN, M. Agriculture (1973) 371: 318-323, afbn. De produktie van methaangas uit mest en andere afvalstoffen kan nuttige energie leveren, die anders geheel verloren zou gaan. In principe zou de gehele Franse land­bouw op deze wijze zijn energiebehoefte kunnen dekken. De toepassing in de praktijk zal vooral een politiek probleem zijn. (Doe.) PUDOC.

l¿2_.2._P22s

320 Agency : CSRS ILLU. Period : 1 Jan 77 to 30 Sep 82. Invest :DAY, D.L.; STEINBERG, M.P. Project : Illu-10-0376. Perf Org : Agri Engineering. Location : Univ of Illinois, Urbana, III. ELECTROCHEMICAL CONVERSION OF BIOMASS INTO PROTEIN AND HYDROGEN. Objectives : Investigate technical and economic feasibilities of electrochemical oxidation of biomass to produce feed protein and by-product hydrogen, safe handling and storage of hydrogen, and hydrogen-oxygen fuel cell production of d.c. electricity. Approach : Liquid swine manure will initially be the biomass tp be converted in bench scale electrochemical cells. Aerobic bacateria will utilize oxygen as it is produced at the anodes and hydrogen, and energy

Page 144: Farm and Forest Biomass

-50-

source, will be produced and collected at the cathodes. The hydrogen will be utilized in a fuel cell to produce d.c. electricity to supplement operation of the electrochemical cell. Technical operational parameters will be studied to achieve optimum growth of single cell protein and production of hydrogen. Conditions promoting additional production of hydrogen from biomass by anaerobic bacteria will also be studied. USDA CRIS. 321 Agency : CSRS ILLU. Period : 1 Jul 70 to 30 Sep 80. Invest : JENSEN, A.H. Project : Illu-20-0395. Perf Org : Animal Science. Location : Univ oí Illinois, Urbana, III. ANIMAL WASTE MANAGEMENT SYSTEMS FOR THE 1980'S-NUTRITIVE VALUE OF OXIDATION DITCH RESIDUES. Objectives : Investigate use of by-products of annual manure management systems for energy sources, feed ingredients, plant nutrients for crop production and other potential uses with consideration of the human, animal and plant health factors. Approach : Procedures-Aerobically-processed wastes will be fed to supplement the regular diet of swine. Progress : 78/01 78/12. Oxidation ditch mixed liquor (0DML) was further evaluated for nutritive contribution to finishing pig diets. Two hundred end eighty-eight finishing pigs were used (6 groups of 6 pigs each per dietary treatment). Treatments were either tap water of 0DML as source of drinking water with experimental diets of (1) fortified corn : soybean meal 14% crude protein mixture, <2) diet 1 minus riboflavin, niabin, pantothenic acid and B(12) supplementation, (3) diet 1 minus calcium and phosphorus supplementation, and (4) diet 1 minus both the vitamins and calcium and phosphorus. Pids receiving tap water had higher (P less than.05) gain, feed intake and gain/feed than those receiving 0DML. Vitamin supplementation had no apparent effect. There was an interaction (P less than .05) for water source and calcium and phosphorus supplementation. Average assay values of weekly 0DML samples for a 6-week period were 502 ppm nitrates, 42922 C.O.D., 4,8% solids, 24 degrees C and 7.7 ph. A second experiment was conducted to evaluate the effects of different dietary levels of dried swine feces on acceptability of the diets by young pigs. Feces were collected in a metal tray under a slotted^floor pen housing ten finishing pigs. They were fed a 14% fortified corn: soybean meal diet. The feces were dried in a drying oven (135 degrees F), then ground and mixed with the diets. Levels of 2.5 or 5.0% of dried material replaced an equal amount of weight of yellow corn. Diets were fed either in meal or pellet form. Publications : 78/01 78/12. No publications reported this period. USDA CRIS.

322 DES SACS D'ENERGIE (POCHE DE STOCKAGE DU METHANE PRODUIT A PARTIR DU LISIER, MODELE DE DIGESTEUR, PRODUCTION D'ELECTRICITE). PEET. Bags of energy. - Pig Farming, Mai 1980, pp. 37-39. 323 DES INSTALLATIONS DE BIOGAZ AVEC ECHANGEURS DE CHALEUR (à partir de lisier), Biogasanlage mit Wärmetauscher. BONFIG (R.). - Die Landtechnische Zeit­schrift, Mai 1980, pp. 728-732. 324 GAZ DE LISIER : PRINCIPES DE PRODUCTION. Eleveur de porcs, Avril 1980, pp. 51-58. 325 ENERGY SELF-SUFFICIENT SWINE PRODUCTION SYSTEM. FISCHER, J.R.; FULHAGE, CD.; MEAD0R, N.F.; HARRIS, F.D. USDA, SEA, AR, Missouri Univ., Columbia, MO. USA. ASAE Paper, 1979, No. 79-4062, 25 pp. Languages : English. 12 réf., 8 fig., 2 tab. An energy self-sufficient pig production unit for 3200 pigs/yr is described. The thermal and electrical energy to operate

Page 145: Farm and Forest Biomass

-51-

this system is supplied by an internal combustion engine-electric generator fuelled by methane produced in an anaerobic digester processing manure from the buildings. The system provides all electrical energy requirements and thermal energy until the outside temperature drops below -2 deg C. CAB ABS. 326 MANAGEMENT OF SWINE MANURE FOR THE RECOVERY OF PROTEIN AND BIOGAS. BOERSMA, L.; GASPER E.; MINER J.; OLDFIELD J.; PH1NNEY \f. Oregon State Univ. NTIS Report PB-286 722, May 78 (309>. Special report : Experiments were conducted at the Oregon Univ. Swine research center to determine the value of swine manure as a source of protein and biogas. The experimental facilities are described. Algae and bacteria were used to convert the swine manure into methane-rich fuel gas and supplemental protein for animal feed. The nutritional value of swine manure as a protein source was evaluated by feeding trials with long-evana rats. ENERGYLINE. 327 ENERGY FROM SWINE MANURE. FISCHER (J.R.); IANNOTTI (E.); SIEVERS (D.M.). Univ. Missouri, Agrie. Eng. Dep., Columbus MO 65211, USA. Annual Conference on Energy. 5/1978/Rolla NO, USA; Ed: Rolla, Univ. of Missouri-Rolla Extension Division; Date : S.D., p.: 158-169, 22 réf.; Langue: Anglais. Etude des résultats obtenus dans l'étude, à l'Université du Missouri, de la digestion anaérobie de fumier de porc. PASCAL. 328 SIEVERS, D.M.; BRUNE, D.E. 1978. CARBON/NITROGEN RATIO AND ANAEROBIC DIGESTION OF.SWINE WASTE. Transactions of the American Society of Agricultural Engineers 21(3) : 537-541. USDA CRIS. 329 LET THE PIG COOK YOUR FOOD AND CLEAN YOUR ENVIRONMENT. YANG, P.¥. and GITLIN, H.M. 1978. Swine Report, Cooperative Extension Service, Univ. Hawaii. 17 : 1-5. USDA CRIS. 330 PRODUCTION AND DESULFURIZATION OF BIOGAS FROM SWINE WASTE. Author : ANGLO, Pilar G.; TANAKA, Hiroshi; HAGA, Kiyonori. Location : Natl. Inst. Sci. Technol., Manilla, 2901 Philippines. Journal : Kalikasan. Pubi: 78. Series : 7. Issue : 3. Pages : 247-58. Identifiers : Swine manure biogas prodn desulfurization. CHEMICAL ABSTRACTS. 331 THE USES OF PIG MANURE IN TAIWAN. Food and Fertilizer Technology Center. GUZMAN, M.R. de; CHIA, H. Extension Bulletin no. 104, Taipeh, 1978. pp. 26. 31 refs. PUDOC. 332 UTILIZZAZIONE AGRONOMICA DEI LIQUAMI DEGLI ALLEVAMENTI INTENSIVI ZOOTECNICI - SUINI IN PARTICOLARE. Agronomic use of liquid manure from intensive livestock breeding, especially pig-farms. Developing efficient methods for processing by-products and wastes; superfluous dung and urine; animal and grassland farms; pigs; organic fertilizers; chemistry - general; biochemistry (including enzymology) and biophysics; processing, plant nutrition and fertilization, soil science. MONTORSI, M. Ministèro dell' Agricoltura e delle Foreste. ; Istituto. 1977 AGREP.

Page 146: Farm and Forest Biomass

-52-

333 I LIQUAMI DI PORCILAIA COME FONTE DI ENERGIA. GANAPINI (W.) L'informatore Agrario. N° 48 (1976). 334 ANAEROBE VERGISTING VAN VARKENSDRIJFMEST. Anaerobic digestion of wet piggery waste. Protection against pollution; developing efficient methods for processing by-products and wastes; superfluous dung and urine; sewage and waste disposal facilities and systems; other man-made resources; fungi, sea weed, algae, lichen, yeast; chemistry - general; population biology (e.g. population dynamics and genetics); public health engineering; processing. VELSEN, A.F.M. VAN. Landbouwhogeschool (Agricultural University); Vakgroep waterzuivering - (Department of water purification) (De Dceyen 12; P.O.Box 8129, 6700 AB Wageningen). 1976. AGREP. 335 MAKING THE MOST OF METHANE. Pig farming 23 (1975)2: 41,43. PUDOC.

336 VERWERTUNG VON RESTHOLZ DURCH UMWELTFREUNDLICHE HOLZAUFSCHLUSSVERFAHREN; PULS, J. et al. Votragsmanuskript Hamburg 1980. 337 Agency : FS NC. Period : 24 Jun 69 to 21 Jul 81. Invest : ARÓLA R.A. Project : NC-3701. Perf Org : North Central Forest Experiment Station. Location : Michigan Technological Univ. Houghton, Mic. ENGINEERING SYSTEMS AND MECHANIZATIONS FOR NORTHERN FOREST STANDS. Objectives : Develop engineered systems and equipment which are needed to economically meet forestry objectives in northern forest stands. Approach : Research will concentrate on harvesting and transportation of the residues left in the forest. Residue recovery will be approached as a material handling and processing problem in both manure and immature forests. New equipment and systems will be developed to economically convert low-valued, residue-type materials such as small trees, tops, limbs, stumps, and roots into a form suitable for handling, transporting, and product development. Research will also include the problems of production of energy from forest resources, with particular emphasis on forest residues and mortality stands. Approaches will include recovery of residues for energy uses, methods and equipment to convert rough residues into suitable fuel products as well as achieving quality control of residues by developing concepts for ridding such fuels of moisture and contaminants (dirt and grit). USDA CRIS. 338 WOOD WASTE FOR ENERGY STUDY. BERGVALL, John A. Washington (State). Legislature. House of Representatives. Committee on Natural Resources Olympia, State of Washington, Dept. of Natural Resources. 1978-1979 WASHING (State). 3 v. : ill., maps ; 28 cm. Languages : English. Includes bibliographies and indexes. Contents : CONTENTS; v. 1 Inventory assessment and economic analysis. — v. 2. Final literature review. — v. 3. Executive summary. Government Source : STATE. Document type : Monograph. AGRICOLA.

Page 147: Farm and Forest Biomass

­53­

339 Agency : CSRS RI. Period : 20 Oct 77 to 19 Oct 82. Invest : COULD U.; BROWN, J.; MCKIEL C. Project : RI00960. Perf Org : Forestry & Wildlife Management. Location : Uniν of Rhode Island, Kingston RI. WOOD AS AN ENERGY SOURCE IN THE RURAL­URBAN COMPLEX. Objectives : Determine the potential demand for fue Iwood in the southern New England rural­urban complex. Evaluate the productivity of typical sites for growing fue Iwood« Assess ways to more efficiently use the resource by determining practical methods of seasoning wood. Approach : Several even­aged stand sites will SéTSe «jÊre3£jBi3iföl32$jmK^ tyf_ . drained locations. Cordwood biomass productivity of each stand will be determined by sample plots. Individual trees will be randomly selected by diameter­class for distructive sampling. Root systems of several sample trees will be examined for sprout vigor and tree origin. Fertilization to increase growth rates will be evaluated. Trends in fuelwood consumption will be determined. Various aspects ofjiood seasorrtng will bT~tiWisïTgaïëoT^~ ~ USDA~ CRIS. ~~ .' __ZZL­L1. , """ ^ ^ ' — ~ '~" — ~"~ " "~ 340 L'ENERGIE BOIS. Octobre 1979. 4 p. Revue n° 135 du : Centre d'étude et de documentation pour l'équipement du foyer. 39 Avenue d'Ièna, 75783 Paris Cedex 16. 341 VALORISATION ENERGETIQUE DU BOIS. Energetic benefication of wood. DUMON (R.). Tech. de l'Energ.; Fra.; Date : 1979; Vol: 25, p.; 28­32; Langue : Français. Disponibilité annuelle de bois non utilisés et de déchets de bois en France. Exemples de production d'eau chaude ou de vapeur. PASCAL. s*

2 , . ; DUMON, R. Dossier : Economie d'énergie par le bois. Le bois l'officiel du bois (FRA). Ν. 4 Sup. 1979/02/28. p.: 19r28. La valorisation du bois et des déchets de bois. Quelques réalisations industrielles. MINAG­M9149. RESEDA. 343 ECKMOLLNER et al. HOLZ ALS INDUSTRIELLER UND ENERGETISCHER ROHSTOFF; Österreichisches Holzforschungsjnstitut, u­Lon 1Q7Q. _ — 344 CALVIN, M. FUEL FROM TREES. Power Farming Magazine 88(1979) 1 : 39, 41, afbn. schema. Mogelijke winning van koolwaterstoffen uit speciaal daarvoor gekweekte bomen, bijvoorbeeld de Euphorbia lathyrus. (Doe). PUDOC. ­ 345—~ · ■ "— ~ "—" " "~" "~ ~ .WQOD^A!JkJUEJ*_jLJ{0J3P­STJÍRAG The Service, Current information series. Idaho. ­University. ­Cooperative Extension Service. Apr. 1979.(474). Apr 1979. 2 p. ill. NAL : 275.29 XD13XK. Languages : English. Document type : article. AGRICOLA. 346 SUPPLY, HARVESTING AND NATURE OF FOREST BIOMASS AS A FUEL. ELWOOD John P. Int I Paper Co. Presented at AGA/EPRI/NCA/GAS Research Inst 6 th Energy Technology Conf, Wash DC, Feb 26­28, 79, P1004 (11). Survey Report : General types of forest management systems that might yield meaningful quantities of forest biomass fuel include paper pulp mills, regional electric power generating plants, and fuel plantations. These types of operations are compared with each other and with a forest products

Page 148: Farm and Forest Biomass

-54-

pIantat i on to illustrate strategic, technical and economic differences. Barriers to forest biomass fuel systems involve land use conflicts, inadequacy of harvesting equipment, high power plant investment to improve boiler capacities and environmental considerations. (8 references, 3 tables). ENERGYLINE. 347 WOOD AND ELECTRIC POWER IN MAINE-A FORECASTING MODEL. ELLIS, E.R.; SHELDEN, R.A. Univ of Maine. J Env Management, Jan 79, V8, N1, P43 (11). Technical report : presented is a computer program developed to assess the economic and environmental feasibility of using wood energy to generate electricity in Maine. The program .evaluates : growth in wood demand; acreage available for timber harvesting; rate of tree biological growth; and wood prices. If coal and oil prices continue to rise above general inflation rates, wood will become an economically and environ­mentally viable alternative for electricity generation in Maine. (2 diagrams, 5 graphs, 15 references, 2 tables). ENVIROLINE. 348 ENERGY FARMS FOR THE FUTURE (Silviculture, production costs). FEGE A.S.; INMAN, R.E. Washington, Society of American Foresters. Journal of forestry v. 77 (6), June 1979, p. 358-361. Languages : English. 12 ref. Geographic location : USA. Subfile : USDA (US Dept. Agr). Document type : article. AGRICOLA. 349 WOOD AS A FUEL : FUELWOOD COSTS. DANLEY, D. Moscow, Idaho. The Service. Current information series. Idaho. -University. -Cooperative Extension Service. Apr. 1979. (471). Apr 1979. 2 p. ill. Languages : English. 2 ref. AGRICOLA. 350 THE CHIEF (of the U.S. Forest Service) ON WOOD ENERGY. (Letter to the editor). McGUIRE, J.R.; Washington, American Forestry Association. American forests v. 85 (2). Feb. 1979. p. 2. ISSN 0002-8541. Languages: English. Geographic Location : USA. Document type : Article. AGRICOLA. 351 WOOD - ITS ROLE AS AN ALTERNATIVE FUEL. KLEIN E. LAWRENCE. TVA. Presented at Wood Energy Inst Wood Heating Seminar 5, St.Louis, Sep 12,79, P27 (19). Survey Report : Assuming full stocking of U.S. Ranges from 7.5 - 15 Q/YR. Additional quantities could be produced through the introduction of intensive forestry practices and establishment of biomass plantations. These potentials, however, are achievable only if the U.S. places priority on developing this alternative energy source. Various wood combustion systems for commercial and residential application are described. Economic and environmental aspects of harvesting wood biomass for energy are discussed. (2 graphs, 3 tables). ENERGYLINE. 352 A TECHNICAL AND ENVIRONMENTAL APPRAISAL OF WOOD ENERGY. KITTO, W.D. Missoula. Montana Forest and Conservation Experiment Station. Western wildlands v. 5 (2). Fall/Winter 1978/1979. p. 15-19. III. ISSN 0363-6690. Languages : English. 7 ref. Document type : Article. AGRICOLA.

Page 149: Farm and Forest Biomass

-55-

353 Ctry : US. TypI : J/ AS. Lang : En. Auth : ROLFE, G.L.; WHITE, T.Α. Titt: CAPTURING THE SUN'S ENERGY IN WOODY BIOMASS. Jrnl : Illinois Research (USA). Impr. : (Spr 1979). Note : US(NAL 100 IL64). Cllt : v. 21(2) p. 4-5. AGRIS. 354 WOOD - AN ECONOMICAL AND RELIABLE FUEL FOR GENERATING ELECTRICITY IN NORTHERN MINNESOTA. ROSE, D.W.; OLSON, K.P. Washington. Society of American Foresters. Journal of forestry v. 77 <2>. Feb 1979. p. 88-90. III. ISSN 0022-1201. Languages : English. 10 ref. Geographic location : Minnesota. Document type : article. AGRICOLA. 355 CAPTURING THE SUN 'S ENERGY IN WOODY BIOMASS. ROLFE, G.L.; WHITE, T.A. Urbana, Agricultural Experiment Station. Illinois research v. 21 (2). Spring 1979, p. 4-5. ISSN 0019-2201. Languages : English. Document type : Article. AGRICOLA. 356 WOOD : A GROWING ENERGY SOURCE. PERHAM, C. Washington, U.S. Environmental Protection Agency. EPA Journal United States - Environmental Protection Agency, v. 5 (4). Apr 1979. p. 22-23. ILL. Languages : English. Document type : Article. AGRICOLA. 357 WOOD AS AN INDUSTRIAL FUEL. O'GRADY, M.J. Raleigh, N.C., The Servioe. AG. North Carolina State University. -Agricultural Extension Service. May 1979. (171). May 1979. 10 p. ill. Languages : English. Document type : Article. AGRICOLA. 358 WOOD PROCESSING, FORESTRY AND AGRICULTURAL WASTES. ZERBE John I. USFS Forest products Lab, Wis. Presented at IGT New Fuels & Advances in combustion technologies Sym, New Orleans, Mar 26-30, 79 P181 (12). Technical report : Wood processing wastes are increasingly being used as fueL within the forest products industries, particularly the pulp and and paper industry. This industry has increased its energy self-sufficiency by 8% since 1973 with the use of this waste fuel. There are 485 million dry ton/yr of forestry wastes available from all processing, forestry, and urban wood wastes. The conversion of wood wastes to energy by direct burning, liquefaction and gasification 1s discussed. The use of agricultural wastes, including plant processing wastes, Held wastes, and manure , is reviewed. (1 diagram, 1 graph, 2 references, 1 table). ENVIROLINE. 359 WOOD FOR ENERGY IN THE PACIFIC NORTHWEST : AN OVERVIEW. HOWARD; J.O. Portland, Ore., The Station. USDA Forest Service general technical report PNW. United States. -Pacific Northwest Forest and Range Experiment Station. Sept 1979. (94). Sept 1979. 28 p. 111. maps. ISSN 0368-6224. Languages : English. 71 ref. Geographic Location : USA. AGRICOLA. 360 UTILIZATION OF MUNICIPAL WASTEWATER AND WASTE HEAT FOR ENERGY PRODUCTION FROM FOREST BIOMASS. SOPPER, William E.; DEWALLE David R.; KERR Sonja Ν. Pennsylvania State Univ. Presented at information transfer Ine/et aL Technology for Energy Conservation Conf, Tucson, Jan 23-25, 79, P572(10).

Page 150: Farm and Forest Biomass

-56-

Technical report : An experiment designed to investigate the feasibility of using municipal wastewater and waste heat to maximize biomass production in hybrid poplar energy plantations was initiated. Secondary treated municipal wastewater was used for irrigating the plantation. Waste heat was utilized in heating the soil. Tree Survival, diameter growth, soil temperature and biomass production are discussed. Some species exhibited greater mean height in areas receiving wastewater irrigation only, while others attained greater height growth in areas receiving a combination of irrigation and waste heat treatments (9 graphs, 16 references, 9 tables). ENVIROLINE. 361 USE OF WOOD FIBER AS AN ENER6Y SOURCE. SHIRLEY, A.R. North America's Forests : gateway to Opportunity 1978. Washington, The Society. Proceedings Society of American Foresters 1979. p. 124-126. Languages : English. Subfile : Other US (Not Exp. Stn. Ext. USBA; Since 12/76). Document type : Article. AGRICOLA. 362 WOOD FOR HOME HEATING : WOOD VERSUS CONVENIENCE FUELS (includes cost planning, energy sources). SEYBOLD, W.H. Madison, Wis., The Programs. Publication - Cooperative Extension Programs. University of Wisconsin. Extension.Wisconsin. -University. -Cooperative Extension Programs. July 1979. (G3031). July 1979. 4 p. ill. Languages : English. 2 ref. A6RIC0LA. 363 ENERGY FROM WOOD; A NEW DIMENSION IN UTILIZATION. SEIDL. R.J. Madison, Wis., Forest Products Research Society. Forest products journal, v. 29 (10), Oct 1979, p. 6, 9-10, 12, 14, 16, ill. ISSN 0015-7473. Languages: English. AGRICOLA. 364 Ctry : US. Typl : J/ AS. Lang.: English. Sube: P05 K50. Auth: MATHUR,V.K.; CAUGHEY, R.A. Titl: FUEL GAS FROM WOOD WASTE. Jrnl: Energy Communication (USA). Impr : (1979). ISSN: ISSN 0097-8159. Note: ill., 8 ref. US(NAL TJ153.E5). Cllt: v. 5(2) p. 129-Î50. AGRIS. 365 Ctry : CS. Typl: J/ AS. Liti : E. Lang: Cs. Sube: F60. Auth: SARMAN, J. (Vsoka Skola Zemedelska, Brno (Czechoslovakia). Lesnicka Fakulta). Titl : DETERMINATION OF ENERGY RESERVE OF ABOVEGROUND BIOMASS IN SPRUCE STAND. Prispevek ke stanoveni zasoby energie nadzemni biomasy ve smrkovem porostu. Jrnl: Lesnictvi - UVTIZ (Czechoslovakia). Impr: Dec 1979. ISSN: ISSN 0024-1105. Note : 7 tables; 14 ref. Summaries (Cs, De, En, Fr, Ru). Cllt: v. 25(12) p. 1069-1082. Code : 3150. AGRIS. 366 FINLAND TURNS TO WOOD AND PEAT FOR ENERGY. RICH, V. London. Macmillan Journals. Nature v. 278 (5704), Apr 5, 1979. p. 498. ISSN 0028-0836. NAL : 472 N21. Languages : English. Geographic Location : Finland. Document type : Article. AGRICOLA. 367 LA FORET : SOURCE D'ENERGIE ET D'ACTIVITES NOUVELLES. The forests : a source of energy and new activities. DUMON (R.). Fra. Ed: Paris. Masson, Date: 1978; 132. 19 réf.; 2-285-62733-9; Les Objectifs Scien­tifiques de demain. Langue : Français. Type : TL, LM. Analyse des

Page 151: Farm and Forest Biomass

­57­

multíples formes d'Intérêt passé, présent et futur que présentent Les forêts (bols de chauffage, bois d'oeuvre, pâte à papier, chimie du bois, matières premières..) accent mis sur la nécessité de L'intégration de la forêt aux activités modernes; car les profits matériels qu'apportera la forêt exploitée rationnellement et industriellement ne nuiront pas aux bienfaits apaisants qu'elle procure aux êtres humains. PASCAL. 368 CHEMISCH­TECHNISCHE GRUNDLAGEN ZUR NUTZUNG VON HOLZ UND HOLZABFALLSTOFFEN ALS CHEMIEROHSTOFF, Technochemie GmbH Verfahrenstechnik 1m Auftrag des BMFT 1978. 369 WOOD ENERGY : A PRACTICAL GUIDE TO HEATING WITH WOOD. TWITCHELL MARY, CHARLOTTE, VT: Garden Way, C1978, 170 pp. Í7.95? ISBN 0­88266­145­0. Technical report : Descriptors : Wood energy. ENVIROLINE. 370 ENERGY BIBLIOGRAPHY. Forest Products Research Society. Updated Oct. 1977. Madison, Wis. Forest Products Research Society, 1977. Wisconsin. 59 p.; 28 cm. NAL: Z7914, W8E5 1977. Languages : English. Subfile : OTHER US (NOT EXP STN. EXT. USDA; Since 12/76); Et 78/12/20; SS : 78/12/20. Document type : Monograph, Bibliography. AGRICOLA. 371 POTENTIAL OF FOREST FUELS FOR PRODUCING ELECTRICAL ENERGY. BURGESS (R.L.) Aff: Oak Ridge Natl. Lab., Tenn. J. Forest.; USA; Date : 1978; Vol: 76; No: 3; p.: 154­157; 23 réf.; Langue : Anglais. Evaluation de la quantité annuelle mondiale de bols utilisable pour la production d'énergie électri­que et la production d'électricité correspondante. PASCAL. 372 EVALUATION PROCEDURE FOR CONSIDERATION OF FOREST BIOMASS AS A FUEL SOURCE FOR A 100 MEGAWATT ELECTRIC GENERATING FACILITY. BLANKENHORN, P.R. et al. Agricultural experiment station. College of agriculture, Bulletin no. 820. Pennsylvania State Univ., University Park, 1978. 16 p. refs. PUDOC. 373 RECOVERABLE ENERGY FROM THE FORESTS. AN ENERGY BALANCE SHEET. BLANKENHORN (P.R.); BOWERSOX (T.W.); MURPHEY (W.K.). Aff : Sch. Forest Resour., Pennsylvania State Univ., University Park, Pa. 16802. T.A.P.P.I.; USA; Date : 1978; Vol : 61; No: 4; p.: 57­60, 10 réf.; Langue : Anglais. Analyse de la consommation d'énergie de différentes activités pour la production et la récolte de la biomasse forestière, on y Inclut également les entrées d'énergie pour le traitement et le transport. Les entrées sont mises en opposition dans le plan final avec l'énergie récupérable sous forme de chaleur, vapeur et électricité. PASCAL. 374 THE ENERGY EFFICIENT HOME : A MANUAL FOR SAVING FUEL AND USING SOLAR, WOOD AND WIND POWER. ROBINSON, Steve; DUBIΝ Fred S. New York ; New American Library, 1978, 158 pp.; S4.95 PA, ISBN 0A542­25787­7. Technical Feature. ENERGYLINE.

Page 152: Farm and Forest Biomass

­58­

375 TILLMAN, D.A. WOOD AS AN ENER6Y RESOURCE. New York enz., Academic Press, 1978. 252 biz., ISBN 0­12­691260­2. PUDOC. 376 HOKANSON, A.E. and R. KATZEN : CHEMICALS FROM WOOD WASTE. Chemical Engineering Progress, vol. 74, 1978, nr. 1, s. 67­71. 377 THE SUN BUILDERS. ARGUE, Robert; EMANUEL, Barbara. Toronto, Renewable Energy in Canada, c1978 ONTARIO 254 p.; ill. 21 χ 27 cm. LCCN 78325353 ISBN 092045612X. Languages : English. Document type : Monograph. AGRICOLA. 378 WOOD ENERGY. HISER, Michel L. Michigan. Public Service Commission. Governor William G. Milliken's Conference on Wood Energy. University of Michigan 1977. Ann Arbor. Ann Arbor Science Publishers. 1978 Michigan, viii, 152 p.; ill.; 24 cm. LCCN 78065335 ISBN 0250402874 ­ Ϊ15.00. Languages : English. Subfile : OTHER US (NOT EXP STN EXT. USDA; SINCE 12/76). Document type : Monograph. AGRICOLA. 379 LES RESSOURCES ENERGETIQUES OFFERTES PAR LA PHOTOSYNTHESE NATURELLE. ­Energy ressources offered by natural photosynthesis. ZEDET (E.) Rev. Energ.; Fr.; Date: 1977; Vol: 28; No: 296; p.:187­201; Langue : Français. CC: 730.Α.01.Β.05. Evaluation de la production de TEC par AN dans le monde de la production forestière, des déchets agricoles, des ordures ménagères, des mélasses, descriptions de divers procédés de traitement du bois (pyrolyse, synthèse Fischer, production d'hydrogène, etc.) et de traitement des déchets cellulosiques de plantes annuelles : fermentation méthanique et fermentation alccolique. PASCAL. 380 WOOD CHIPS : PRODUCTION, HANDLING TRANSPORT. Food and Agricultural Organization of the United Nations, Rome, 1976. Page 49. FAO. 381 ENERGY POTENTIAL OF FOREST RESIDUE. GRANTHAM, J.B. Portland, Or.; The Council. Annual meeting proceedings. Northwest Forest Fire Council, 1976. p. 76­79. Langeages : English. Document type : article. AGRICOLA. 382 AN OVERVIEW OF EQUIPMENT FOR CONVERTING WOOD AND BARK RESIDUE TO ENERGY. NELSON, D.E. Asheville, N.C. The Council. Proceedings ­ annual hardwood symposium. Hardwood Research Council. 1977 (5th) 1977, p. 81­88. NAL : SD397­H3H37. Languages : English. Document type : article. AGRICOLA.

383 WOOD AND BARK RESIDUES FOR ENERGY : PROCEEDINGS OF A CONFERENCE HELD MAY 31, 1974. Oregon State University. CORDER, S.E. (Editor); Pubi; Corvallis, Ore., USA; School of Forestry, Oregon State University. 1975, 92 pp. Sec. Jnl. Source : Abstract Bulletin of the Institute of Paper Chemistry 47, 9469, X. Languages : En. A collection of 11 papers on various aspects of the use of wood waste and bark in boilers and other industrial processes, including their conversion into oil. Descriptors : conferences, symposia, bark utilization, energy resources, waste utilization, waste wood, industrial; bark; uses and products; USA, Oregon, burners, wood. CAB ABS.

Page 153: Farm and Forest Biomass

-59-

384 ENERGY AND THE DRY KILN (Wood by-products as a source of energy). OSTER, H.J.C. Jr.; Corvallis, Ore. Proceedings.. Annual meeting Western Dry Kiln Clubs. 1975. (26th). 1975. p. 16-20. ill. Languages : English. Document type: article. AGRICOLA. 385 WHO SAYS THERE IS AN ENERGY CRISIS ? (Wood residues as a source of energy). CAMPBELL, D.W. Corvallis, Ore. Proceedings... annual meeting Western Dry Kiln Clubs. 1973. (24th). 1973. p. 19-24. ill. Languages : English. 15 ref. Subfile : OTHER US (NOT EXP STN. EXT. USDA; SINCE 12/76); Document Type : Article. AGRICOLA. 386 FRAS AS WOOD ENERGY (Populus). OZA; G.M.; Dehra Dun. G.S. GAHLOT. Indian Journal of Forestry, v. 1 (4). Dec. 1978. p. 309-310. NAL: SD223.I53. Languages : English. Geographic Location : India. AGRICOLA. 387 A TALK ON FORESTS AS ENERGY RESOURCES DURING ENERGY CRISIS. KUNG, F.H. Taipei. T'ai-wan Sheng Chen Fu. Nung Lin T'ing. Lin Wu Chu. T'ai-wan lin yeh. = Taiwan forestry journal, v. 4 (4). May 1978, P. 1-2. NAL : 99.8 T132. Languages : Chinese. AGRICOLA. 388 THE EUCALYPTUS ENERGY FARMS AS A RENEWABLE SOURCE OF FUEL. ENergy from biomass and wastes : symposium papers presented August 14-18, 1978, Washington D.C.,U.S.A. MARIANI, E.O. Pubi.: Chicago, III., USA; Institute of Gas Technology, 1978, 29-38. Languages : En. 8 réf., 4 fig., 1 tab. Since 1969, Marelco, Inc. has conducted studies of the technical and economical feasibility of establishing Eucalyptus Energy Farms in Southern California deserts to supplement the natural gas curtailment by the gas company to Imperial Valley Industry. The imposition of the 1973-1974 oil embargo emphasized the vulnerability of United States socio-economic system by its dependence on imported petroleum and petroleum products. The effect of this embargo resulted in the revival of the Eucalyptus energy farms concept recognizing the necessity for development of alternative and essentially internal renewable sources of fuel for our future energy needs. With support from the United States Department of Energy, research was conducted to identify suitable regional areas within the United States where Eucalyptus energy farms could be located and appropriate Eucalyptus species selected for these areas. CAB ABS. 389 ESSENTIEL OILS OF EUCALYPTUS AS REPRODUCTIVE BIOMASS. Author : NISHIMURA, HIROYUKI; FUKAZAWA, Y0SHIHIK0; MIZUTANI, JUNYA; CALVIN, HELVIN; PATON, D.M. Location : Hokkaido Univ., Sapporo, Japan. Journal : Koen Yoshishu - Koryo, Terupen oyobi Seiyu Kagaku ni kansuru Toronkai, 23rd. Pubi: 79. Pages : 195-7. Language : Japan. Publisher : Chem. Soc. Japan. Address : Tokyo, Japan. Identifiers : Eucalyptus terpene, hydrocarbon energy Eucalyptus, plant growth inhibitor Eucalyptus. CHEMICAL ABSTRACTS. 390 CHARACTERISTICS OF EUCALYPTUS AS A FUEL : IMMEDIATE WOOD AND BARK CHEMICAL ANALYSIS. Characteristics do eucalipto como combustível : analise química imediata da madeira e da casca. BRITO, J.O.; BARRICHELO, L.C.G. Piracicaba, 0 Instituto. IPEF, Instituto de Pesquisas e Estudos Florestais. June 1978. (16). June 1978. p. 63-70. ill. 15 ref. AGRICOLA.

Page 154: Farm and Forest Biomass

­60­

391 WAYS OF HARNESSING TROPICAL FOREST AS A SOURCE OF ENERGY. Prospects on present and future potential <Wood). Comment utiliser les forêts tropicales comme source d'énergie. Prospectives sur leurs potentialités actuelles et futures. CATINOT, R.; Nogent­sur­Marne, Centre technique forestier tropical. Bois et forêts des tropiques. Mar/Apr. 1979 (184). Mar/Apr. 1979, p. 3­30. ill., map. ISSN 0006­579X. Languages : French, English, Spanish. 7ref. AGRICOLA. 392 TROPICAL WOODS, A POTENTIAL SOURCE OF ENERGY. Les bois tropicaux, source potentielle d'énergie. OOAT, J. Nogent­sur­Marne. Centre technique forestier tropical. Bois et forêts des tropiques. Sept/oct. 1978. (181). Sept/Oct 1978, p. 41­56, ill. ISSN 0006­579 X. NAL : 99.8 B632. Languages : French ; English ; Spanish. 28 ref. AGRICOLA.

1.3.1 Forestry exploitation ­ residual products 393 PERSPECTIVES POUR UNE FORESTERIE ENERGETIQUE EN FRANCE ET DANS LA COMMUNAUTE ECONOMIQUE EUROPEENNE. P. BOUVAREL. Session II, Paper II/K2. Cet exposé traitera de la production de bois utilisable à des fins éner­gétiques, à l'exclusion des procédés et des filières de transformation. La situation décrite pour la France est basée principalement sur les études et les évaluations faites par le groupe biomasse forestière du Commissariat à l'Energie Solaire. Les données concernant l'ensemble de la CEE sont tirées pour la plupart du rapport "Politique forestière dans la Communauté" présenté en décembre 1978. Il ne sera pas fait référence aux politiques particulières des états membres qui dépendent de la situation particulière de chacune en ce qui concerne les ressources nationales en combustibles faciles. International Conference on Energy from biomass. Brighton, 4­7 november 1980. Commission of the European Communities in co­operation with the Department of Energy, London. 394 METHOD FOR THE ESTIMATION OF ABOVE­GROUND BIOMASS AND BIOMASS PRODUCTION IN CLASSICAL COPPICE AND FIRST RESULTS. AUCLAIR, D., and CABANETTES, Α., I.N.R.A. Ardon, France. Session II, Paper II/6. International Conference on Energy from biomass. Brighton, 4­7 November 1970. Commission of the European Communities, in co­operation with the Department of Energy, London. 395 PARDE (J.). PROBLEMES DE BIOMASSES FORESTIERES ENERGETIQUES INRA ­ Nancy.

­ Colloque International CENECA. Agriculture et Energie, Paris, 27, 28, 29 février 1980, pp. 225. 396 KR0TH, W. DAS POTENTIELLE HEIZHOLZANGEBOT DER BUNDESREPUBLIK DEUTSCHLAND in Solentec "Heizen mit Holz"; Tagungsbericht der Tagung "Heizen mit Holz" im Februar 1980 in Göttingen, Herausgeber U. Bossel. 397 DETERMINATION OF YIELD OF BIOMASS FROM WHOLE­TREE HARVESTING OF EARLY THINNINGS IN BRITAIN. MITCHELL, C.P.; MATTHEWS, J.D.; MacBRAYNE, C ; PR0E, M. Session II, Paper II/1. Aberdeen University, Abderdeen U.K. International Conference on Energy from Biomass, Brighton, 4­7 November 1980. Commission of the European Communities; in co­operation with the Department of Energy, London.

Page 155: Farm and Forest Biomass

-61-

398 BIOMASS PRODUCTION WITH POPLAR. MEIDEN VAN DER, H.A. and KOLSTER, M.W. Stichting Industrie-Hout, The Netherlands. Session II, Paper II/3. International Conference on Energy from Biomass. Brighton, 4-7 November 1980. Commission of the European Communities, in co-operation with the Department of Energy, London. 399 ETUDE ET REALISATION D'UN MATERIEL PILOTE DE RECUPERATION DE REMANENTS Β'EXPLOITATION FORESTIERE. Contractor DG XII CEC : CNEEMA Centre National d'Etudes et d'Expérimentation de Machinisme Agricole. Parc de Tourvoie, 92160 ANTONY. Programme 1979-1983. Project E = Energy from biomass. 400 Agency : CSRS PEN. Period : 1 Dec 78 to 30 Jun 81. Invest : BLANKENHORN P.R.; RISHEL, L.E. Project : PEN02380. Perf Org : Forest Resources. Location : Pennsylvania State University, University Park, PA. SELECTED PROPERTIES OF POPULUS HYBRIDS 6R0WN FOR USE AS A SOURCE OF ENERGY AND CHEMICALS. Objectives : Determine the clonal variations, as a function of age, among seven Populus hybrids in gross heat of combustion, ash content, macronutrient compositions, and chemical composition. Approach : Wood, bark and wood'bark specimens, as a function of age, from seven clones of Populus hybrids growing on experimental plots in central Pennsylvania will be obtained for subsequent groos heat of combustion, ash content, macronutrient, and chemical analyses. Variations among the seven clones in the wood, bard and wood/bark specimens as a function of age will be established and analyzed. USDA CRIS. 401 Agency : CSRS PEN. Period : 1 Nov 78 to 30 Jul 82. Invest : BLANKENHORN, P.R.; BOWERSOW, T.W. Project : PEN02369. Perf Org : Forest Resources. Location : Pennsylvania State University, University Park, Pa. NET ENERGY ANALYSIS OF FOREST BIOMASS AS A SOURCE OF ENERGY AND/OR CHEMICALS. Objectives : Conduct a net energy analysis by balancing the energy inputs for selected forest biomass cultural strategies against the potential recoverable (energy outputs) energy for selected biomass conversion strategies in order to recommend a management and conversion strategy with the most favorable energy balance. Approach : A net energy analysis will be performed on selected forest biomass Management and energy conversion (or production of chemicals) strategies by balancing the energy inputs against the energy outputs. Criteria will be established for recommending a management and conversion strategy with the most favorable energy balance. USDA CRIS. 402 HARVESTING RESIDUAL BIOMASS AND SWATHE-FELLING WITH A MOBILE CHIPPER. KOCH, P.; NICHOLSON, T.William. Location : South. For. Exp. Stn., Alexandria, LA, USA. Journal : AIChE Symp. Ser. CODEN: ACSSCQ Pubi: 80. Series : 76. Issue : 195. Pages : 20-30. Identifiers: Logging residue recovery mobile chipper. CHEMICAL ABSTRACTS. 403 Agency : CSRS WN.Z. Period : 17 May 79 to 16 May 81. Invest: SMITH, R. Project: WNZ00048. Perf Org : Forest Resources. Location : Univ; of Washington, Seattle, WN. QUALIFICATION OF BIOMASS FOR USE AD FUELS FOR ENERGY PRODUCTION. Objectives : Develop a physical-chemical characterization of various hog fuels to be used as reference fuels including the estimation of fuel variability; characterize logging residues and thinnings from a physical-chemical perspective which will help determine the effect which can be spent on their extraction and transportation; develop a physical-chemical characterization for energy fuel-farm grown materials. Approach: A) Characterization of wood fuels by

Page 156: Farm and Forest Biomass

­62­

source and species, Β) source and species : wood fuel composition wilL vary depending on its source, C) physical­chemical values developed: perticai size distribution, moisture content, heat content, bulk density, proximate analysis, elemental analysis, elemental analysis, D) data analysis will be devided into two major categories : 1) within a given fuel type and 2) bewteen fuel type. Eight months each will be required for characterization of hog fuel, logging and thinning residues, and energy fuel­farm material. USDA CRIS. 404 Agency : CSRS MIN. Period : 1 Jul 79 to 30 Jun 82. Invest : SINCLAIR, S.A. Project : MIN­43­066. Perf Org : Forest Products. Location : Univ. of Minnesota, St.Paul, Min. IDENTIFICATION AND DEVELOPMENT OF HIGHEST VALUE USES FOR THE TOTAL TREE BIOMASS. Objectives : Determine total volume and wight of wood harvested by species and final use category; then of the total biomass harsted, the proportion used for saqlogs, wood fiber, energy and miscellaneous products will be determined along with the amount left in the woods and the amount of bark. Analyze the economic feasibility of utilizing presently unused biomass. Approach : Data describing the total harvested volume of forest biomass by species, final use category, and geographic location will be compiled. Following the basic data analysis, target species and industries will be selected on the basis of the relative amounts and concentrations of unused biomass, and alternative methods of utilizing the unused resource will then be studied. USDA CRIS. 405 THE AMAZING IPIL IPIL TREE (LEUCAENA LEUCEPHALA, SOURCE OF WOOD AND FUEL). CHANCO, M.P.; London, Intermediate Technology Publications. Appropriate technology, v. 6 (2), Aug 1979, p. 14­15. ill. ISSN 0305­0920. Languages : English. Document type rarticle. AGRICOLA. 406 ENERGY IN THE PRESENT DUTCH HIGH FOREST (Solar energy in harvested bole with bark). Energie in het huidige Nederlandse opgaande bos. AARDEMA,J.U; Wageningen, Nederlandse Bosbouw Vereniging. Nederlandse Bosbouw tijdschrift, v. 51, (4), April 1979, p. 95­105, ill. ISSN 0028*2057. Languages: Dutch, English. 8 ref. Geographic Location : lietherlands. Document type : Article. AGRICOLA. 407 GIESELER, G. POTENTIAL PFLANZLICHER RESTSTOFFE (HOLZ) AUS HOLZINDUSTRIE UND ABFALLUIRTSCHAFT in Dokumentation"Verwertung von nachwachsenden Roh­stoffen"; Symposium München Februar 1979, Verbindungsstelle Landwirtschaft­Industrie e.V. Essen. 408 HOW CAN FOREST BIOMASS CONTRIBUTE TO THE ENERGY SUPPLY. Wie kann Waldbio­masse zur Energieversorgung beitragen. KRAPFENBAUER, Α.; Wien, Bohmann. Umweltschutz, v. 16(3), 1979, p. 81­82, 84, ill. ISSN 0049­5131. Languages : German. Document type : article. AGRICOLA. 409 PATZAK, W. ENERGIEEINSATZ UND ENERGIEUMSETZUNGEN IM BEREICH DER FORSTWIRT­SCHAFT; in Berichte über Landwirtschaft, Sonderheft 195 (1979X 410 KREUTZER, K. DIE FORSTLICHE ERZEUGUNG IN DER BUNDESREPUBLIK DEUTSCHLAND in Dokumentation "Verwertung von nachwachsenden Rohstoffen"; Symposium München Feb. 1979; Verbindungsstelle Landwirtschaft­Industrie e.V. Essen

Page 157: Farm and Forest Biomass

-63-

411 ENERGY LIMITATIONS : IMPACT ON FOREST LAND USE. ELLEFSON, P.V.; North America's Forests : Gateway to Opportunity 1978. Washington, The Society. Proceedings Society of American Foresters, 1979. p. 152-157. ILL. Languages : English. 9 ref. Subfile : OTHER US (NOT EXP STH. EXT. USDA; Since 12/76); Document type : Article. AGRICOLA. 412 BIOMASS ENERGY : AN OVERVIEW (Particularly energy derived from forest residues). EVANS, R.S.; North America's Forests : Gateway to Opportunity 1978, Washington, The Society. Proceedings Society of Ameri cab Foresters. 1979. p. 127-128. Languages : English. Document type : article. AGRICOLA. 413 WOOD ENERGY AND RURAL COMMUNITIES (Wood supplies for cooking and heating). ARNOLD, J.E.M. Apr 1979, v. 3 (3). Natural resources forum v. 3 (3), Apr 1979, p. 229-252, iLL. ISSN 0165-0203. Languages : English. 41 ref. Geographic Location : North America. Document type : Article. AGRICOLA. 414 EXPANDING THE UTILIZATION OF WOOD TO ALLEVIATE NEW ENGLAND'S HOME HEATING OIL CRISIS THIS WINTER. MORGAN, Steve. New England Energy Congress. Presented at Wood Energy Inst. Wood Heating Seminar 5, ST. LOUIS, Sep 12, 79, P54 (28). Survey report : The New England Region, which is nearly 80X dependent on oil for home heating, faces a major crisis for winter 1979-80 : many families will be unable to afford the 60-80% increase in the cost of fuel for home heating. The potential for replacing oil with wood is examined. Measures that can be taken by local, state and federal governments to substitute wood for heating oil are discussed. Displacing just 5-10X of New England's current oil consumption could significantly relax the pressure for the upcoming winter. Implications of long-term utilization of wood for home heating are considered. (1 drawing, 12 references, 4 tables). Descriptors : fuel substitution; wood energy; New England; Heating oil shortage; firewood; timber supply; supply-demand forecasting; economics; energy-unconventional; forestry; public lands; privare lands; conf paper. ENERGYLINE. 415 HEATING THE HOME WITH WOOD. MILTON, F.Thomas. St.Paul, Minn., Agricultural Extension Service, Univ. of Minnesota, 1979 mnu, 31 p.; ill. Minnesota. University. Agricultural Extension Service; Extension bulletin; no 436. NAL : 275.29 M66S No. 436. Languages : English. Bibliography : p. 27. Government source : State. Document type : monograph. Descriptors : Wood as a fuel. AGRICOLA. 416 FUEL GAS FROM WOOD WASTE. MATHUR, V.K.; CAUGHEY, R.A. New York, M. Dekker. Energy Communications v. 5 (2), 1979, p. 129-150. ill. ISSN 0097-8159. Languages : english. 8 ref. Document type : article. AGRICOLA. 417 THE USE OF WOOD FOR ENERGY IN NORTH CAROLINA. MCGEE L. B. North Carolina Dept of Natural Resources & Community Development. Presented at AGA/EPRI/ NCA/Gas Research Inst. 6th Energy Technology Conf. Wash. DC, Feb. 26-28, 79, P998 (6). ENERGYLINE.

Page 158: Farm and Forest Biomass

-64-

418 Agency : SAES ARK. Period : 1 Mar 79 to 1 Mar 82. Invest : KU T.T.; BAKER, J.Β.; WILLIAMS R.A. Project : ARK. Perf Org : Forestry. Location : Univ of Arkansas/ Monticello, Ark. THE USE OF UNDERSTORY VEGETATION AS A RENEWABLE BIOMASS ENER6Y RESOURCE. Objectives : Determine nature, character and extent of understory vegetation within uneven-aged pine and pine-hardwood southern forests as a renewable biomass energy resource. Determine attitude of non-industrial landowners toward public harvest of understory. Determine recovery rate of resource after harvest. Determine long term effects of periodic harvests of understory biomass and site quality. Approach : A factorial experiment with two forest types, two site classes, two density classes, and five replications will be used to establish 40 main plots in the South Arkansas and North Louisiana area. Main plots will be approximately 0.S acres in size. Three 10'x 10' paired sub-plots will be established with all understory vegetation below 5.6" dbh to be harvested by clipping from one plot of each pair in summer and the second plot to be harvested in winter. Subsamples from the green chips will be ovendried and used to determine baseline data for quantifying long term effects of periodic harvest on site quality. Landowners will be canvassed to assess availability of understory biomass for energy. USDA CRIS. 419 THE POTENTIAL ENERGY PRODUCTIVITY OF U.S. FORESTS. HYDE (W.F.); WELLS (F.J.). Aff: Resources Future, Washington D.C., USA. Energy Sources; USA, Date: 1979; Vol: 4; No: 3; p. 231-257; 3 p.; Langue : Anglais. Etude du potentiel de production d'énergie thermique des forêts des Etats-Unis avec et sans amélioration de leur productivité (utilisation complète, . fertilisation, améliorations génétiques). Prix de revient prévisionnel de la thermie produite à partir dg bois. PASCAL. 420 WOOD FUEL PLENTIFUL IN WEST VIRGINIA (Forest inventories). SRALES, R.L. Broomall, Pa., Northeastern Forest Experiment Station. Forest Service, U.S. Dept. of Agriculture. Forest Service research note United States, Northeastern Forest Experiment Station. 1979 (279). 1979, 4 p., iLL. Languages : English. 10 ref. Geographic location : West Virginia. Subfile : USDA (US DEPT. AGR). Document type : Article. AGRICOLA. 421 FOREST BIOMASS AS AN ENERGY SOURCE. Study report of a task force of the Society of American Foresters, 1979. DOUB, R.L.; BETHEL, J.S. Washington, D.C., Society of American Foresters. Journal of Forestry, v. 77 (8). Aug. 1979, p. 495-501. ill. ISSN 0022-1201. Languages : English. 12 ref. AGRICOLA. 422 FOREST BIOMASS AS A SOURCE OF ENERGY : A POLICY STATEMENT FOR NEW ENGLAND. YOUNG, H.E. Old Forge, N.Y.; Northeastern Loggers' Association. The Northern logger and timber processor, v. 28 (4) Oct. 1979. p. 8-9, 44-46, ill. ISSN 0029-3156. Languages : English. 3 ref. Geographic Location : New England. AGRICOLA. 423 SOUTHERN FORESTS MAY BE ÁS GOOD AS OIL WELLS (Wood as fuel). WOLFSHOHL, K; JOHNSON, B. Jan. 1979, v. 94, (1). Progessive farmer for the West, v. 94 (1), Jan. 1979, p. 60D. ill. Languages : English. Document type : article. AGRICOLA.

Page 159: Farm and Forest Biomass

-65-

424 PILOT STUDIES OF WOODY BIOMASS FOR ENERGY (Platanus occidentalis/ Elaeagnus umbellata/ siIvicultural techniques/ herbicide trials). WHITE T.A.; FAIX/ J.J. Urbana-Champaign; III. Illinois Agricultural Experiment Station. DSAC/ Dixon Springs Agricultural Center/ Jan 1979 (7). Jan 1979/ p. 221-225. 111. Languages : English. 3 ref. Geographic Location : Illinois. Document type : article. AGRICOLA. 425 ENERGY EFFICIENT SYSTEMS FOR BIOMASS PRODUCTION. THOMAS LEDIG (F.). Äff: Yale Univ./ New Haven CT/ USA. Amer;Chem.Soc.Dlv. PETROLEUM CHEM./ Prepr., USA; Date : 1979; Voi: 24; No: 2; p.: 408-413; 23 réf.; Langue: Anglais. Rendement énergétique de la sylviculture pour différentes espèces. Proposition de méthodes pour augmenter ce rendement. Etude des diverses utilisations possibles du bois et des déchets, les plus favorables étant la combustion directe et la pyrolyse. PASCAL. 426 VIEWPOINT ON HARVESTING AND USING WOOD CHIPS AS FUEL ON FARMS. Katsaus poltthohakkeen korjuuseen ja kayttoon maatiloilla. HOGNAS, T.; RÁJALA/ P.S. Helsinki/ Tyotehoseura. MetsatiedotuS/ 1979 (300) 1979/ 6 p./ ill. Languages : Finnish; English. 6 ref. Document type : Article. AGRICOLA. 427 TECHNOLOGIES NOUVELLES : UNE SOLUTION AUX PROBLEMES ENERGETIQUES. - New technologies : a solution to energy problems. FORTIN (H.). Geos; CAN; Date: 1979; Winter; p.: 8-9. Résumé : Eng./ ill./ Langue : Français. Les aides de l'état pour le développement de l'énergie solaire et l'utilisation de la biomasse (déchets forestiers) au Canada. (BDM 10.956A). PASCAL. 428 THE PLACE OF FORESTRY IN THE ENERGY QUESTION (Wood products). NAUTIYAL/ J.C. Ottawa, National Research Council of Canada. Canadian Jourtoal of forest research. Journal canadien de la recherche forestière v. 9 (1)/ Mar 1979/ p. 68-75/ ill. ISSN 0045-5067. Languages : English; French. 32 ref. Document type : article. AGRICOLA. 429 CTB Centre technique du Bois, Paris (Fr.) LES DECHETS DU BOIS ENGENDRES PAR LA RECOLTE DU BOIS/ LA FABRICATION ET L'UTILISATION DES OUVRAGES OBJETS EN BOIS SYNTHESE. 1978. 35 p. Définition des déchets et essais de quantifi­cation. Valorisation et propositions de valorisation méthodologie de l'enquête. MINAG-BR7474. RESEDA. 430 MISURE DI BILANCIO ESTIVO DELL'ENERGIA IN UN PIOPPETO (p. X Euramericana Cv. '1 476'). Summertime energy balance measurement in a poplar stand (p. X Euramericana CV. '1 476'). Biology of plants and animals; poplar tree stands; Population biology (e.g. population dynamics and genetics); Plant production general and crop husbandry. TARSIA/ N. Enti autonomi (Pubblici e privati); Ente Nazionale per la Cellulosa e per la carta (Via Regina Margherita 270; 00198 ROMA); Centro di Sperimentazione agricola e forestale (Via Casalotti 300; 00166 ROMA). AGREP.

Page 160: Farm and Forest Biomass

-66-

431 ENERGY IN FORESTRY - PRODUCTION AND USE. Spring Symposium for the Florida Section/ Society of American Foresters University of Florida 1978 (Gaines­ville , Fla.). School of Forest Resources aed Conservation, Institute of Food and Agricultural Sciences, University of Florida, 1978, i, 155 p; ill.; 28 cm. Florida, University. Cooperative Extension Servide, Resources report ; 5. NAL : S916, F6F5 1978, No 5. Languages : English. Includes bibliographies. AGRICOLA. 432 ENERGY IN FORESTRY - PRODUCTION AND USE. Spring Symposium for the Florida Section, Society of American Foresters University of Florida 1978^ (Gaines­ville, Fla.) School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, 1978, Florida. 1, 155 p.; ill.; 28 cm. Florida, University, Cooperative Extension Service. Resources report; 5. Languages :English. Includes bibliographies. Subfile : OTHER US (NOT EXP STN. EXT. USDA; SINCE 12/76); USDA (USDA DEPT. AGR). Document type : Monograph. AGRICOLA. 433 Agency : OCI OREZ. Period : 1 Nov 77 to 30 Oct 78. Invest : CURRIER R. Project : ORE-F-00044. Perf Org : Forest Products. Location : Oregon State Univ. Corva 11 is. Ore. ENERGY UTILIZATION OF LODGE POLE PINE RESIDUES. Objectives : Prepare a working plan document under funding by the U.S. Department of Energy, for use by the Department and the U.S. Forest Service to identify methods of utilizing dead timber and forest residues as an alternative energy source In the study area. Approach : Determine the type, volume and location of the raw material; analyze feasible methods of harvesting, handling and transporting the raw material; specify potential methods for utilizing the raw material to produce energy; analyze economic, social and political consequences of alternate systems for utilizing the material. USDA CRIS. 434 Agency : SAES, WN.P. Period : 24 May 1978 to 30 Sep 83. Invest : CHAPMAN, R.C.; BALDWIN, V.C.; BURNELL, D.G. Project : UNP00426. Perf Org : Forestry & Range Management, Location : Washington State Univ., Pullman, WN. EVALUATION AND MODELLING OF BIOMASS YIELDS FROM CONIFER STANDS IN INLAND NORTHWEST. Objectives : Development of Individual tree biomass equations for each of the major softwood species in the Inland Northwest. Development of statistical models to describe the distribution of biomass within a stand for each tree component (boles, branches, and foliage) based on a variety of utilization standards (top diameters) and the accumulation of biomass over time. Modification of existing volume simulators or development of new simulators which can be used to evaluate many alternative energy production strategies such as optimum species selection and composition and selection of appropriate s1lv1cultural treatments. Approach : Stand representatives of species combinations, age classes and habitat types will be sampled in the field, and lab determinations made of oven dry yield. Statistical models will be designed to provide distribution of biomass within a stand for each tree component. These models will be used to strengthen existing volumes simulators or if necessary for the development of new simulators to evaluate alternative energy production strategies. USDA CRIS. 435 NATIONAL FOREST FOR ENERGY PRODUCTION (in the U.S.) BOND, F.L. Baton Rouge, Annual forestry symposium Louisiana State University - School of Forestry and Wildlife Management, 1978 (27th). 1978. p. 22-28. ISSN 0076-1095. Languages : English. 1 ref. Geographic Location: USA. Document Type:Art1cle. AGRICOLA.

Page 161: Farm and Forest Biomass

-67-

A36 Agency : CSRS PEN. Period : 1 Aug 75 to 31 Dec 78. Invest : BLANKENHORN, P.R.; BOWERSOX T.W. Project : PEN02173. Perf Org : Forest Resources. Location : Pennsylvania State University, University Park, Pa. FOREST BIOMASS AS A SOURCE OF ENERGY AND BY-PRODUCTS. Objectives ; Determine the feasibility of using forest biomass as fuel for generating electricity for small-sized communities (10.000) or manufacturing firms in Pennsylvania and the by-products from alternative processes. Approach : This study will extensively evaluate the literature to assess the known technology of utilizing biomass directly or indirectly as a fuel source. In evaluating the alternative methods for using wood as a fuel source, value of the by-products will be considered. This study, in general, will examine existing sources of wood in Pennsylvania necessary to keep one 100 MW power plant going indefinitely. As a spin-off the literature will be examined to determine the problems associated with utilizing the forest biomass directly or as the raw material for products to be used as the fuel source for an electric generating plant. USDA CRIS. 437 Agency : SAES NEV. Period : 1 Jul 75 to 30 Sep 78. Invest : MILLER, E.L.; BUDY, J.D.; MEEUWI6, R.O. Project : NEV00664. Perf Org : Renewable Natural Resources. Division, Location : Univ. of Nevada. Reno; Nev. DEVELOPMENT OF TECHNIQUES TO MEASURE AND PREDICT BIOMASS OF SINGLELEAF PINY0N AND UTAH JUNIPER. Objectives : Develop prediction equations which use measurable, independent tree variables to estimate above-ground biomass as related to resource potentials and quantity of fuel. Obtain data for analysis of growth relations and site quality of pinyon-juniper stands in Nevada. Approach : The entire above-stump biomass of randomly selected trees will be obtained for deadwood, green material larger than 3-inches diameter and green material smaller than 3-inches. The proportions of foliage, twigs less than 1/4 in., branches 1/4-to· 1-in., and branches 1-to 3-in. diameter will be determined by sampling. Representative disks and samples will be taken to the laboratory for oven-drying. Using various tree and site parameters, prediction equations will be developed for estimating resource potentials and quantity of fuel. Progress: 75/06 78/12. Field work has been completed at 19 study plots across Nevada. Aboveground biomass measurement have been obtained for 76 pinyon and 33 juniper trees. Regression analysts techniques have been utilized to select those tree variables which best estimate and predict total aboveground biomass and also biomass of the various size classes, such as cordwood and slash. Results indicate that log transformations and using two or three variables provide the best prediction equations. For pinyon, tree height and dia­meter at stump height are the most significant variables while for juniper, average crown diameter and dbh are the most significant. Biomass tables have been constructed for on the ground and areal cruising in the p-j type. The final report will be published as a Research Paper - Intermountain Forest and Range Experiment Station. Publications : 75/06 78/12. MILLER, E.L.; MEEUWIG, R.O. and BUDY, J.D. 1978. Aboveground biomass of singleleaf pinyon and Utah juniper in Pinyon-Juniper Research Uorkshop. U.S. Forest Service. Intermountain Forest and Range Experiment.Station. USDA CRIS. 438 FOREST RESIDUES AS AN ALTERNATE ENERGY SOURCE. RILEY (J.G.); SMITH <N.) Aff : Univ. Maine Agrie. Eng. Dep., ORONO ME, USA. Energy crisis where do we go from here. University of Missouri-Rolla - Missouri Department of Natural Resources Annual Conference on Energy. 4/1977-10-11/Rolla Mo. USA; Ed: S.L.; Date: 1978; p.: 211-220; 28 CMh.t.; 9 réf.; Cote: Y14794; Langue : Anglais. Etude de l'importance et de la disponibilité des déchets d'exploitation des forêts aux Etats-Unis. Analyse énergétique et écono­mique des systèmes existants et proposés pour la récolte de ceux-ci.

Page 162: Farm and Forest Biomass

-68-

Description de nouvelles installations de chauffage automatiques utilisant des déchets de bois. PASCAL. 439 FOREST RESOURCES FOR PRODUCING ENERGY. ZERBE, J.I. Baton Rouge. Annual forestry symposium Louisiana State University/ School of Forestry and Wildlife Management. 1978, <27th>, 1978, p. 51-61. ill. ISSN 0076-1095. Languages : English. 1 ref. Subfile : USDA (US DEPT. AGR.). Document Type : Article. AGRICOLA. 440 HOW MUCH ENERGY IN THE WORLD'S FORESTS. SMIL (V.). Aff : Univ. Manitoba, Can. Energy International.; USA.; Date : 1978; Vol : 15; No: 3; p.:25-26; Langue : Anglais. Evaluation de l'équivalent charbon annuel du bols disponible dans le monde pour la conversion en énergie. PASCAL. 441 HARVESTING SMALL-SIZED WOOD (from trees and logging residues) FOR FUEL. Pienpuun korjuu polttoaineeksi. HAKKILA, P;; Helsinki; Metsantutkimuslaitos. Folia forestalia 1978 (342). 1978. 38 p.; ill. ISSN 0015-5543. Languages : Finnish. 46 ref. Geographic Location : Finland. Document type : article. AGRICOLA. 442 FORESTS AS ENERGY RESOURCES - WHO CAUSES WHAT. Skog som energiressurs- hven gjor hva. WILHELMSEN, G.; Lauvtre og smavirke til energiformal Honne 1978. Oslo, Norske skogselskap. Tidsskrift for skogbruk. v. 87 (1). 1979, p. 9 - 10. ISSN 00*0-7178. Languages : Norwegian. Document type : Article. AGRICOLA.

443 ENERGY FROM FOREST PRODUCTS. Energi fra skogbruket. Trondheim. Landbruk-stidende v. 84 (42), Oct. 21, 1978. p. 1017. ISSN 0023-7833. Languages : Norwegian. Document type : Article. AGRICOLA. 444 BIOMASS FOR ENERGY PRODUCTION-TREES. Resource Development; Forests in general; other man-made resources; biology - general; research which cannot be classified.in the fields mentioned above. NEENAN, M.; O'FLAHERTY, T.; MONTGOMERY, W.; LAMB, J.G.D.; KELLY, J. An Fores Taluntais (19 Sandymoant Avenue; Dublin 4); Oakpark Carlow. 1976. AGREP. 445 TECHNOLOGY OF UTILIZING BARK AND RESIDUES AS AN ENERGY AND CHEMICAL RESOURCE. J. MATER ft M.H. MATER (Eds.) FPRS, Madison, 1976, 117 p. refs. Annual meeting. Forest products research society, 1975, 1976. Technical Session(s); Energy conservation committee, 1976. Proceedings. Forest products research society, nr. P-75/76-15. PUDOC. 446 ENERGY AND THE 80UTHERN FOREST. CHOONG, Elvin T. Louisiana State University and Agricultural and Mechanical College. School of Forestry and Wildlife Management. Forestry Symposium Louisiana State University, Baton Rouge, 1978. Published through the academic direction of the School of Forestry and Wildlife Management by the Division of Continuing Education. Louisiana State University, C1978, Louisiana. vi11, 170 p.; 111.; 24 cm. Languages : English. Includes bibliographies. Subfile : OTHER US (NOT EXP STN. EXT,

Page 163: Farm and Forest Biomass

-69-USDA; since 12/76); Government Source rSTATE. Document Type : Monograph. AGRICOLA. 447 TECHNOLOGY OF UTILIZING BARK AND RESIDUES AS AN ENERGY AND CHEMICAL RESOURCE. MATER/ J., ed. Madison,UI. Forest Products Research Society, 1976. Wisconsin 177p.; ill., diagr,grahs,maps, 28cm. Forest Products Research Society. Pro­ceedings : no.P-75/76-15. Languages : English. Includes bibliographical re­ferences. Subfile : Other US (NOT EXP STN. EXT. USDA;since 12/76); Document Type : Monograph. AGRICOLA. 1.2.3. Wood-processing industry - residual products 448 RECOVERY OF WASTE-PRODUCTS FROM WOOD-PROCESSING INDUSTRY. CASTAGNE, M. (Direc­tor of Research),Mme C. PARE (Ingénieur E.C.P.) ROLIN, C. D.E.G.E. - Institut National Polytechnique de Lorraine, 1, rue Grandville, 54042 NANCY CEDEX. Purpose : To investigate the feasability of valorization of waste products from wood industry in the eastern part of France. Session II Paper 11/2. In­ternational Conference of the European from Biomass; Brighton, 4-7 November 1980. Commission of the European Communities, in co-operation with the Department of Energy, London. 449 GIESELER C. LE POTENTIEL DES RESIDUS DE BOIS PROVENANT DE L'INDUSTRIE DE BOIS ET DE L'INDUSTRIE DES DECHETS. Communication présentée au Symposium "Utilisa­tion des matières premières renouvelables" Munich, 16.2.1979. pp.53-62 450 NOACK, D. UND FRÜHWALD,A. VERWENDUNG VON HOLZRESTSTOFFEN IN DER MECHANISCHEN HOLZINDUSTRIE. Vortragsmanuskript Hamburg 1980. 451 IL LEGNO COME ENERGIA. Aspetti energetici delle Industrie forestali. ZIBERNA (F.). Incontri 1980, 10p. 452 Agency : FS NC. Period : 11 Apr 77 to 11 Apr 82. Invest : KALLIO, E. Projete : NC-4203. Perf Org : North Central Forest Experiment Station, Location : Univ. of Minnesota, Duluth, Min. ECONOMIC ANALYSIS OF THE CHANGING DEMAND FOR TIMBER IN THE LAKE STATES. Objectives : Determine and measure effects on the future demand for timber in the Lake States. Determine the economic limitations of using forest residues as an energy source for the pulp and paper industry. Determine the economic consequences of full tree removal in the aspen-birch type. Determine barriers affecting the more efficient use of softwood lumber for structural use in residential housing. Approach : Wherever possible, infor­mation will be collected on wood product demand from secondary sources. Infor­mation on full tree removal and availability of forest residues for fuel be collected from existing forest survey plot data, residue measurement and har­vest and transport cost estimation. Simulation and access models will be used to analyze the data. Information collected from lumber truss fabricators and other sources will be used in determining barriers affecting the more efficient use of softwood lumber. USDA CRIS. 453 Agency : FSSE. Period : 15 Sept 66 to 2 Feb 84. Invest : SAUCIER, J.R. Project SE-3101. Location : Southeastern Forest Expt Station, Athens GA. UTILIZATION OF SOUTHERN TIMBER. Objectives : Characterize the southern timber resource and develop the technology to improve utilization processes, product yields, reduce waste and conserve energy. Approach : Research studies will be conducted to determine the total-tree biomass of southern softwood and harwood species, so we can determine how much additional fiber is obtained when tops, branches, root systems, understory trees and cull trees are harvested. Physical and

Page 164: Farm and Forest Biomass

­70­

chemical properties of wood and bark will be examined to determine their in­fluence on product utilization. Trees and logs will be followed through pri­mary processing, when possible, to determine ways of improving lumber, veneer, pulp and fuelwood yields. USDA CRIS. 454 Agency : CSRS TEX. Period 14 June 77 to 13 June 82. Invest : SOLTES, E.J. Project : TEX06279. Perf Org : Forest Science. Location : Texas A S M Univ.; College Station, Tex. CHEMICALS AND ENERGY FROM FORESTRY AND RELATED RESIDUES. Objectives : Identify and address technical and economic contraints in residue utilization. Identify and develop processes for producing chemical and energy products from residues. Evaluate various preprocessing schemes to enhance residue utility in product generation. Approach : Assess and address biomass availabilities; harvesting and transportation problems. Evaluate pyrolisis as a means of generating clean, volatile fuels from dirty residues. Characterize products of pyrolysis various residues. Identify and develop pyrolysis para­meters and postpyrolysis processing in maximizing yield of useful products and intermediates. Evaluate the effects of composting and other processes on resi­due utility. USDA CRIS. 455 MODERN PLANTS FOR ENERGY GENERATION IN THE WOOD INDUSTRY. Modern Energieerzeu­gungsanlagen in der Holzindustrie. SEEGER, Κ. Berlin, Springer. Holz als Roh­und Werkstoff, v. 37 (4), Apr. 1979, p. 129­134. III. ISSN 0018­3768. Langua­ges : German, English. 5 ref. Document Type : Article. AGRICOLA. 456 THE COUPLING OF POWER AND HEAT ­ POSSIBILITY FOR ENERGY GENERATION FROM WOOD INDUSTRY RESIDUES. Kraft­Warme­Kopplung. Eine Möglichkeit der Energiegewinnung aus Abfallen der Holz­Industrie. HEIGENHAUSER; B. Berlin, Springer. Holz als Roh­ und Werkstoff, v. 37 (4). Apr. 1979. p.117­127; III. ISSN 0018­3768. Languages : German, English. 32 ref. Geographic Location : German Federal Republic. Document Type : Article AGRICOLA. 457 EEN ANDER BEELD OVER DE MOGELIJKHEDEN VAN HOUT ALS BRON VAN ENERGIE. TNO Pro­ject 7 (1979) 6:239­240. Discussie naar aanleiding van het artikel van ir. T.K. Haas in TNO Project 6(1979)11 over de mogelijkheden van hout als eventuele vervanger van fossiele brandstof. (Doe). PUDOC. 458 FEASIBILITY OF ELECTRIC POWER GENERATION FROM WOOD WASTE. SILVERMAN E.F. Hen­ningson, Durham & Richarson, Wash. D.C, Presented at Information Transfer Ine/et Al Technology for Energy Conservation Conf., Tucson, Jan 23­25, 79, P592 (5). Technical feature : the feasibility of utilizing lumbering residues mill residues, and harvest from energy plantations as fuel for electricity generation is surveyed. The availability of wood supplies is reviewed. The institutional problems related to development of a long­term, reliable wood fuel supply poses significant constraints to project implementation. Only through extensive negotiations with landowners, loggers, wood products indus­try representatives, and professional foresters can a potential wood energy user formulate a sound wood procurement program (1 map, 2 tables). ENVIR0LINE. 459 WOOD RESIDUE ENERGY DIRECTORY; Suppliers, Manufacturers, technical consulente Professional Engineers. FPRS, Madison, ca 1979, 23p. PUDOC.

Page 165: Farm and Forest Biomass

-71-460 ENERGY FROM WOOD WASTE - A DIFFERENT APPROACH. HAGEN, K.G. New York, The Institute. Annual Pulp and paper industry technical conference record Insti­tute of Electrical and Electronics Engineers. Technical Operations Committee. Pulp and Paper Industry 1979, p.86-91, ill. Languages : english. 8 ref. Subfile : Other US (not EXP STN. EXT. USDA; since 12/76); Document Type : Article. AGRICOLA. 461 WOOD RESIDUES (from sawmills in southwestern Wisconsin) as a supplementary utility boiler fuel. McGOVERN, J.N., Madison, Wis. University of Wisconsin, College of Agricultural and life Sciences. Forestry research notes. Dec 1979 (229). Dec 1979, 6 p. ill. Languages : English . S ref. Geographic Location : Wisconsin. AGRICOLA. 462 THE FOREST - AN ANSWER TO THE PAPER INDUSTRIES FUEL WORRIES ? KLUENDER, R.A. American Pulpwood Ass. Miss. Pima, Nov 79, V61, N11, P24(3). Feature article: the potential of using wood as a fuel source in the paper industry 1s examined Wood is readily available and the technology of burning wood as a fuel has long been known. Some of the problems that will have to be overcome before wood can become a significant energy source for the industry include poorly develped hravesting, collection, handling and storage systems currently being used to manage wood resources (5 graphs). ENVIROLINE. 463 ENERGY POTENTIAL FROM CENTRAL AND SOUTHERN ROCKY MOUNTAIN TIMBER (Residues). SAMPSON, G.R. Fort Collins, Colo. The Station. USDA Forest Service Research note RM. United States. Apr 1979.(368) Apr 1979, 7 p. 111. Language: English 12 ref. Geographic Location : Western States (USA). Document Type : Article. AGRICOLA. 464 WOOD PROCESSING FORESTRY AND AGRICULTURAL WASTES. ZERBE, John, I. Location : Forest Prod. Lab., Forest Serv., Madison, Wis. 53705; USA. Journal: New Fuels Adv. Combust. Technol., Symp. Pap. Pubi: 79. Pages : 181-92. Publisher : IGT. Address: Chicago, III. Identifiers: wood waste energy source, combustion wood waste energy, paper manuf. fuel wood waste; biomass gasification liquefaction fuel manuf. CHEMICAL ABSTRACTS. 465 PELLETIZED WOOD (Woodex); Applications and Potential. WALKER, Davis C ; ERIMER WAYNE F. PULLMAN SWINDELL. Presented at AGA/EPRI/NCA/GAS Research Inst. 6th Energy Technology Conf., Wash D.C., Feb 26-28, 79, P992 (6). Survey Report : Woodex, a pelleti zed fuel consisting of any fibrous organic waste material, is a clean burning renewable resource. The pellets generate a maximum of 3% ash and contain no sulfur. Woodex yields about 8.500 BTU/LB at about 35 LB/CU Ft density. The biomass fuel can be burned in its pelletized form, reduced in size for direct combustion, or processed into a fuel gas (1 diagram, 1 table). ENERGYLINE. 466 POSSIBILITIES OF UTILIZATION OF PAPER-MAKING WASTE AS FUELS. Moznosti vyuziti odpadu v papirenskem prumyslu jakopaliva . TUNA, J. Praha, Nakladatelstvi tech-nicke literatury. Papir a celuloza, v. 34(5), 1979, p. 143-148,ill. Language : Czech. 7 ref. Document Type : article. AGRICOLA. 467 GASCHE, N. HOLZ ALS ROHSTOFF FOR ORGANISCHE GRUNDCHEMIKALIEN; ETH-ZûrUh, Vortrag im Januar 1978.

Page 166: Farm and Forest Biomass

-72-468 BEDEUTUNG UND ZUKUNFT VON HOLZ ALS ENERGIETRÄGER, INSBESONDERE IN DER HOLZ­INDUSTRIE. Importance et avenir du bois en tant que source d'énergie, en par­ticulier dans l'industrie du bois. Importance and future of wood as energy source with particular reference to the wood industry. PATZAK (W.); SCHULZ (H). Aff: Inst. Holzforsch* Univ. München. Holz Roh- u. Werkst.; Deutsch. Date : 1978, Vol. 36; N°3; p.89-99; Résumé - Angl. 1p. Langue: Allemand. Analyse de la consommation de bois en Allemagne et en Bavière comme source énergétique. Son importance est très faible en Allemagne, et elle ne peut être élevée que dans les industries transformatrices du bois. PASCAL. 469 ENERGY FROM SAWMILL WASTE BY GAS TREATMENT. Energie aus Sageabfallen über Vergasung ZERBIN, H., Wien. Internationaler Holzmarkt v.69 (24), Dec 12, 1978, p. 8-11, ill. ISSN 0020-9422. Language : German. Document Type : Article. AGRICOLA. 470 ENERGY AND ENVIRONMENTAL CONCERNS IN THE FOREST PRODUCTS INDUSTRY A. I. CH. SYM. SER.; USA, Date: 1978, Vol 74, N°177; 137p. Langue : anglais. Communica­tions présentées au 69e Congrès de l'AICHE, en novembre 76, à Chicago;besoins en énergie et combustible des industries du bois et de la papeterie, conserva­tion de l'énergie (en particulier pour le séchage du bois), le bois et ses déchets utilisés comme combustibles, impact des mesures de protection de l'en­vironnement sur les industries du bois et du papier. PASCAL. 471 FOREST ENERGY FOR USE BY WOOD INDUSTRIES. HOWLETT, C.T. Jr., Baton Rouge, Annual Forestry Symposium Louisiana State University - School of Forestry and Wildlife Management, 1978, (27th). 1978; p.85-107. III. ISSN 0076-1095. Language : English. 7 ref. Document Type : article. AGRICOLA. 472 AN EVALUATION OF WOOD-WASTE ENERGY CONVERSION SYSTEMS. LEVELTON (B.H.)& Ass. British Columbia Wood-Waste Energy Coordinating Committee, Vancouver, Environ­ment Canada, Western Forest Products Lab., 1978, Ontario X,187p.; ill. 28cm, language : English. Bibliography: p.187. Document Type : Monograph. AGRICOLA. 473 WOOD RESIDUES FUELS FOR MAPLE EVAPORATORS. LAING, F.M. (Burtlington, Vt). Agricultural Experiment Station, Univ. Of Vermont,1978 Vermont, vi, 32p.,ill.; 28cm. Vermont Agricultural Experiment Station. MP: 101. Language : English, Bibliography: p.27. Government source : State. Document Type : Monograph. Descriptors: Wood as fuel : Maple Syrup. AGRICOLA. 474 ENERGY FROM BIOMASS THROUGH HYDROLYSIS OF WOOD. GUHA (B.); TITCHENER (A.L.). Aff: Univ. Auckland Chem. Materials Eng. Dep., Nex Zealand Intersociety Energy Conversion Conference. 13/1978-08-20/San Diego; USA; Ed: Warrendale: SAE; Date 1978; Vol 1; p.233-238; 12 réf.; Langue : Anglais. Type : TC LA. Etude expé­rimentale de l'hydrolyse sulfurique de copeaux de bois. Présentation d'une analyse d'optimisation pour maximiser la production de sucre dans un réacteur percolateur. Conception d'une usine traitant 500T/Jour avec production d'étha-nol. PASCAL. 475 CURRENT BUSINESS NEMTHODS FOR FIREWOOD AND WOOD FUEL CHIPS. Aktuelle driftsme -toder vor veg od brenselsflis. DANIELSEN, P.G.; Lauvtre of smavirke til energi­formal Honne 1978. Oslo; Norske skogselskap. Tidsskrift for skogbruk, v.87 (1),1979, p.19-32, ill. ISSN 0040-7178. Language : Norwegian. Document Type : article. AGRICOLA.

Page 167: Farm and Forest Biomass

-73-

476 STUDIES OF THE OPERATION OF AN ENERGY-CHEMICAL UNIT USING DRY RESIN-FREE WOOD RESIDUES (Production of chemical products). BUKIN, V.D., SOSENSKII, A.I. Moskva, "Lesnaia prom-st". Gidroliznaia 1 lesokhimcheskaia promyshLennost" 1978(1). p.11-13, iLL. ISSN 0016-9706. Language : Russian. Document Type : article. AGRICOLA. 477 POSSIBILITY OF ENERGY-TECHNOLOGICAL PROCESSING OF (WOOD) HYDROLYSIS LIGNIN. BRUER, G.G.; IVANCHIKOV, A.K. Moskva, "Lesnaia prom-st" - Gidroliznaia 1 lesokhimicheskaia promyshlennost". 1978(3). 1978, p.7-9. ILL. ISSN 0016-9706. Language : Russian. Document Type : article. AGRICOLA. 478 UTILIZATION OF WOOD INDUSTRIAL WASTES AS FUEL. 1. TSUTSUMOTO, T., Tokyo, Nippon Mokuzai Kako Gljutsu Kyokai. The wood Industry v.33 (2). Feb. 1978, p.52-56. III. ISSN 0026-8607. Language : Chinese ; Document Type : article. AGRICOLA. UTILIZATION OF WOOD INDUSTRIAL WASTES AS FUEL. 2. TSUTSUMOTO, T., Tokyo Nippon Mokuzai Kako Gljutsu Kyokal. The wood industry v.33 (3), Mar. 1978 p.104-108. 111. ISSN 0026-8607. Language : chínese ; Document Type : article. 25 ref. AGRICOLA. 479 STORAGE AND COMBUSTION OF WOOD FUEL CHIPS, LYONS, G.J. The key role of bio-mass in Ireland's Energy Future Conference, Dublin, Nay 1977.

II. ENERGY CROPS

480 L'ENERGIE VERTE : DU COMBUSTIBLE EN CULTURES DEROBEES. BATHER (D.M.). Univ. de Reading. Colloque International CENECA. Agriculture et Energie, Paris 27-29 février 1980, p.226. 481 EXPERIMENTAL STUDIES ON CATCH FUEL CROPS IN THE TIME INTERVAL BETWEEN NORMAL HARVESTING AND PLANTING OF FOOD CROPS. Contractor DG XII-CEC. Speddlng (C.R.W.) Programme 1979-1983. Univ. of Reading. Project E = Energy from biomass. Dept. of Agriculture and Horticulture. Earley Gate, Reading, Berkshire. England RG6 2AT. 482 STUDIES OF THE POTENTIAL FOR ETHANOL PRODUCTION FROM SELECTED BIOMASS CROPS GROWN IN TEMPERATE CLIMATES. MARTIN S.R. : Principal Process Engineer, Stone & Webster, Engineering Ltd. 236 Gray's Inn RD., London WC1X 8HA. - DODSON C.E. Consulting Engineer, Helix W.S.P., Mortimer Hill, Mortimer, Reading RG7 3PG. Session VII, Paper VII/12, International Conference on Energy from Biomass, Brighton 4-7 November 1980, Commission of the European Communities, in co­operation with the Department of Energy, London. 483 SOLAR ENERGY CONVERSION BY CROP PLANTS : A QUANTITATIVE ASSESSMENT OF THE IN­FLUENCE OF PHOTOCHEMICAL CAPACITY ON PHOTOSYNTHESIS. TERRY N. Associate Profes­sor of Environmental Plant Physiology Department of Plant and Soil Biology.

Page 168: Farm and Forest Biomass

­74­

108 Hilgard Hall, Univ. of California, Berkeley CA 94720 USA, Session V ­Paper V/3, International Conference on Energy from Biomass, Brighton 4­7 Nov. 1980 Commission of the European Communities in co­operation with the Dept. of Energy, London. 484 CROP PRODUCTION POTENTIAL FOR FOOD AND ENERGY ON MINNESOTA PEATLANDS. Agency­SAES MIN. Period: 01 Jul 79 to 30 June 81. Invest: Farmham RS, Project: MIN­25­023, Perf. org.: soil science. Location : Univ. of Minnesota ­ St Paul MIN. Objectives: Study the potential on new crops and varieties and their adapta­bility to Minnesota growing conditions on organic soil areas including ferti­lizer studies, disease and insect control, and other management studies. Study the potential of Minnesota peatlands for the production of peat and of biomass research information to recommend the type and location of peatlands for agri­cultural development and as an energy source. Approach: Field and greenhouse studies will be instituted in St Paul and at out­State locations some on far­mer's fi leds, evaluate the potential of selected Minnesota peats for crop production, including biomass crops, under carefully controlled invi ronmental conditions. Emphasis will be on evaluating promising new crops and varieties such as horticultural crops, wild rice, woody shrubs, sedges and grasses. Management practives will include fertilizer trials, disease and insect control Organic soils will be collected statewide for analysis and for greenhouse screening. Keywords; Review­Pending 79319. USDA CRIS.

POTENTIALS FOR ENERGY CROPPING IN SWEDISH AGRICULTURE, by BERGMAN K.G., Swedish Univ. of Argricultural Sciences ­ S­750 07 Uppsala Sweden, Session VII, Paper VII/7, International Conference on Energy from Biomass, Brighton, 4­7 November 1980. Commission of the European Communities, in co­operation with Dept. of Energy. London. 486 THERMODYNAMIC ASPECTS OF PRODUCTIVITY INCREASE IN ENERGETIC CROPS. Session I Paper 1/1. Sventitsky ι ι Mudrik V A. Institute of Agrochemistry and Soil Science of the USSR, Academy of Sciences, Puschino, Moscow Region, 142292 USSR, International Conference on Energy from Biomass, Brighton, 4­5 Nov. 1980 Commission of the European Communities in co­operation with the Dept of Energy London. 487 LA VALORISATION DES PRODUITS AGRICOLES ET FORESTIERS (BIOENERGETIQUE ET BIO­MASSE) ­ Benefication of Agricultural and Forestry Products (Bioenergetics and Biomass) ­ Rev. Energ. Fran.; 1979, Vol.30, N°313, p.279­281, Résumé : Eng. ­ Langue : Français. Recherches fondamentales sur les applications éner­gétiques de la photosynthèse. Recherches appliquées concernant les cultures spécifiques énergétiques. Méthodes de valorisation des déchets de bois ; combustion, production combinée linee de chaleur et de force motrice. Distil­lation. Création d'un comité de la bioenergétique. 488 PETROLEUM PLANTATIONS FOR FUEL AND MATERIALS. CALVIN (M.). Univ. of Califor­nia, Lab. chim. Biodynam. Berkeley CA 94720, USA, Bioscience, USA. 1979; Vol.29, N°9; p.533­538, 17 réf.; Langue: Anglais. Revue des plantes produc­trices d'hydrocarbures. Prévision du prix de revient prévisionnel des hydrocar­bures produits. PASCAL. 489 BIOLOGICAL PRODUCTION 0F METHANE FROM ENERGY CROPS (ENERGY SOURCES). ctry:US typl: J/AS. Lang: EN. Auth: CLAUSEN, E.C; SITTON, D.C. : GADDY, J.L. Bio­technology and Bioengineering (USA). Symposium on Microbial Products and Fermentation Control ­ Montreal (CAN) 1977. Jul. 1979. ISSN 0006­3592. III. 20 ref. ­ X US: Nal 381 J8224. v. 21(7) p.1209­1219. AGRIS.

Page 169: Farm and Forest Biomass

­75­

490 PRODUCTION OF PLANT BIOMASS UTILIZED FOR THE CREATION OF ALTERNATIVE ENERGY KUKUMOTO, MASAO. Location : Sekisui Kaseihin Kogyo K.K., Japan. Journal : Nikkakyo Geppo. 1979, Ser.32, N°9, p.4­11, Languages : Japan. CHEMICAL ABSTRACTS. 491 EFFICIENCY OF SUGAR CANE AND COUPEA AS SOLAR ENERGY CONVERTERS. VARLET GRAN­CHER (C); BCNHCMME (H.); CHARTIER (P.). Äff: CNRA Bioclimatol, Versailles 78000, FRA. Sun, Mankind's future source of energy. International Solar Energy Society Congress/ 1978­01­00/ New Delhi; USA, Ed: New York; Pergamon Press, 1978, p.797­803, 26 ref. Language : Anglais. Etude coopérative, effectuée aux Antilles françaises, du rendement de conversion d'énergie solai­re de deux plantes intéressantes pour la production d'énergie à partir de la biomasse: Saccharum Officinarum L. et Vigna Sinensis L. PASCAL. 492 FUEL CROPS. HALL D.O. Physics Education 13 (1978) 6; p.380­383, Tab. schema's 17 lit. opgn. De basis van de energieproduktie door de landbouw is de fotosyn­these. De theoretisch hiervoor beschkbare energie per jaar bedraagt 3 χ 102^J. Die is veel meer dan de betwezen reserves aan fossiele energie. Theoretisch kan in rood licht een fotosynthetische efficiëntie bereik worden van 33 X, maar onder goede omstandligheden geteelde gewassn leveren slechts 0,5­2 X in de gematigde gebieden en 0.6­2 % in de tropen. Over de gehele aarde berekend in deze efficiëntie slechts 0.1 X. Zeis met deze geringe efficiëntie is dit nog tien maal zoveel als het wereldverbruik aan energie. Van deze hoeveelheid gefixeerde energie wordt slechts 0.5 X gebruikt in de vorm van voedsel. Er is dus in principe meer dan voldoende voedsel bechikbaar. Het probleem is alleen maar, dat her plantenmaterial op de verkeerde plaats en in een verkeerde vorm ter beschikking komt. PUDOC. 493 CHEMICAL PLANT GROWTH REGULATION IN WORLD AGRICULTURE (STRATEGIES FOR INCREA­SING CROP PRODUCTION FOR FOOD, FEED, AND ENERGY). HARDY R.W.F.; New York; Plenum Press. NATO advanced study institutes series ­ Series A ­ Life sciences v; A22, 1978, p.165­206, ill, language : English. Bibliography p;183­186,192. Subfile; other US (not EXP STN, EXT, USDA, since 12/76). Document type : Review ­ article. AGRICOLA. 494 PETROLEUM PLANTATIONS. CALVIN M., Aff: Univ. of California. Lato. Chemi. Bio­dyn. Berkeley CA USA. Energy Technology Conference, 5/1978 Wash. DC, USA Language : English. Washington Government Institutes, 1978, p.687­705. ref. Utilisation actuelle, coût et disponibilité de l'energie, contraintes de l'u­tilisation du charbon comme substitut du pétrole. Matériaux et énergie produits à partir du soleil: canne à sucre, caoutchouc (hevea), hydrocarbures produits par d'autres plantes comme les euphorbes. "Plantations de pétrole" (construc­tion des hydrocarbures dans la plante, aspects économiques). Principes de ré­alisation d'une membrane synthétique pour la production d'hydrogène à partir de l'énergie solaire. 495 A POTENTIAL FOR MULTI­CROP PROCESSING WITHIN THE SUGAR INDUSTRY 92:41251. BULL T.Α.; BALSTONE D.B. (Davy Agro., Bundsberg, Australia). Alchool Fuels Conf. 1978. 4/13­4/21 (Engl.). Inst. Chemie. Eng.;N.S.W. Group, Sydney Australia. A significant cost saving for EtOH prod, in Bundsberg was effected by cassa­va prod, on underdeveloped land coupled with acquisition of overpeak cane prod, and sharing of some sugar »ill facilities, ref. Chem. Abstr. 92/1980 Nr.

Page 170: Farm and Forest Biomass

­76­

2 . 1_. 1_._Sug£r__o_r ¿t£r£h_­_based__c¿jL tures.

496 QUALITY FACTORS IN SORGHUM BREEDING LINES FOR LIVESTOCK, ENERGY AND INDUSTRIAL UTILIZATION. Agency: CRS TEX. 29 Mar 77 to 28 Mar 82. Invest.: MCBEE G G Project: TEX 06289. Per. org.: Soil & Crop Sciences. Location: Texas ASM Univ. College Station Tex. Objectives: Determine genetic variability in major grain and forage sorghum breeding lines for cyanogenetic glucoside levels. Determine inherent variation in levels of certain carbohydrate fractions plus true and apparent digestibility of stover among selected grain and forage sorghum paren­tal material. Evaluate stover for industrial and energy utilization. Approach: Grow selected breeding lines under known population and fertility conditions. Flag leaf samples analyzed potentiometrically for p­HCN. Selected sections of plant analyzed for carbohydrates by hydrolysis and spectrophotometric techni­que and true and apparent digestibility by in vitro method. Energy and indus­trial determinations involve fermentation, mass spectrometry and calorimetrie methods. Progress 78/01 78/12. Sorghum type plants rank as one of our most important forages, yet due to potential HCN (pHCN) poisoning of livestock, careful management must be exercised. Fifteen entries mostly from popular sor­ghum breeding line were grown under nitrogen and maturity variables. Represen­tatives were from Caffrourn, Feterita, Feterita­Candatum­Kaura, Candatum­Kafir, Zerazera, Candatum non­senescence, Mi lo, Zeraezra non­senescence, Sudanease, Durra and Dochna. The youngest two leaves were analyzed for pHCN. Significant variation in pHCN. among lines was obtained. Increases in pHCN was obtained with added Ν for lines inherently low in dhurrin. Significant decreases of pHCN were noted after plant inflorescences were removed. Two publications on this are in progress. More efficient utilization of plant biomass for energy and other functions is becoming critical. Two contrasting types of sorghums. Rio and Combine Kafir 60, were grown under variable plant spacings and har­vested at different dates on a selecte diurnal cycle. Leaves were removed, culms sectioned, oven dried and processed for subsequent sugar analysis. More basic information of this type is needed for guidance on periods of harvest for maximum sugar concentrations. USDA CRIS. 497 BREEDING MAINTAINING AND INCREASING PRODUCTIVITY OF SWEET SORGHUM FOR SYRUP, SUGAR AND ENERGY. 0045587. Agency: ARS 7403, 27 Aug. 79 to 27 Aug. 84. Invest: FREEMAN KC, BR0ADHEAD D M, ZUMMO Ν. Project: 7403­20090­005. Perf. Org. USDA­ARS Sugarcane Sweet Sorg. Location: RT 10 BOX 152. Meridian Mis. Objectives: Develop varieties of sweet sorghum with improved yield, juice quality, syrup quality, biomass yield, fiber quality,disease resitance, and agronomic characteristics. Determine the effects of various cultural prac­tices upon the yield and quality of sweet sorghum varieties for syrup, sugar and renewable energy source. Approach: Conduct comprehensive breeding and cul­tural studies program including evaluation of germ plasm. Testing selections and exotic importations and regional and interregional evaluation of evalua­tion of varieties. Utilize information on inheritance of disease resistance and qualitative and quantitative traits, as Brix, sucrose, fiber, sirup sugar, and alcohol per ton of stalks in the sweet sorghum breeding program. Utilize aspects of the culture of sweet sorghum for improved handling, processing and management practices. USDA CRIS. 498 MICROBIAL CHEMICAL AND FUEL PRODUCTION FROM FERMENTATION OF CELLULOSE AND STARCH. Project: WIS02376. Perf. Org.: Bacteriology. Location: Univ.of Wiscon­sin ­ Madison Wis. Objectifves: Identify the organisms and experimental condi­tions that are optimal for the microbial conversion of cellulose and starch to ethanol and acetic acid. New species of thermophilic anaerobic saccharoly­tic bacteria will be isolated and characterized. Cultural parameters optimal for ethanol and acetate production by Clostridium thermocellum will be de­

Page 171: Farm and Forest Biomass

-77-termined. The catabolic pathway and its regulation will be studied. Approach: The effect of varying cellulose feed rate/ source and supply of exogenous growth factors/ temperature/ pH, etc. on production (yield and rate) of etha­nol and acetate by C. thermo-cellum will be studied. Enzymatic studies will determine the catabolic pathway in C. thermocellum and seek to understand how metabolic and product formation is regulated. Bacterial enrichment cultures will be initiated to isolate new species of thermophilic/ saccharolytiC/ anae­robic bacteria that metabolize starch/ cellulose and glucose/ and that are re­sistant to high levels of ethanol and acetic acid. Species will be taxonomical-ly identified and the yield of ethanol and acetic from energy sources determined. USDA CRIS. 499 UTILISATION DU TOPINAMBOUR POUR LA PRODUCTION D'ALCOOL-CARBURANT. BILAN ENER­GETIQUE DE LA CULTURE. LE COCHEC F./ INRA - Rennes. Colloque International CENECA/ Agriculture et Energie/ Paris 27-29 février 1980/ p.229. 500 "GARUNGSALKOHOL AUS AGRARPRODUKTEN ALS BIOKRAFTSTOFF - ÄTHYLALKOHOL AUS ZO­CKERROBEN/ KARTOFFELN/ MAIS/ GETREIBE"; - Studie der Domi er System GmBh im Auftrag des BMFT/ Kurzfassung August 1980. 501 "STARKE ALS EINE MÖGLICHE ENERGIE - UND ROHSTOFFQUELLE DER ZUKUNFT"; Detmold/ KEMPF U. 1980. 502 MOTORTREIESTOFF (ETHANOL) AUS EIN - UND ZWEIJAHRESPFLANZEN WIE ZUCHERROBEN; MANISKA/ ZUCHERROHR. - Carburant pour moteurs (ethanol) obtenu à parti·» de plantes annuelles et biannuelles telles que betteraves à sucre/ manioc et canne à sucre - Motor fuel (ethanol) from annual and biannual plants such as sugar beet/ manioc and sugar cane - HOUBEN H., Maschinenfabrik Buckau R. Wolf AG. Grevenbwich 4048/ Deu Zuckerindustrie: Deu; 1980/ Vol.105/ nc1; p.37-44/ Résumé: Eng+Pre/Spa. 12 réf.; Langue : Allemand. Etude des bilans énergétiques et de la rentabilité de la production d'ethanol à partir de betteraves à sucre/ de cannes à sucre/ de manioc et de mélange canne à sucre-manioc. PASCAL. 503 SUGAR-BASED FERMENTATION FOR FUEL ALCOHOL/ Irvine/ Sugar J. 42 (1980) n°8 (Jan.)/ 17. 504 PRODUCTION OF SUGAR AND BIOMASS ENERGY FROM SWEET SORGHUM AND SUGARCANE. Agency: ARS 7202/ 17 Oct to 17 Oct 83./ Invest; SMITH B.A., LIME B.J./ Project USDA-ARS FOOD CROPS utilizeres. Location: PO BOX 388/ Weslaco Tex. Objectives: Develop continous pilot-plant procedures adaptable to factory production of sugar from sweet sorghum and sugarcane and determine crop potentials from bio-mass energy production. Approach: Select and adapt continous pilot-plant pro­cessing parameters of temperature/pH rate/ and additive use, in order to pro­vide maximum removals of impurities from juices and syrups derived from mecha­nically harvested sugar crops. Compare processing procedures for separating impurity-laden sediments f rom process liquors and determine effect on raw sugar recovery/ directing specific attention to separating clarifier mud from fil­trate/ and aconitate from sweet sorghum syrup. Provide analytical and proces­sing data to assist in selecting superior sweet sorghum and sugarcane varieties and horticultural practices for commercial sugar production and for their po­tentials as biomass energy source crops. USDA CRIS. 505 LE SUCRE/ MATIERE PREMIERE CHIMIQUE. - Sugar, Chemical raw material - VLITOS A.J./ Inform. Chim. Fra. 1979/ n°186/ p.119-123; Langue Français. Aperçu sur diverses utilisations possibles de sucre en particulier pour la production d'ethanol par fermentation de mélasse et de productiond'ethylene ou de buta-diènne a partir de l'éthanol. Prix de revient prévisionnel del'éthylène en fonction du coût des mélasses. /"e PASCAL.

Page 172: Farm and Forest Biomass

-78-

506 FUELS FROM BIOMASS : INEGRATION WITH FOOD AND MATERIALS SYSTEMS. LIPINSKY E.S. Aff. Battelle, Columbus/ Ohio 43201. Science USA. 1978, Vol 199 n°4329; p.644-651, 29 réf. Langue: Anglais. Analyse de systèmes possibles de production combinée d'aliments (ou de matière première) et de combustible à partir de canne à sucre, de céréales et de guayule. PASCAL 507 AGENCY : SAES LAB, 01 JAN 1978 to 31 DEC 1979, Invest: COCHRAN B.J., RICAUD R. Project : LAB02011, Perf. orig. Agri.ENGINEERING. Location: Louisiana State Univ. Baton rouge LA. - SUGARCANE AND SWEET SORGHUM AS A RENEWABLE BIOMASS ENERGY RESOURCE. Objectives: Determine the effects of spacing and row profiles on the biomass yield of plant and ratoon sugar cane and sweet sorghum. Study the yield components and other factors affecting yields of plants and ratoon sugar during various stages of plant growth. Evaluate methods of mechanical harvesting sugar cane and sweet sorghum grown from the planting and production treatments of 0bj.1. Study commercial mechanical systems available for harves­ting maximum sugar cane biomass in the sugar cane production areas of the U.S. Approach: The research will be conducted at the St. Gabriel station. Studies involving sugar cane will be made to determine effect of type and width of planting farrows on growth, yield, and harvestability if surgarcane from plant cane of ratoon crops. Plant population will be varied by conventional planting methods and single drill and multiple drill with different spacing and planting rates. A similar plan will be used with sweet sorghum. Planting data, equipment for covering, harvesting means will be evaluated. Biomass data will be collec­ted USDA CRIS. 508 FUELS FROM SUGAR CROPS, SYSTEMS FOR SUGARCANE. SWEET SORGHUM AND SUGAR BEETS, NATHAN R.A. (Ed.) U.S. Dept. of Energy, Washington, 1978, 137p, ref. PUD0C 509 FUELS FROM SUGAR CROPS : SYSTEMS STUDY FOR SUGARCANE, SWEET SORGHUM, AND SUGAR BEETS, NATHAN R.A. Batelle Columbus Labs, Ohio, Ntis Report TID-22781, Jul 78 (148). Special report: The technical and economic feasibility of producing fuels and chemicals from sugar cane, sweet sorghum and sugar beets is examined Agricultural aspects of sugar crops research are summarized. It is shown that ethanol produced by fermentation from molasses is close to economic competi­tiveness. The cost of producing ammonia from sugar crops is not yet competitive but could be competitive with coal-produced ammonia. Sugar cane appears to be the most promising crop in the short and intermediate term, sweet sorghum has the greatest long-term potential. Technologies to manufacture ammonia, ethanol, methanol, acetic acid, and thermochemical sng from sugar crops are discussed. ENVIR0LINE. 510 SACCHARIFICATION OF CASSAVA FOR ETHYL ALCOHOL PRODUCTION, DE MENEZES T.J.B., Aff: Int. Technol. Alimentos, Sao Paulo, Bra. Process Bioche/ GBR,1978,Vol13 n°9, p.24-26, (2p.) Aperçu sur divers procédés de saccharification du manioc dont aucun n'est réellement satisfaisant. Recherches proposées pour améliorer cette opération. PASCAL 511 ENTWICKLUNG NUER UND ANPASSUNG BESTEHENDER VERFAHREN AUF DEM GEBIET DER GETREI­BE UND KARTOFFELSTAERKEN. - Development of new methods and adjustment of exis­ting methods in starch production of cereals and potatoes. - Developing new or improved products and technological processes ; sugar and starch products, potatoes, cereals in general. Chemistry-general, Processing KEMPF W. -Bundesforschungsanstalt für Getreibe- und Kartoffelverarbeitung. (4930) Detmold and Schüetzenberg 12); Institut fuer steerke - und Kartoffeltechnologie. 1977 AGREP.

Page 173: Farm and Forest Biomass

-79-

512 SYSTEMS STUDY OF FUELS FROM SUGARCANE, SWEET SORGHUM AND SUGAR BEETS (and corn). LIPINSKI E.S. u. MITARB. Vol.1, 3 und 5. Columbus, Ohio, Batelle Columbus Laboratories 1976/1977.

2.1.2. Sugar_ beet

513 ZUCKERROBE ALS BIOMASSE FOR ENERGIEZWECKE. THIER E. In deutsche Zuckerrüben­zeitung, Februar 1980. 514 ÄTHANOL AUS ZUCKERROBEN. PROTT. In die Zuckerrübe 29.2 (1980). 515 DIE ZUCKERROBE ALS ENERGIEPFLANZE. - Les bettraves à sucre comme plantes éner­gétiques - Sugar beets as energy plants. REINEFELD E., WAGNER F., WINNER C. Inst. Zuckerrübenforschung,Göttingen 3400, Deuts. Zuckerindustrie, Deuts. 1980, Vol.105, n°1, p.25/36 - Résumé. Eng/fran/spa/ 59 réf. Langue: Allemand. Synthèse bibliographique des études consacrées au rendement énergétique et à l'analyse économique de la production d'éthanol à partir de betteraves à sucre. PASCAL. 516 METTI UNA BIETOLA NEL MOTORE (PROSPETTIVE ENERGETICHE DELL'AGRICOLTURA) - Put a beet in your engine (agricultural energy prospects). GIORGI, F., POLENTA B. CTRY :XE-IT, Typl J/AS, Lang. Italien. Sube : P05. Jrnl: Agricoltura Nuova (Italy), Jul-Aug 1979, CLLT: VOL 21(7-8), p.14/16. AGRIS. 517 ABSORPTION OF THE LIGHT ENERGY BY ASSIMILATING PIGMENTS OF SOME SUGAR BEET VA­RIETIES AND HYBRIDS. - L'absorption de l'énergie lumineuse par les pigments assimilateurs de quelques variétés et hybrides de betterave sucrière. Institut International de Recherches Betteravières, Bruxelles, (Belgium) , 42. Winter Congress - Proceedings, Session 3. Various topics. 42. Congrès d'Hiver -Compte rendu. Conf: 42. Winter Congress - International Institute for Sugar Beet Research. Brussels - Belgium. Feb. 1979, Impr. Bruxelles (Belgium) Adr. Secrétariat Général, rue Montoyer 47. - Feb. 1979. Note : Summaries (De, En, Fr;- p.149/160. AGRIS. 518 IN SUIKER UNIE'S JAARVERGADERING : LANDBOUW WORDT IN DE TOEKOMST BELANGRIJKE BRON VAN ENERGIE.H.J. Louwes. Maandblad Suiker Unie 12(1978) 1 : 6/10 PUDOC.

2.1.3. Sugar, £ane

519 EINE NEUE TECHNOLOGIE ZUR DIREKTEN VERGÄRUNG VON ZUCKERROHR - Das EX-FERM-Verfahren (A new technology to ferment sugar cane directly - the EX-FERM-Process). ROLZ C. , Int. Sugar J 82(1980) 47/51. Das neue Verfahren extrahiert und vergärt gleichzeitig Saccharose aus Zuckerrohr vorläufig nur im Laborato­riumsmassstab. Eine 50-1-Versuchsanláge wird gebaut. Weitere Entwicklung des Verfahrens ist noch erforderlich 5 Abb. 6 Tab. 13 Lit. Ref. Zuckarind 105 (1980), S.534. 520 ECONOMIC ASPECTS FOR ALCHOHOL PRODUCTION FROM SUGARCANE, PATOUT W.S., Sugar, J.42 (1980), Ne12 Mai, 9.

Page 174: Farm and Forest Biomass

-80-

521 COST CONTROL FACTORS IN THE PRODUCTION OF ETHANOL FROM SUGARCANE KELLY, F.H.C. Inst. Sugar J. 82(1980) n°6, 1972 522 A MODEL FOR CONVERTING BIOMASS (SUGARCANE INTO ANIMAL FEED AND FUEL) PRESTON T.R., Univ. de Yucatan, Mexico, Session VI, Paper VI/3, International Confe­rence on Energy from Biomass, Brighton, 4.7 November 1980, Commission of the European Communities, in cooperation with Dept. of Energy, London. 523 PRODUCTION OF SUGARCANE AND TROPICAL GRASSES AS A RENEWABLE ENERGY SOURCE ALEXANDER A.G., GONZALEZ-MOLINA C. Agency: SAES PR., 01 MAR 1977 to 27 FEB 1981. Project: PR-C-00481., Per. org. CROP Science., Location: Univ.of Puerto Rico Mayaguez, Rio Piedras PR. Objectives: Determine the agricultural and eco­nomic feasibility of mechanized, year-round production of dry biomass, through the intensive management of sugarcane and napier grass as tropical forages, examine alternate tropical grasses as potential sources for intensive biomass production, and select and breed new sugarcane clones having superior biomass productivity as their main attribute. Approach: In greenhouse trials, tropi­cal grass species having superior growth potential (on an annual basis and as frequently reçut forages) will be identified. Optimal regimes for nitrogen water, row spacing, harvest frequency, and chemical growth regulators will be defined with superior candidate clones in¡;field plot trials. Mechanization re­quirements and costs for the two or three superior candidate clones emerging from greenhouse and field - plot experiments will also be evaluated in field trials. USDA CRIS. 524 ALCOHOL PRODUCTION FROM CANE MOLASSES. EFFECT OF FERMENTATION CONDITIONS ON YEAST RECYCLING. DAHIYA D.S. u. Mitarb., Inst.. Sugar J. 82(1980) ne7, 203 The growing of sugar cane for energy ? HUMBERT R.P., Sugar J. 45(1980), ne1 June 19. 525 92 : 41253c GROWING SUGAR CANE FOR ETHANOL PRODUCTION; DEICKE R., MULLER R.L. BIESKE G.C. (Bundesberg sugar Co. Ltd. Bundaberg, Australia)? Alcohol Fuels Conf. 1978, 7/10.7/15 (Eng) Inst. Chem. Eng. N.S.W. Group, Sidney Aust. The economics and technol. of manuf. of EtOH from sugarcane by fermn. of molas­ses was discussed. Ref. Chem. Abstr. 92 1980. 526 BIOMASS PRODUCTION AND COMPOSITION OF SUGARCANE. GASCHO G.J., SMITH S.F., Kidder G., Agency: SAES FLA. 01 FEB 1977 to 31 DEC 1980., Project: FLA-EV-01862. Perf. Org. AGR RES & ED CENTR (Belle Glade) Location: Agrie. Research & Education Cntr. Belle Glade FLA. Objectives : Gather sugarcane biomass production and plant composition data for use in energy farming feasibility studies. Specific objectives are : Determine the biomass production, plant consumption, nutrient uptake, and leaf area index with time for plants grown at 0.5 and 1.5 m spacings, relate climatic factors such as rainfall, solar radiation, and temperature to biomass and plant composition, and estimate the water requirements of sugarcane grown at the two spacings. Approach: Sugarcane will be planted at 0.5 and 1.5 m row spacings. Monthly harvests will determine biomass for the row spacings. Complete nutrient non-nutrient analyses of tops, stalks and leaves will allow calculations of nutrient uptake and plant composition. Leaf area index and weather data will be regressed against yield parameters. A primary water budget will be estimated by water table. Hydrau­lic conduct i bil i ty and moisture content measurements. USDA CRIS.

Page 175: Farm and Forest Biomass

­81­

527 ENERGIE AUS BIOMASS ­ Energy from Biomass ­ (Sugar­cane). KAMPF H., Ctry: XE­DE, Typl: J/AS, Lang.: DE. Sube: FOO P05 Q10. Jrnl: Zuckerindustrie GFR. Imp. 1979. ISSN 0344­8657, CLLT: Vol 104(6), p.532, AGRIS. 528 TREIBSTOFF AUS ZUCKERROBEN; VDI­Nachrichten 33 (1979) H. 28, 17. "Pack die Rübe in den Tank" dient als Motto für Betrachtungen Ober die Gewinnungsmö­glichkeiten von Ethanol aus Zuckerrüben. Nach Berechnungen der Landwirtschaft­kammer Westfalen­Lippe in Münster kann aus den Zucherrüben von 1 ha eine Energienmenge von 4 200 l Superbenzin gewonnen werden, der Niedersächsische Landvolkverband hat geschätzt, dass aus der 1978er­Rübenemte 1,7 Mio m3 Superbenzin­Gleichwert hätte produziert werden können (1978 ­ Bundesrepublik Deutschland Verbrauch an kerkommlichten Treibstoff 31 Mio m3). Ref. Zuckerind 105 (1980) S. 414. 529 THE CULTIVATION OF SUGARCANE FOR ENERGY, HUMBERT R.P., Sugar y Azúcar, USA 1979, Vol.74, n°7, p.47, Langue: Anglais, Capacité de production d'ethanol au Brésil en septembre 1978, Rendement des cultures de canne à sucre. Prévision de production de cellulose. PASCAL. 530 ENERGY CRISIS AND SUGARCANE, LOPEZ GUZMAN, P. de ARMAS C. , CM., Mexico, Group of latin­American and Caribean Sugar. Exporting countries (GEPLACEA). Bulletin n°10. Apr/Jun. 1979. 531 ALCOHOL FUEL FROM SUGARCANE ­ IS IT ECONOMIC (ETHANOL, COSTS, AUSTRALIA). PERCIVAL R.H. (New South Wales Dept. of Agriculture, Sidney ­Australia). Div. of Marketing and Economics). Ctry : AU, Typl: J/AS, Lang.: ENG. Jrnl : Commodity Bulletin ­ New South Wales Dept of AgricuLture ­ Div. Of Marketing and Economics (Australia). Note : Illus., graph., 7 ref. Summary : Eng.). CUt: Vol. 31(5) p.201/202, 204/205, 207. AGRIS. 532 ALCOHOL FUEL FROM SUGARCANE (FOR AN ALTERNATIVE ENERGY SOURCE) ­ IS IT ECONOMIC? PERCIVAL R.H., Sidney, New South Wales, Dept. of Agriculture, Div. Of Marketing and Economics. Commodity bulletin New South Wales ­ Dept of Agriculture ­ Div. of Marketing and Economics, Vol.7 (6), Jan 1979, p.13/17. Languages : English. 6 ref. Geographic Location : Australia, Document type : Article AGRICOLA. 533 AN ESTIMATE OF THE PRODUCTION OF SUGARCANE TOPS AND TRASH IN QUEENSLAND (Aus­tralia, to be used as fuel or animal feed). STEWART G.A. (CSIRO, Div. of Chemical Technology, Canberra ­Australia­) KINGSTON G. Ctry : XE­NL, Typl : J/AS, Liti: E, Lang.: Eng., Jrnl: Resource Recovery and Conservation (Nether­lands). Nov. 1979, Note : 7 réf, Summary (Eng). ClIt : V. 4(3), p.239/246. 534 ENERGY CRISIS­SUGARCANE A CANDIDATE (Biomass production) THULJRAM Rao, J. ΕΤΗIRAJAN A.S., New Dehll, Indian Sugar Mills Association, Indian Sugar : V. 29(2) May 1979, p.77/80, ill. ISSN 019­6428, Languages, English. Geographic : type Article 535 PANEL DISCUSSION ­ FUEL FROM SUGARCANE, Mount Edgecombe. The Association Proceedings ... Annual congress South African Sugar Technologists' Association 1979 (53rd), 1979, p.18/20, Languages : English ; Document type : Article AGRICOLA.

Page 176: Farm and Forest Biomass

-82-

536 GASOHOL FROM SUGARCANE (SACCHARUM SPONTANEUM, ENERGY SOURCES), LIKUMS E., Washington Science and Education Administration, U.S. Dept. of Agriculture Agricultural research v.27 (11) May 1979, p.7 ISSN 0002-161X, Languages : English, Subfile : USDA (US Dept. AGR), Document type : Article AGRICOLA. 537 SUGAR CROPS FOR FUEL USE (ENERGY SOURCES). LIPINSKY, E.S., New Orleans, Sou­thern Regional Research Center,Science and Education Administration U.S. Dept of Agriculture. Processings of the Technical Session on Cane Sugar Refining Research, Technical Session on Cane Suger Refining Research Ap. 1979, Apr. 1979. p.158/171, ill. Languages : English, 8ref. Document type : Article AGRICOLA. 538 AN ASSESSMENT OF POTENTIAL FOR BIOLOGICAL SOLAR ENERGY UTILISATION USING CAR­BOHYDRATES PRODUCED BY HIGHER PLANT PHOTOSYNTHESIS AS CHEMICAL FEEDSTOCK. COOMBS, J., VLITOS A.J.. Tate S Lyle Ltd, Reading Berks, GB. Sun, mankind's future source of energy. International solar energy society congress/1978-01-00-;¿ew Delhi ;USA, Ed. New York, Pergamon Press, 1978, p.787/790, 5 ref. Langue : Anglais. Schema d'un système intégré de production et de transforma­tion de la biomasse. Exemples d'améliorations apportées a la culture, au traitement et à la conversion chimique de la canne à sucre. PASCAL. 539 PETROCHEMICALS VERSUS CARBOHYDRATE CHEMICALS : AN ECONOMIC SURVEY, FREUD A.W. Äff. A.W. Freud Assoc. Oxted, Surrey, Engl. International sugar J., GB,1978, Vol.80, n°954, p.164/168, Résumé : Fr. Allem. Esp., langue : anglais. Analyse économique prévisionnelle de deux installations traitant l'une 2600000 tonnes/ an de saccharose (de canne à sucre), l'autre 200000 T/an pour la production de matière première pour la pétrochimie en passant par la fermentation alcoolique. PASCAL 540 PRODUÇÃO DE ALCOOL MOTOR E PERSPECTIVAS FUTURAS. - Production d'alcool carburant et perspectives futures - Driving alcohol production and future prospects -DE MENEZES T.J.B., Bol. Inst. Technol. Alim., Bra. 1978, n°60, p.1/12, Résumé Eng. 8 réf. Langue : Portugais. Etudes brésiliennes sur La production d'étha-nol par fermentation de biomasse. Prix de revient de l'éthanol obtenu à partir de mélasses à 50 % de sucre pour quatre modei opératoires. PASCAL. 541 VOLATILE FATTY ACID FERMENTATION FOR LIQUID FUEL PRODUCTION, PLAYNE M.J., Location : Australia, Jrnl : Res. Rev. - Aust. C.S.I.R.O., Div. Chem. Technol. Pubi. 78, p.34/40. Identifiers : sugarcane biomasse fermn fatty acid ; fuel liq. Fatty acid prodn. acditec acid fuel prodn. fermn. propionic acid fuel prodn, ferm, butyric acid fuel prodn. fermn. Chemicals abstracts. 542 THRESHOLD SUGAR LEVEL FOR YEAST BIOMASS PRODUCTION FROM MOLASSES , FAZELI, ABASS, Location : Biochem. Bioenviron, Res. Cent. Arya-Mehr Univq. Technol. Teheran, Iran. Jnrl : Pashoohandeh (Teheran) Pubi 1978, Series 21. P.82/94, languages : Persian. Identifiers : yeast cultivation molasses sugar threshold Chemicals abstracts.

Page 177: Farm and Forest Biomass

-83-

543 GASCHO, G.J. and SHIH S.F., 1978, Biomass fron Florida sugarcane as an ener­gy source/ Agron. Abst. 1978/ P.95 USDA CRIS. 544 GASCHO G.J. and SHIH S.F./ 1978/ Row spacing effects on biomass and composi­tion of sugarcane in Florida/ Sugar Y Azúcar 73(6):36. USDA CRIS 545 SHIH S.F. and GASCHO G.J. 1978/ Sugarcane biomass production related to cli­mate in Florida. Sugar y Azúcar 73(6):46. USDA CRIS 546 SHIH S.F. and GASCHO G.J. 1978 Sugarcane stalk length distribution related to biomass production. Agron. Abst. 1978/ p.104. USDA CRIS. 547 EXCESS POWER IN SUGARCANE FACTORIES (VALUE OF BAGASSE AS A FUEL). MECSERY J.J, RESERVE/ LA. Proceedings/ New Series American Society of Sugar Cane Technolo­gists V.7/ 1977/ (Pub. June 1978) p.163/166/ ill. Languages : English/ Sub­file ; other US (not exp est. USDA since 12/76); Document type Article. AGRICOLA. 548 MUNICIPAL SOLID WASTE AS SUPPLEMENTARY FUEL IN THE SUGARCANE INDUSTRY. FANG . CS./ GARBER J.D./ Proceedings : New Series American Society of Sugar Cane Technologists v.7, 1977 (pub. JUNE 1978) p.147. Languages:English 2 - Subfile : other US (not exp stn, ext. USDA since 12/76)/ Document type Abstract : Article. AGRICOLA. 549 HYDROCARBONS VIA PHOTOSYNTHESIS/ CALVIN M., Aff. Lab. Chem. Biodynam./ Univ. California/ Berkeley/ Calif. 94720/ USA/ International J. Energy res. GB/ 1977/ Vol.1/ ne14/ p.299/327/ 15 réf./ Langue : English/ Programme Brésilien de production d'éthanol à partir de la canne à sucre, études en cours sur la production directe d'hydrocarbures par certaines plantes et sur leur extrac­tion. Description de différents systèmes possibles de photolyse de l'eau. PASCAL. 550 HOW PRACTICAL IS THE CONVERSION OF SUGARCANE PRODUCTS INTO FUELS AND CHEMICAL FEEDSTOCKS (IN USA) , LIPINSKY E.S., RESERVE/ LA. Proceedings New Series Ame­rican Society of Sugar Cane. Technologists v.6/ 1976/ Pub. May 1977),P.134/ 141/ ill. / Languages : English/ 7ref. Geographic Location USA AGRICOLA.

2.1.4. Short Rotation Forestry

551 Sélection et création de matériel végétal forestier à croissance initiale très rapide en vue de produire le maximum de biomasse - création de Taillis à courte révolution/ Contractor DG XII/ CEC CHARTIER P., INRA - Versailles/ France, Programme 1979-1983/ Project E = Energy from Biomass. 552 Selection and creation of forest tree material for biomass production esta­blishment of short rotation coppieces. Contractor DG XII - CEE LACAZE J.F./ Station d'Amélioration des Arbres Forestiers - Centre de Recherches d'Orléans ARDON U5160-0LIVET - France/ Programme 1979-1983 Project E = Energy from Biomass.

Page 178: Farm and Forest Biomass

-84-

553 Italian coppices and possibilities of their exploitation, Contractor D6 XII-CEC SCARAMUSSI G., GIAACIO 0.,, ECCHER A. S.A.F., Centro di Sperimentazione Agricola e forestale - Roma Istituto Sperimentale per la Selvicoltura - Arezzo Programme 1979-1983 Project E = Energy from biomass. 554 COPPICED TREES AS ENERGY CROPS, Contractor DG XII - CEC JOHNSTON p.R., PEARCE M.L., Forestry Commission - Research and Development Division Westonbirt Ar­boretum Tetbury Gloucestershire, Engl. Programme 1979-1983, Project E = Energy from biomass. 555 AN EXPERIMENTAL STUDY OF SHORT ROTATION FORESTRY FOR ENERGY, Contractor DG XII CEE MATTHEWS J.O., Aberdeen Univ. Forestry Dept. St. Machar Drive, Aberdeen AB 9 A UU - UK, Contractor DG XII- CEE Programme 1979-1983 Project E : Energy from biomass. 556 COPPICED TREES AS ENERGY CROPS, M L PEARCE Forestry Commission, Tetbury, UK, International Conference on Energy from Biomass Brighton 4-7 November 1980, Commission of the European Communities, in co­operation with the Dept. of Energy, London. Contractor DG XII-CEE Programme 1979-1983 Project E = Energy from biomass. 557 COPPICE WILLOW FOR BIOMASS IN THE U.K., Contractor DG XII-CEE K.G. STOTT, Willows Officer, Long Ashton Research Station, Univ. of Bristol, Long Ashton Bristol. G. McELROY and W. ABERNNETHY, The Horticultural Centre, Lough Hall Co. Armagh, N. Ireland. D.P. HAYES, Dept. of Agricultural Botany, Queen|s University, Belfast - International Conference on Energy from Biomass Brighton 4-7 November 1980, Commission of the European Communities, in co-operation with the Dept. of Energy, London. Programme 1979-1981. Project E = Energy from Biomass. 558 FOREST BIOMASS AS A SOURCE OF ENERGY IN THE U.K., the potential and the prac­tice, Contractor DG XII-CEE C.P. MITCHELL and J.D. MATTHEWS Aberdeen Unv, Aberdeen, U.K. International Conference on Energy from Biomass, Brighton 4-7 November 1980, Commission of the European Communities, in co-operation with the Dept. of Energy London. Programme 1979-1981. Project E = Energy from biomass. 559 AN EXPERIMENTAL STUDY OF COPPICED TREES AS ENERGY CROPS; Contractor DG XII-CEC CROWTHER R.E., Forestry Commission U.K., Programme 1979-1983, Project E = Energy from biomass 560 DESIGN, BUILD AND TEST SHORT ROTATION FORESTRY HARVESTER CHIPPER, Contractor» DG XII-CEC HEALY J. Irish Peat Development Authority Iceland, Programme 1979-1983, Project E = Energy from Biomass. 561 THE PRODUCTION OF ENERGY FROM SHORT ROTATION FORESTRY, Contractor DG XII-CEC NEENAN M. An Foras Taluntais Ireland, Programme 1979-1983, Project E = Energy from Biomass. 562 SHORT ROTATION FORESTRY FOR ENERGY; Contractor DG XII-CEC M. NEENAN and G. LYONS, Oak Park Research Centre, Irish Republik International Conference on Energy from hionass, Brighton 4-7 November 1980, Commission of the European Communities, in co-operation with the Dept. of Energy, London. Programme 1979-1983, Project E = Energy from biomass.

Page 179: Farm and Forest Biomass

-85-

563 SHORT-ROTATION FORESTRY AS A BIOMASS SOURCE : AN OVERVIEW, K. STEINBECK/ School of Forest Resources, Univ. of Georgia/ Athens, GA 30602 USA/ Interna­tional Conference on Energy from biomass Brighton 4-7 November 1980/ Commis­sion of the European Communities/ in co-operation with the Oept of Energy London. 564 PRODUCTION OF BIOMASS FOR ENERGY ON ABANDONED FARMLANDS/ Agency SAES Ml, 01 Apr. 1978 to 30 Sep. 1981/ Invest ; LAING F.M./ Perf.Org. Botany/ Loca. Univ. of Vermont/ Burlington VT. Objectives : Evaluate hardwood trees and shrubs providing highest biomass potential on short cutting cylces. Compare yields from native against introduced species. Evaluate harvesting/ trans­portation feed stuff. Model economic comparisons from land preparation to utilization. Approach : In randomized design measure growth rate and spo-ruting ability for coppice harvest. Include fertilizer and spacing trials. Determine BTU content. Maintain untreated areas of uncultivated species for yield comparisons. Evaluate transportation and utilization costs with pro­jects acre-yields. Analyze bark and foliage samples for feed value. USDA CRIS. 565 THE UTILIZATION OF TWO-YEAR SHORT-ROTATION DECIDUOUS BIOMASS FOR ENERGY/ PARTICLEBOARD AND CHEMICALS/ Agency : CSRS ILLU/ 01.10.1979 to 30.09.1984/ Invest : CHOW P., ROLFE G.L./ HALLAND I.I./ Perf.Org. : Forestry/ Location: Univ. of Illinois/ Urbana III. Objectives : Develop efficient ways to use solar renewable woody biomass grown under intensive si Ivi cultural techniques as substitutes for non-renewable fossil fuels through gasification and com­bustion. Evaluate the feasibility of converting high-yield plantation-grown wood to paper and particleboard so as to stretch future wood supplies/ Determine the chemical composition (acidicity, extractive content, cellulose/ lignin and pentosan content) and physical properties of seven biomass plan­tation species. Determine the potential economic value of various products made from high-yields woody biomass. Approach : A 7x2x2 factorial design/ involving 7 species (autumn olive black alder, black locust/ E Cottonwood/ royal paulownia/ silver maple/ and sycamore) 2 sites (bottomland and upland) will find the effects of species, site and regeneration techniques on the fuel values, paper and board properties/ and chemicals made from 2-year old juvenile wood. The experiment is divided into five phases. USDA CRIS 566 CONDUCTING A DEMONSTRATION AS TO THE PRACTICALITY OF AN ENERGY FOREST AS A FUEL RESOURCE FOR THE UNI/ Agency: SAES KAN/ 06.06.76 to 30.09.80/ Invest : GEYER W.A./ Project: KAN-05-496/ Perf.Org.: Horticulture S forestry/ Loc : Kansas State Univ, Manhattan Kan. Objectives : Determine the optimum sour­ces of wood fuel to meet the energy demands of the University of Kansas steam generating plant. Approach: Establish rapid fiber test plantations at representative sites in the Lawrence area for biological and energy yield, plus economic analysis. Evaluate various forms of wood fuel foravailability handlings processing/ and storage. Conduct an urban "waste" wood and saw­mill residue survey. USDA CRIS. 567 INTENSIVELY CULTURED PLANTATIONS FOR BIOMASS AND ENERGY PRODUCTION/ Agency: FS NC/ 06.01.78 to 06.01.83/ Invest : HANSEN E./ Project NC-1112/ Location: North Central Forest Exp Station/ Rhinelander WIS/ Objectives : develop the most efficient and economically feasible method establishing planted stands and producing maximum wood and biomass per acre from them. Approach : select woody, species or species variants showing rapid juvenile growth/ ease of reproduction and good prospects for genetic improvement. Using intensive cul­ture/ determine effects of various spacings/ rotations/ nutrient levels and irrigation on biomass yields. USDA CRIS.

Page 180: Farm and Forest Biomass

-86-

568 INVESTIGATING THE ECONOMIC POTENTIAL OF CULTIVATING TREES TO SUPPLY WOOD FOR FUEL (Energy supply)/ Verkenningen van de economische mogelijkheden van de teelt van hout voor de energievoorziening, BOVEN B., van HOOP D.W. de Wageningen, Koninklijk Genootschap voor Landbouwwetenschap. Landbouwkundig tijdschrift. V.9K3), Mar 1979, p.55/58, ill ISSN 0023-7787, Lang : Dutch. 6 ref, Document type : Article AGRICOLA. 569 ECONOMICS OF SHORT ROTATION FORESTRY ENERGY PLANTATIONS, LYONS G.J. and VASIEVICH J.M., in Press, December 1979. 570 CALORIC VALUES FOR YOUNG SPROUTS OF NINE HARDWOOD SPECIES. NEENAN M. and STEINBECK K., Forest Science, Vol.25 n)3, p.355/461, 1979. 571 ENERGY FARMS FOR THE FUTURE, FEGE A.S., INMAN R.E., SALO D.J., Fege Forestry consultants, silver spring MD, USA, J. Forest, USA, 1979, Vol.77, n°6, p.358/361, 12 réf., Lang : Anglais. DS: Energie Naturelle/Biomasse/Bois/ Conception/Prix revient/Rendement énergétique/Etats Unis/Sylviculture/Natural Energy/Biomasse/Wood/Design/Cost price/Energetic Efficiency/United States. Conception d'une plantation d'arbres énergétiques. Prévision des prix de revient de tonne sèche produite en dix sites des Etats-Unis et rendement énergétique de ces plantations en Louisiane et dans le Wisconsin. PASCAL. 572 USING TREES FOR ENERGY, KALISH J., Pulp Paper Intern?, USA, 1979, Vol.21, n°5, p.93/97, Resume : Fra/Ger/Spa. Langue : English, Etudes en cours au Brésil, aux Etats-Unis et en Suède sur la réalisation de platantations d'ar­bres pour fournir du bois de chauffage ou des Combustibles liquides. Rende­ments possibles des plantations énergétiques. PASCAL. 573 BIOMASS (TREE) FARMS FOR ENERGY PRODUCTION : BIOLOGICAL CONSIDERATIONS (Platanus occidentalis, Populus hybrids, short-rotation intensive culture) ZAVITKOVSKI J., North America's Forests : Gateway to Opportunity 1978, Washington, The Society. Proceedings Society of American Foresters, 1979. p.132/137, 111. Language : English, Bibliography : p.136/137. Location : Canada. Document type Article. AGRICOLA. 574 ENERGY PRODUCTION IN IRRIGATED, INTENSIVELY CULTURED PLANTATIONS OF POPULUS 'TRISTIS' - and Jack pine (Pinus banksiana, biomass production) ZAVITKOSKI J. Washington, Society of American Foresters, Forest Science, Vol.25(3), Sept 1979, p.383/392, ill ISSN 0015-749X, Languages English, Sponsoring Agency US Dept of Energy. 34 ref. Location : Wisconsin, Subfile : USDA (US Dept Agr.) Document type : Article AGRICOLA. 575 GREAT PLAINS ENERGY FOREST STUDY, Agency SAES KAN, 03.04.78 to 02.04.79, Invest : GEYER W.A., Project : KAN-05-620, Perf. Org : Forestry, Location: Kansas State Univ. Manhattan Kan. Objectives: Develop a short rotation silviculture system to produce fuel wood from woody biomass : Determine productivity of coppicing hardwood trees, determine financial and energy costs, evaluate effectiveness of herbicides for weed control. Approach : Establish study plots using "Neider" circular desing to test species, spacing, and weed control difference in productivity. USDA CRIS.

Page 181: Farm and Forest Biomass

-87-

576 SILVICULTURAL BIOMASS FARMS, Mitre Corporation. Metrak Div. United States, Energy Research and Development Administration, Div. of Solar Energy, Washington, ERDA, Div. of Solar Energy, Springfield. Va for sale by National Technical Informations Service, 1977, District of Columbia, 5 V, ill, 28cm, Mitre-TR-7347, Language : English, Includes bibliographies. Contents : V. 1. Summary, V. 2. The biomass potential of short-rotation farms, V.3. Land suitability and availability, V.4. Site-specific production studies and cost analyses, V.4. Site-specific production studies and cost analyses V.S. Conversion processes and costs, Government Source : Federal, Document type MONOGRAPH. AGRICOLA. 577 THE PRODUCTION OF ENERGY BY PHOTOBIOLOGICAL METHODS, NEENAN M. 1977, An Foras Talunitais, 19, Sandymount Avenue, Irl. Dublin, U. 578 ECONOMICS OF SHORT ROTATION SYCAMORE, DUTROU G.F. and SAUCIER J.R., USDA Forest Service Research Paper SO-114, 1976, Southern Forest Experiment Station, New Orleans, LA, USA. 579 ENERGY PLANTATIONS : SHOULD UE GROU TREES FOR POUER PLANT FUEL ? EVANS E. Report n°VP-X-129 for Canadian Forestry Service, Dept. of the Environment (1974), Zitiert bei (26) 2.1.5. Reeds. Arundo donax. 580 JOINT RESEARCH AND DEVELOPMENT WORK TOUARDS ENERGY PRODUCTION FROM DONAX-REED CROPS (Canne de Provence) Contractor DG XII-CEC RAYNAUD P. CNEEMA Pare de Tournvoie 92160 Antony, Programme 1979-1983, Project E » Energy from biomass. 581 LA CANNE DE PROVENCE (Arundo donax L.) nouvelle culture énergétique ? INRA Montpellier, Colloque International CENECA, Agriculture et Energie Paris 27-29 février 1980, p.222. 582 ENERGY REEDS AND THE ENVIRONMENT, BJORK S., GRANELI U., Aff: Univ. Lund Inst. Limnol, Lund, SUE, Ambio, SUE, 1978, Vol.7, ne4, p.150/156, 25 ref. Langue: Anglais, Etude de la possibilité d'utiliser des plantations de ro­seaux pour la production de combustible en Suède. Prix de revient prévision­nel. Avantages écologiques. PASCAL. 2.1.6. Eu^abia^ THE POTENTIAL OF NATIVE PLANTS FOR FOOD, FIBER AND FUEL IN ARID REGIONS (Herbs, woody plants, fiber plants, succulents). McGINNIES U.G., New York Plenum Press, Environmental Science research v.14, 1979, p.69/75, 111 Nal : TD 172.E55, Languages: English, 16 ref. Location : Deserts, Document type : Article. AGRICOLA. 584 ANALYSIS OF (HEPTANE) EXTRACTABLES FROM ONE EUPHORBIA (lathyris, growing of green plants for energy, hydrocarbon-producing crops). NEMETHY E.K., 0TV0S J.U., Champaign, 111, The Society Journal American Oil Chemist's Society, V. 56 (12), Dec. 1979, p.957/960, ill, ISSN 0003-021X, Languages English, 11 ref. AGRICOLA. 2.1.7. Uater hyacinth. 585 POSSIBILITE D'UTILISATION DE LA JACYNTHE D'EAU EN FRANCE, INRA, Versailles Colloque International CENECA, Agriculture et Energie, Paris 27-29 février 1980, p.223.

Page 182: Farm and Forest Biomass

-88-586 THE WATER HYACINTH (Eichhornia crassipes (Mart.) Solms) an aquatic bane or a hydrophyte of the future (biomass, energy methane production). FRANCOIS J. (Faculté des Sciences Agronomiques de L'Etat, Gembloux -Belgium-), Lab. d'Ecologie Végétale). CTRY: XE-BE, Typl: J/AS, Lang : français, Titl: -La jacinthe d'eau aquatique ou hydrophyte d'avenir- Jrnl: Annales de Gembloux -Belgium- Impr: 1979, ISSN 0303-9099, Note: 26 réf. Summaries (En, Fr). Issued 1980; CLLt V. 85 (2) p.73/81. AGRIS. 587 RECYCLING THE NUTRIENTS IN RESIDUES FROM METHANE DIGESTERS OF AQUATIC MACR0-PHYTES FOR NEW BIOMASS PRODUCTION, HANISAK, M. DENNIS/ WILLIAMS, LAVERGNE D., RYTHER, JOHN H., Location : Harbor Branche Found., Inc., Fort Pierce, Fl; 33450 USA. Jrnl : Resourc. Recovery Conserv. Pubi. 80 Series 4, Issue : 4p. 313-23. Identifiers : methane manuf fermn water hyacinth Chemical Abstracts. 588 SEEKING "SUPER HYACINTHS"C00LEY T.N., MARTIN D.F., Aff. Univ. South Florida Dept Biol. Tampa FL 33620 USA, J.Environment, Sci. Health, A; USA, 1978, Vol.13, n°7, p.469/479, 18 ref. Language : English, Utilisation possible pour le traitement des eaux usées et comme source de combustible, par diges­tion anaerobie. Recherche des conditions de croissance des hyacinthes aqua­tiques de grande taille PASCAL. 589 CONTROLLED ENVIRONMENT SYSTEMS FOR THE PRODUCTION OF AQUATIC VASCULAR PLANT BIOMASS FOR CONVERSION TO LIQUID AND GASEOUS FUELS, PHILLIPS J.M., Aff: Univ. Arizona Environmental res. Lab. Tucson AZ, USA, Research Commission Conference on solar energy, Technology Status/1978, USA, Ed. S.L. AIAA,1978 p.1/9, 20 ref. Language : English. Etude de l'influence des substances nutritives minérales et de l'enrichissement de l'atmosphère en anhydride carbonique sur la production de jacinthe d'eau. PASCAL 590 BIO-MASS ENERGY FOR RURAL AREAS, GOPALAKRISHNAN K.V., MURTHY B.S., Aff : Indian Inst. Technol. Madras, Ind, Sun, Mankind's Future Source of Energy International Solar Energy Society Congress 1978-01-00, New Delhi, USA, Ed. New York, Pergamon Press, 1978, p.824/828, 7 réf. Langue : anglais. Conception d'une installation de production d'énergie électrique pour un village de 1000 personnes en Inde basée sur la culture d'hyacinthes aqua­tiques, leur gazéification par digestion anaerobie et l'utilisation du gaz produit pour l'alimentation de moteurs à combustion interne ou de turbines à gaz entraînant des alternateurs PASCAL. 2.2. Ka£ÍjTe_energy cultures. HANDBOOK OF UTILIZATION OF AQUATIC PLANTS. A REVIEW OF WORLD LITERATURE (spec, on algae and water hyacinth), Corp: FA0, Rome (Italy), Fishery Re­sources and Environment Div. Jrnl: FA0 Fisheries Technical Papers (FAO) 1979, Repn: FA0-FIRI-T187, ISBN 92-5-100825-6, Note : Fairs/RN8000451, Tables, photographs, 35 ref. Summary (Eng); 183p. n°187. Code 3490 3410. Abst: Reviews all aspects of utilization of aquatic plants, giving extensive annotated bibliography; gives detailed data on chemical composition and pro­ductivity of various species, reviews methods of harvesting and protein ex­traction and the various economic uses of aquatic plants ia, as feeds, fuel, manure, building materials and water purifiers. (En). AGRIS.

Page 183: Farm and Forest Biomass

-89-

592 POTENTIAL OF LARGE-SCALE ALGAL CULTURE FOR BIOMASS AND LIPID PRODUCTION IN ARID LANDS, DUBINSKY Z., BERNER T., AARONSON S., Aff: City Univ. New York Queens Coll., Flushing NY 11367, USA , Biotechnol-Bioengng Symp., USA 1979, n°8, p.51/68, 95 ref : Tsymposium on Biotechnology in energy production and conservation 1/1978/Gatlinburg TN, Langue: anglais. Rendements de culture de certains types d'algues. Compositions chimiques de diverses algues, ana­lyse économique de la production d'algues à grande échelle en eau de mer ou saumatre avec utilisation éventuelle d'eaux d'égout. PASCAL. 2.2.1. Algae 593 -FIRST EXPERIMENTS OF CHECKED PRODUCTION OF MACROPHYTES WITH WASTE WATER AND METHANAZATION OF BIOMASS,CHASSANY -DE CASABIANCA M.L. and SAUZE F., CNRS Montepellier - France, INRA Narbonne France, International Conference on energy from Biomass, Brighton 4-r7 November 1980, Commission of the European Communities, in co-operation with the Department of Energy, London. 594 LA CULTURE DE L'ALGUE UNICELLULARE BORTRYCOCCUS BRAUNII, UNE SOURCE RENOU­VELABLE D'HYDROCARBURES, CASADEVALL E., LĂRGEAU C , BERKLOFF ­ Colloque International CENECA, Agriculture et Energie, Paris 27/29 février 1980, p.228 595 RENEWABLE HYDROCARBON FUELS BY CULTIVATION OF THE GREEN ALGA B0TRY0C0CCUS BRAUNII. INVESTIGATION OF THE FACTORS AFFECTING HYDROCARBON PRODUCTION, Production renouvelable d'hydrocarbures par culture de l'algue verte ^otpy­ococcus braunii. Etude des facteurs susceptibles d'intervenir sur la produc­tivité. Contractor DG XII CEC CASADEVALL Α., Ecole Nationale Supérieure de Chimie de Paris, Laboratoire de chimie bioorganique et Organique Physique 11, rue Pierre et Marie Curie, Paris, France, Programme 1979­1983, Project E = Energy from biomass. 596 RENEWABLE HYDROCARBON PRODUCTION FROM THE ALGA BOTROCOCCUS BRAUNII, LĂRGEAU C, CASADEVALL E and DIF D, Lab. de Chimie Bioorganique et Organique Physique France, BERKALOFF C, Lab. Botanique­Cytophysiologie Végétale France, Inter­national Conference on Energy from Biomass, Brighton 4­7 November 1980. Commission of the European Communities, in co­operation with the Department of Energy, London. 597 ALGAL FERMENTATION, A PROMISING STEP IN BIOMASS CONVERSION, Kreuzberg K, Univ. of Bonn, Bonn, International Conference on Energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in co­operation with the Department of Energy, London. 598 MARICULTURE ON LAND, A system for biofuel farming in coastal deserts, WAGENER K, Technical University Aachen, F.R.G., Session V, Paper V/8, International Conference on Energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in co­operation with the Department of Energy, London. 599 METHANE PRODUCTION BY MARICULTURE ON LAND (MCL), WAGENER K, Contractor DG XII CEC, Technical Univ. Aachen, R.F.A., CSMA, Istituto di Microbiologica Firenze, Italie, Programme 1979­1983, Project E = Energy from biomass. 600 EXPLOITATION OF LAGOON MACRO­ALGAE FOR BIOGAS PRODUCTION, Contractor DG XII­CEC, CR0ATT0 U., CSARE, Italie, Programme 1979­1983, Project E = Energy from biomass.

Page 184: Farm and Forest Biomass

»90-

601 BIOMASS FROM OFF-SHORE SEA AREAS, Contractor D6 XII CEC, STEVEN K.W.H., NAYLOR E., University of Liverpool, University of Nottingham, Programme 1979-1983, Project E = Energy from biomass 602 ALGAL BIOMASS FROM FARM WASTE - A PILOT PLANT STUDY, GARRETT M.K. and FALLOWFIELD H.J., The Queen's University of Belfast and Department of Agri­culture for Northern Ireland, International Conference on Energy from biomass Brighton 4-7 November 1980, Commission of the European Communities, in co­operation with the Department of Energy, London. 603 ENERGY FROM MARINE BIOMASS, JONES J.M. and MORLEY J.G., University of Not­tingham, U.K., Session V, Paper V/7, International Conference on Energy on biomass, Brighton 4-7 November 1980, Commission of the European Communities, in co-operation with the Department of Energy, London. 604 THE PHOT0SYNTHETIC EFFICIENCY OF CHLORELLA BIOMASS GROWTH WITH REFERENCE TO SOLAR ENERGY UTILIZATION, PIRT, JOHN S., LEE, YAN-KUN, RICHMOND, AMOS, PIRT.MARGARET WATTS, Location Microbiol. Dep. Queen Elizabeth Coll., London W8 7 AH Enlg. Jrnl: J. CHEM. Technol, Biotechnol. Pulb. 80 Series 30 Issue, 1, p.25/34, Identifiers, Chlorella photosynthesis solar energy utilization. Alga photosynthesis solar energy utilization. Chemical Abstracts. 605 METHANE PRODUCTION BY ANAEROBIC DIGESTION OF ALGAE, Contractor DG XII-CEC NYNS, E.j.) Unité de génie biologique Place Croix du Sud, 1 Bte9, 1348 Louvain-la Neuve, Belgique, Programme 1979-1983, Project E = Energy from bio­mass. 606 THE POTENTIAL OF SYSTEMS INTEGRATION IN MICROBIAL PHOTOSYNTHESES, (Algae, carbon cycle, energy) HEDEN CG., Bioenergetic aspects of Microbial Proces­sus London 1978, London, Transactions Biochemical Society V.7, (1) Feb. 1979, p.94-98, ill ISSN 0300-5127, Languages English, 7 ref. Document type: Article. AGRICOLA. 607 ORGANIC CHEMICALS AND LIQUID FUELS FROM ALGAL BIOMASS, SANDERSON J.E., WISE D.L., AUGENSTEIN D.C, Aff: Dyncmatech R/D/ Co., Cambridge MA 02139 USA, Biotechnol. Bioengng Symp, USA, 1979, ne8,p.131/151, 11 réf., Tsymposium on biotechnology in Energy production and conservation. 1/1978/Gatlinburg TN, Langue:Anglais, Description des différentes étapes d'un procédé de traite­ment d'algues consistant en une fermentation suivie d'une extraction puis d'un traitement par distillation ou par electrolyse suivant la nature des produits désirés. PASCAL. 608 METHANE FERMENTATION OF AQUATIC BIOMASS, WISE D.L., AUGENSTEIN D.C, RYTHER J.H., Aff.: Dynatech R/D/ Co., Cambridge MA 02139 USA, Resource Recov. Cons­erv. NLD, 1979, VOL.4, n°3, p.217/237, 36 réf., Langue : anglais, Etude expérimentale de la digestion anaerobie de deux herbes d'eau douce (Lemma Sp. et Hydrilia Verticillata) et deux algues marines (Gracilaria CEAR et Ulva Lactuca) PASCAL.

Page 185: Farm and Forest Biomass

-91-609 PRODUCTION DE METHANE PAR DIGESTION ANAEROBIE D'ALGUES CULTIVEES DANS LES EAUX DE REFROIDISSEMENT DES CENTRALES ELECTRIQUES, Methane production through anaerobic digestion of algae grown in cooling waters from powerplants. Developing efficient methods for processing By-products and wastes, Other waste products/ Fungi, Sea weed, Algae, Lichen, Yeast, Plants and parts of plants in general, Biology of the organisms-general, plant production, General crop Husbandry, NYNS E.J., NAVEAU H., BINOT R., Faculté des Sciences agronomiques de l'Université catholique de Louvain, Place Croix du Sud, 1 A 3 1348 Louva in-la-Neuve, Dept. de physique et de chimie appliquées, Unité de Biochimie physiologique. 1978 AGREP 610 CULTURES D'ALGUES ET METHANISATION, Place de ces techniques dans la bio-con­version de l'énergie solaire. Algae cultivation and méthanation. Role of these techniques in solar energy bioconversion 6, SAUZE F., INRA, Narbonne, Fr., Rev. Internation. Heliotechn. Fr; 1978, n°1, p.44/48, Résumé : angl. 19 réf., Langue : anglais. Revue des travaux menés dans le monde sur la cul­ture d'algues vertes microscopiques et leur transformation en méthane par digestion anaerobie, Production potentielle d'algues et de méthane en France à partir d'effluents domestiques ou industriels, Analyse économique prévi­sionnelle aux Etats-Unis, Autres perspectives d'utilisation de la biomasse. PASCAL. 611 A MODEL FOR SOLAR RADIATION CONVERSION TO ALGAE IN A SHALLOW POND, INCROPERA F.P., THOMAS J.F., Äff: Seh. Mech. Eng, Purdue Univ. U. Lafayette, Indiana 47906 USA. Solar Energy USA, 1978, Vol.20, n°2, p.157/165, Résumé : Esp, Fr., 30 ref, Langue : anglais, Construction d'un modèle mathématique permet­tant de prévoir la production d'algues (chlorella pyrenoidosa) en bassins peu profonds en fonction du site et des conditions diurnes et saisonnières. Application du modèle aux conditions d'Indianapolis et comparaison avec des données expérimentales en latitudes similaires. PASCAL. 612 CONTROLLED SWAMPS FOR FOOD AND FUEL,BROWN J.G. Aff. 11 Arcadia R/D/ Andover MA 01810 USA, A.I.CH.E., Symp, Ser : USA, 1978, Vol.74, n°181, p.13/16, 8 ref, langue : anglais, Conception d'un système de production d'énergie électrique par combustion d'algues cultivées dans les eaux d'égout du sud-ouest de la Californie collectées dans l'Edwards dry Lake. PASCAL. 613 THE ECONOMICS AND ENGINEERING OF LARGE-SCALE ALGAE BIOMASS ENERGY SYSTEMS, DUELLING Norman, MIT, NTIS Report PB-287 868, May 78 (34). Special Report: The potential for developing commercially viable aquatic plant biomass ener­gy systems is surveyed. One major problem encountered with algal bioconver­sion systems has been development of a method of harvesting the algae that does not consume more energy than is produced. A form of filtering, follo­wed by anaerobic digestion, appears to be the most suitable method for har­vesting. Descriptors, aquatic plants : fuel crops, bioconversion, kelp, algae, filtering, méthane, Anaerobic systems, Gasification. ENVIR0LINE. 614 PHOTOPRODUCTION OF HYDROGEN BY MARINE BLUE-GREEN ALGAE, MITSUI AKIRA, Rosen-stiel School of Marine & Atmospheric Science, NTIS Report PB-287 508, June 15, 78 (71), Special Report : the biological and biochemical photoproduction of hydrogen for use as an alternative fuel was examined. The blue-green algal strain Miami BG7 was studied to determine whether the enzyme systems that catalyze hydrogen photoproduction could be simulated by environmental

Page 186: Farm and Forest Biomass

­92­

conditions to attain hydrogen photoproduction Levels suitable for applied projects, the regulation of specific environmental parameters can cause significant changes in the quantum efficiency of hydrogen photoproduction in Miami BG7 Algae. Optimal conditions for hydrogen photoproduction are described. Descriptors/Algae, Blue­Green, Hydrogen, Bioconversion, Gasifica­tion. ENVIROLINE. 615 DEVELOPMENT OF METHANE PRODUCTION FOR SEAWEED GROWN IN HAWAII, YANG P.Y., 1978. Research Report : Office of Research Administration, Univ. Hawaii, Honolulu. USDA CRIS. 616 STUDY OF SOME ENGINEERING PARAMETERS AND THE EFFECT OF HARVESTING TIME IN MASS CULTURE OF ALGAE, SESHADRI C.V., MISRA M.C., Aff; A.M.M. Murugappa chettiar res. Cent., Madras 600001, Ind. sun, Mankind's future source of energy, International Solar Energy Society Congress/1978­01­00/ New Dehli ; USA : Ed. New York : Pergamon press, 1978, p.2, 782/786, Langue : anglais. Etude de l'influence de divers paramètres sur la production et la composition d'une culture d'algue scenedesmus acutus, Coefficient d'absorption de la lumière, concentration initiale, modes d'alimentation en Co (2) et époque de récolte. PASCAL. 617 BIOMASS PRODUCTION BY PHYT0PLANKT0N IN GUANABARA BAY (RIO DE JANEIRO, Brazil) AND THE ADJACENT OCEANIC SECTOR. Variations from May to July 1978, SEVRIN­

REYSSAC J., MACHADO M.C, SCHUTZE M.L., MOTTA­BIBAS S., GASPAR, COSTA DE LIMA I., LIMA C , ARAÚJO, ESTEVES C.P., Location : Lab. Ichtyol, Gen. Appli. Mus. Natl. Hist. Nat. Paris 75231, Fr., Jrnl : Bull, Mus. Natl. Hist. Nat. Sect.Β Code : BMNPD6 Pubi. 79, Identifiers : phytoplankton Guanabara Bay, photosyn­thesis phytoplankton Guanabara Bay, chlorophyll phytoplankton Guanabara Bay. Chemical Abstracts. 618 SOLAR BIOCONVERSION SYSTEMS BASED ON ALGAL CLYCEROL PRODUCTION, WILLIAMS L.A., F00 E.L., F00 A.S., HEDEN CG., Aff: Karolinska Inst. Stockholm 10401 SWE, Biotechnol, Bioengng Symp. USA, 1979, p.115/130, 50 ref. TSymposium on bio­technology in energy production and conservation 1/1978/Gatlinburg TN; Lang: anlgais, Etude des différentes possibilités d'utilisation des algues du gen­re Dunaliella productrices de Glycerine pour la production de produits ali­mentaires, de combustibles et de produits chimiques. Possibilités de produc­tion d'éthanol par une voie uniquement microbiologique. PASCAL. 619 ANIMAL FEED PROTEINS AND WATER FOR IRRIGATION FROM ALGAL PONDS, SHELEF G., MORAINE R., ORAN G., Location : Sherman Environ., Eng. Res. Cent. Technion, Haifa, Israel, Section: CA017005, CA050XXX, CA061XXX, Pubi. Class. CONF PROC Jrnl: Water pollut. Control Dev. Countries, Proc. Int. Conf. Coden: 42Y0AQ, Pubi 78, Series 2, p.217/228. Publisher: Asian Inst. Technol. Address: Bangkok, Thailand, Avail: Lohani, B.N., Thanh N.C, Identifiers: waste sewage protein feed, algae water potable irrigation, wastewater treatment algae feed. 620 CONTROLLED SWAMPS FOR FOOD AND FUEL, BROWN J.G., aff: Granger Filter Inc., Andover, FLA 01810 USA, In; Pacific Chem.Eng.Congr. 2. Proc. : Denver, Colo, 1977, New York, Ed: AM. Inst; Chem. Eng. Date: S.D., Vol.2, p.748/751; Lang.: anglais. Description d'un système de culture d'algues dans une lagune d'épuration des eaux usées, et de leur utilisation comme combustible. PASCAL.

Page 187: Farm and Forest Biomass

­93­2.2.2. Micro .algae 621 BASIC RESEARCH ON CONTINUOUS CULTIVATION OF PHOTOSYNTHETIC MICROBIOLOGICAL SYSTEMS, USING AS A LIMITING SUBSTRATE NATURAL SUNLIGHT .., Contractor DG XII­CEC : DEMEESTER J., Société Française des Pétroles BP, Programme 1979­1983, Project E = Energy from biomass 622 SIMULTANEOUS EVALUATION OF PHOTOPLANKTONIC AND MICROPHYTOBENTHIC BIOMASS AND PRIMARY PRODUCTION IN A COASTAL ENVIRONMENT. BODOY Α., PLANTE­CUNY, PARIE­REINE, Location : Stn. Mar. Endoume, Cent. Oceanogr, Marseille, 13007, Fr. Jrnl: C.R. Hebd. Seances Acad. Sei., Ser. D.Pubi.: 80 Series: 290 Issue : 10p. 667­70, Language : Fr. Identifiers : ecol phytoplankton phytobenthos chlorophyll biomass Chemical Abstracts. 623 SHORT­TERM VARIATIONS IN PHYTOPLANKTON BIOMASS IN A TIDAL ESTUARY IN NORTHERN BRITTANY, RIAUX C , DOUVILLE J.L., Location : Stn. Biol. Roscoff. 29211 FR. Jrnl : Estuarine Coastal Mar. Sci., Pubi. 80 Series, 10 Issue : 1, p.85/92, Identifiers : phytoplankton chlorophyll tidal estuary. Chemical Abstracts. 624 PHOTOBIOLOGICAL PRODUCTION OF FUELS BY MICROALAGE, LIEN S.„ Solar Energy Re­search Institue 1617 Cole Blvd. USA, Session V, Paper V/10, International Conference on Energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in co­operation with the Dept. of Energy, London. 625 COMPARATIVE STUDY OF THE PHOTOSYNTHETIC PRODUCTIVITY OF INDIVIDUAL GREEN MICROALGE, BERDYKULOV Kh. Α., NURIEVA D., Location : Insti. Mikrobiol., Tashkent, USSR, Jrnl: Uzb. Biol. Zh. Pubi.: 80 Issue 1, p.34/5, Language : Russ. Identifiers; algae compn biomass yield, chlorophyll prodn algae Chlamydomcnas cultivation. Ankistrodesmus cultivation, Chlorella cultivation, Scenedesmus cultivation. Chemical Abstracts. 626 CHARACTERIZATION OF THE MICROPHYTOBENTHOS IN A VOLCANIC MEROMICTIC LAKE (Lake pavin. France) I. Chrophyll biomass and determination of the annual cycle. ROMAGOUX J.CI., Location : Stn. Biol. Besse­en­Chandesse, Univ. Clermont­Ferrand, Besse­enChandesse, F­63610, Fr., Jrnl: Int. Rev. Gesamten Hydro­biol. Pubi. 79 Series 64 Issue : 3, P.303/43, Language : Fr. Identifiers : microphytobenthos lake season France. Bacillariophyceae lake season France, phytoplankton lake season France, chlorophyll lake sediment season, phosphate lake season. Chemical Abstracts. 627 ENVIRONMENTAL PROPERTIES AND THE DISTRIBUTION OF PHYTOPLANKTON BIOMASS AND PHOTOSYNTHESIS IN A SMALL EUTROPHIC ESTUARY OF SHIMODA BAY, TERADA, TAKUJI, Ichimura, Shunei, Location : Fac. Sci. Tokyo Kyoiku Univ., Tokyo, Japan. Jrnl : Umi Publi. 79 Series: 17 Issue: 3,p.137/44. Identifiers: phytoplank­ton distribution photosynthesis estuary, environment phytoplankton photosyn­thesis estuary. Chemical Abstracts. 628 FUELS FROM MICROALGAE BIOMASS, BENEMANN J.R., WEISSMAN J.C., KOOPMAN B.L., HALLENBECK P., EISENGBERG D., MURRY, MARCIA ASWALD W.J., Location : Sankt. Eng. Res. Lab. Univ. California, Berkeley, CA 94720 USA, Jrnl : Proc­ Annu. Fuels Biomass Symp. 2nd Pubi. 78 Series 2, p.891/946, Publisher: Rensselaer Polytech. Inst. Address: Troy N.Y. Avail : Shuster, William W Chemical Abstracts.

Page 188: Farm and Forest Biomass

­94­

629 LARGE­SCALE FRESHWATER MICROALGAL BIOMASS PRODUCTION FOR FUEL AND FERTILIZER BENEMANN J.R., WEISSMAN J.C., KOOPMAN B.L., EISENBERG D.M., GOEBEL R.P., OSWALD W.ü., Location : Sanit. Eng. Res. Lab., Univ. California, Richmond CA USA, Jrnl : Report Pubi. 78 Issue: SAN­0034­1, p.196., Citation : Energy Res. Abstr. 1979 4 (22) Abstr. Ne52798 Avail NTIS. Identifiers: fuel ferti­lizer microalgal biomass. Chemical Abstracts. 630 Annulé. 631 PHYTOPLANKTON BIOMASS AND CHLOROPHYLL A IN THE TWO DIFFERENT LAYERS OF A TEMPERATE LAKE (Piburger Lake, Austria), GEORGE J.P., Location : Sch. Stud. Zool., Vikram Univ. Ujjain, 456­010, India, Jrnl : Bioresearch (Ujjain, India) Pubi. 78 Series: 2 Issue: 1­2, p.47/52, Identifiers: phytoplankton chlorophyll Piburger Lake Austria algae ­ Piburger Lake Austria. Chemical Abstracts. 632 DISTRIBUTION OF PLANKTON BIOMASS AND CHLOROPHYLL A IN VELLAR ESTUARY, BHATNAGAR G.P., PURUSHOTHAMAN Α., VIJAILAKSHMI G.S., Jrnl: Bioresearch (Ujjain, India), Pubi. 78 Series, 2 Issue : 1­2, p.83/7, Identifiers: phytoplankton veliar estuary, India, zooplankton veliar estuary India, chlorophyll a veliar estuary India. Chemical Abstracts. 633 SECTION DE CAPTURE DE COUCHES SYMETRIQUES CONVEXES D'ALGUES MICROSCOPIQUES, POUR DIFFERENTES HAUTEURS DU SOLEIL ET EN PRESENCE D'UN CIEL DE BRILLANCE EGALE, Capture section of convex symmetrical layers of microscopic algae in the conditions of various sun heights and uniform sky brilliance ­ en Russe, ANISIMOV O.L., FILIPPQVSKIJ YU.N., Geliotechnika, Uzbek, SSSR, 1989, n°1, p.56/62, Langue : Russe, Etude des caractéristiques de capture du rayonne­ment naturel (direct et diffus) par des couches de suspension d'algues micro­scopiques de différentes formes (couches plane, conique, cylindrique, sphé­rique) ou avec des combinaisons de ces formes. PASCAL. 634 BIOCONVERSION OF SOLAR ENERGY WITH THE PARTICIPATION OF PHOTOTROPHIC MICRO_ ORGANISMS (Includes algae), KONDRAT'EVA Ε.Ν., Moskva, Akademiia nauk SSSR Prikladnaja biokhimiia i mikrobiologiia v. 14 (6) Nov/Dec 1978, p.805/817. ISSN 0555­1099, Languages Russian, English, 129 réf., Document type : Review, Article. AGRICOLA.

III. WASTE MATERIALS

3 . 1 . Wastes-general studies or those covering several types of waste

635 INCREASING BIOMASS FOR FUEL PRODUCTION BY USING WASTE WARM WATER OF INDUSTRIAL ORIGIN. DUJARDIN E. and PIRON­FRAIPONT C , Liège University; Belgium, Session V, Paper V/11, International Conference on energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in cooperation with the Dept. of Energy, London. 636 REGAINING OF ENERGY AND RAW MATERIAL FROM WASTE (PACKAGING)­ Wiedergewinnung von Energie und Rohstoffen aus Abfall , ANON, Ctry: XE­DE., Typl: J/AS, Lang: De. Sube: Q30 TOO P05, Jrnl: Neue Verpackung (Germany, F.R), Impr: 1979, ISSN 0341­0390, Note: 2 tables, Cllt: V. 32(11),p.1403,1406,1408,1410. AGRIS.

Page 189: Farm and Forest Biomass

-95-

637 FROM CONTAMINATED REFUSE : LOW-COST ENERGY, CLEAN ENVIRONMENT AND REDUCTION OF WASTE (Italy). - Dai rifiuti inquinanti : energia a basso costo, ambiente pulito e riduzione degli sprechi (Italy). CIRANNA M., Ctry: XE-IT, typl: J/AS, Lang: It. Jrnl: Città e Campagna (Italy). Impr: Jan-Feb. 1979, CUt: V. 11 (1-2), p.7/10. AGRIS. 638 TRANSFORMATION OF WASTES INTO METHANE (ENERGY SOURCES) - TRASFORMAZIONE DEI RIFUITI IN METANO. BUONAVENTURA P., Milano. Inquinamento V.¿1(2), Feb. 1979, p.89/91, ill, ISSN 0001-4982. Languages : It, 7 ref. Document type: Article. AGRICOLA. 639 ENERGY AND FEED FROM WASTE WATER - Energia a mangime della axque di scarico. MALLARINI F., Ctry: XE-IT, Typl: J/AS, Lang: It. Sube: P05. Jrnl: Avvenire Agricolo (Italy). Consorzio provinciale Agricolo - Parma, Impr: May 1979, Note: short communication. Clmlt: V. 87(5), p.115/116. AGRIS. 640 BIOGAZ PRODUCTION DE METHANE A PARTIR DE DECHETS. CRAENS J., Le Sillon Belge ne1926. 641 2. DEN VERKENNING ENERGIE - POTENTIEEL ORGANISCHE AFVAL IN NEDERLAND. BOON, J.H.; Beta 15(1979)2 ; 5,7 Tabn. 20 refs. PUDOC. 642 THE UNCERTAIN COSTS OF WASTE DISPOSAL AND RESOURCE RECOVERY (of material or energy). WILSON D.C., Amsterdam, Elsevier Scientific Publishing Company. Resource recovery and conservation. V.4 (3) Nov. 1979, p.261/299, ill. ISSN 0304-3967. Languages: Eng. 21 ref. AGRICOLA. 643 PLANTS AND ORGANIC WASTE OFFER HOPES OF FILLING US ENERGY GAP. BROWN MALCOLM W., New York Times, Dec 10, 79, p.1. News feature : some experts believe that biomass; coupled with other energy resources could alleviate the energy famine now threatening the world. Biomass can be burned, fermented, or reacted che­mically to produce energy. The fuel-oriented agricultural system being deve­loped in Vermont is described. Efforts in Brazil to produce alcohol from biomass are reported. The use of garbage to produce fuel in riverton, N.J., is also examined (1 photo) ENERGYLINE. 644 SOURCE, SUPPLY AND NATURE OF MUNICIPAL AND INDUSTRIAL WASTE AS A FUEL. NIESSEN WALTER R., CAMP DRESSER & McKEE Inc. Presented at aga/epri/nca/gas research inst. 6th energy technology conf, Wash D.C., Feb 26/28, 79, P1015O1). Techni­cal feature : solid and liquid wastes that can be utilized as fuel are gene­rated by domestic, commercial, and agricultural activities, and by land clea­ring and manufacturing processes. The logistics of waste supply involve col­lection, hauling, and storage at the combustion area. The proportions of combustible material, moisture, and ash in the waste can greatly affect ener­gy balance and cause corrosion and slagging in energy recovery systems. The combustion of organic matter also produces significant amounts of particulate and gaseous pollutants. (A graph, 10 references, 3 tables). ENERGYLINE.

Page 190: Farm and Forest Biomass

-96-

645 TRASH POWER : A WORTHY NOTION THAT DOESN'T YET PAY. ROCKMAN Jane, New York Times, Nov 11, 79. PF-6. News feature :according to the nat'I center for resource, some 30 plants that burn municipal refuse to produce energy are in various stages of planning and operation throughout the US to date, though not one resource recovery plant has made a profit ; one is expected to break even this year, resource recovery operations of Wheelabrator-Frye, Inc., in saugus mass ; Parsons & Whittemore in Franklin, Ohio and in Hempstead, N.Y.; Monsanto Co in Baltimore, MD ; and American Can Co in Milwaukee are descri­bed. Reasons why these projects are not successful include technical pro­blems in plant operation and the high costs of necessary landfills. Eventual­ly, resource recovery operations will become profitable (1 photo) ENERGYLINE. 646 THE "TANDEM PH0T0ELECTR0LYSIS PLANT"C0NCEPT : A STRATEGY FOR FUEL PRODUCTION VIA BIOMASS CONVERSION WASTES, SCHWERZEL R.E., BROIMAN E.W., GRAIG R.A., LEVY D.D., MOORE F.R., VAALER L.E., WOOD V.E., Location : Battelle Columbus Lab., Columbus , OH 43201 USA, Jrnl : Sol. Energy : Chem Convers. Storage (Symp) Pubi 1979, p.83/115, Meeting date: 1978, Publisher : Humana Press Inc. Address: Clifton N.J., Avail: Hautala, Richard R., King R. Bruce, Kuta I, Charles. Identifiers : hydrogen manuf tandem photoelectrolysis plant, hydrocarbon manuf tandem, photoelectrolysis plant, biomass water Kolbe pho­toelectrolysis, carboxylate water Kolbe photoelectrolysis. Chemical Abstracts. 647 CONCEPTUAL DEVELOPMENT OF A SOLAR TOWN IN IRAN,BAHAD0RI M.N., Shi raz Univ., Dep. Mechanical Eng. , Shiraz, Im. Solar Energy : USA, 1979, VOL:23, n°1, p.17/36, 25 réf., langue : anglais. Etude comparative de quatre conceptions pour la fourniture de l'ensemble des besoins en énergie d'une ville résiden­tielle de 4000 habitants en utilisant l'énergiesolaire et la biomasse (dé­chets urbains ou plantations énergétiques). PASCAL. 648 POSSIBILITIES AND PROSPECTS OF OBTAINING ENERGY BY METHANE FERMENTATION (or­ganic waste products of agriculture, industry and of sewage). KREPIS I.B., New York, Consultant's Bureau, Biology bulletin of the Academy of Sciences of the USSR, v. ISSN 0098-2164, Languages english, russian, 31 ref. AGRICOLA. 649 PRODUCTION DE METHANOL ET D'ETHANOL A PARTIR DE RESIDUS INDUSTRIELS, URBAINS ET AGRICOLES TECHNIQUES ET SCIENCES MUNICIPALES, BERNARD D., n°8:9, 1978-8/9/ p.459/456. Production de methanol et d'éthanol à partir de déchets indus­triels, urbains et agricoles en France - Estimation des quantités de déchets utilisables ; processus d'obtention, fermentation, pyrolyse, hydrolyse, dé­chets industriels non fermentescibles, caoutchouc, plastique ou fermentescibles, déchets de bois ou des IAA, résidus agricoles : fumi er, paille. Usier. Pos­sibilités de production de gaz de fumier. Minag-Perio. RESEDA. 650 EUROPEAN TECHNOLOGY FOR OBTAINING ENERGY FROM SOLID WASTE. ENERGY TECHNOLOGY REVIEW Ne34, DE RENZO D.J., Park Ridge N.J., Noyes Data Corp., 1978 New Jersey xi, 281p., ill, maps 25cm, ISBN 0815507305, t 39.00, Language : english, Bibliography: p.281, Document type : monograph. AGRICOLA.

Page 191: Farm and Forest Biomass

­97­

651 DEPOLLUTION ­ EAUX USEES, Brandstof uit afvalwater. Shell Venster 3 (1978) 7:9­12 afbn? BENT E. van den. Ni. het bij de biologische reiniging van af­valwater vrij komende methaangas. Dit gas wordt opevangen en gebruikt als brandstof voor de gasmotoren van de zuiveringsinstallaties. Het methaangas voorziet op deze wijze voor 70 tot 80 X in de energiebehoefte van deze rei­niging (Doe.) PUDOC. 652 ENERGETICS AND ECONOMICS OF DENSIFIED BIONASS FUEL (DBF) Production. Reed (T.B.) ; BRYANT Β., AFF: solar energy res. Inst, golden Co 80401 USA, AICHE. Symp. ser. ; USA, 1978, Vol:74, ne181, p.26/31, 15 réf., langue: anglais. Procédés de production de granulés denses à partir de déchets divers (bois agricole, urbain). Pouvoir calorifique des granulés denses obtenus. Consom­mation spécifique d'énergie. Analyse économique d'une installation industriel­le. PASCAL. 653 SOLID WASTES AND RESIDUES, JONES, JERRY L., 1946­ Ed. American Chemical Socie­ty ­ Div. of Environmental Chemistry. Washington ACS, 1978, District of Colum­bia, x, 421p., ill. Charts, plates, ­ American Chemical Society. ACS sympo­sium series, n°76. ISBN 08412004349, Nal: QD1.A45 n°76. Languages : english Includes bibliographies and index. Document type : monograph. AGRICOLA. 654 ENERGY FROM BIOMASS AND WASTES, KLASS, DONALD L., Chicago. Inst. Of Gas Tech­nology ­ Chicago, the Inst. 1978, Illinois, VIII 868p. ill, 23cm; Lccn 791001­78, Languages : english. Includes bibliographical references. Document type: monograph. AGRICOLA. 655 RESOURCE RECOVERY AND RECYCLING, BARTON, ALLAN F.M., New York, Wiley, c1978. New York, XI, 418p. ill, ­ Environmental science and technology. LCCN 78013601 ISBN 0471027731, Language : english. Bibliography : p.300/377. Document type : monograph, Descriptors : Recycling (waste, etc) waste products as fuel. AGRICOLA. 656 WASTE MANAGEMENT. REPORT OF THE AGRICULTURAL RESEARCH INSTITUTE OF ONTARIO, 1977­1978, GUELPH Univ. Ontario Canada, University of Guelph, 1978, 49/51, See Abstracts : 8810­A0211, Language Eng. 12 ref. Research described includes the operation of a pilot plant making compost from organic residues : lake­weed harvesting for forage : investigation of pollution problems from the use anaerobically digested sewage sludge on the Lang ; the start of a 5yr, programme on recovering energy from animal manures ; irrigation with duck farm waste water ; the development of a mathematical model for estimating the contribution of livestock manure to pollution of Great Lakes tributaries. CAB ABS. 657 ENTWICKLUNG DER MENGE UND ZUSAMMENSETZUNG DES HAUSMÜLLS, SHIN K.C, In Wasser Luft und Betriebe 21, 1977. 658 ENERGY, AGRICULTURE AND WASTE MANAGEMENT : PROCEEDINGS OF THE 1975 CORNELL AGRICULTURAL WASTE MANAGEMENT CONFERENCE, JEWELL W.J., Ann Arbor, Mich. Ann Arbor science, 1975, IX, 540p., afbn. grafn., lit. opg., tabn. tekn. Voordrachten over het verband tussen energieverbruik en voedselproduktie, het verbruik van energie t.b.v. van het voorkomen van verkwisting en het beheer­sen van vervulling en het winnen van energie uit afvallen van diverse aard en komaf (Doe.) PUDOC.

Page 192: Farm and Forest Biomass

­98­

659 ETUDE DE LA VALEUR AMENDEMENT ORGANIQUE DE DECHETS RICHES EN MATIERE ORGANI­QUE (ECORSES, VINASSES, ORDURES MENAGERES, BOUES DE STATIONS D'EPURATION). Utilization of organic wastes (bark, town refuse, sewage sludge ­ residuary liquor from distillery) in agriculture. Developing efficient methods for processing by­products and wastes ; refuse, garbage, industrial wastes : effluent, sewage : crops in general : amendments : organic chemistry, pro­cessing, plant nutrition and fertilization. JUSTE C , LUBET, SOLDA, DUREAU P. MMe, LASSERRE, Institut national de la recherche agronomique services centraux (149, rue de Grenelle, 75007 Paris), centre de recherches de Bor­deaux (Domaine de "la grande ferrade", Point­de­la­Maye 33140 Villenave d'Urnon (Gironde), Station d'agronomie. 1965. AGREP.

3.2. AgMcu^tu_ral_wasţes

660 AGRICULTURAL WASTE TREATMENT BY MEANS OF ULTRAFILTRATION MEMBRANE ENZYMATIC REACTORS, GIANFREDA L., Istituto di Fisiologia Generale, Facoltà di Scienze, Napoli, Italy. GRECO G. Jr., Istituto di Principi di Ingegneria Chimica, Facoltà di Ingegneria, Napoli, Italy, Postal address : Lilian Gianfreda, Istituto di Principi di Ingegneria Chimica, piazzale Tecchio 80120 Napoli, Italy. Session III. Paper III/4. International conference on energy from biomass. Brighton 4­7 November 1980. Commission of the European Communities in cooperation with the Dept. of Energy, London. 661 MAXIMUM BIOMASS PRODUCTION RATE FROM MOLASSES, PHYSICAL AND BIOLOGICAL RES­TRICTIONS, JANSHEKAR H., FIECHTER Α., Location : Swiss Fed. Inst. Technol. Zurich, CH 8093, Switz. Jrnl: Probi. Molasses Yeast Ind., Symp. Pubi: 80p. 81­98. Meeting date : 79, Publisher : Kauppakirjapaino Oy, Helsinki, Address: Helsinki, Finland, Avail: Sinda, Eija, Parkkinen, Elke, Identifiers : Tricho­sporon fermn molasses. Chemical Abstracts. 662 DELEGATION GENERALE A LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE, DGRST, Paris (France), Association pour la promotion industrie agriculture, APRIA, Paris Journée d'études et de réflexions valorisation énergétique des sous­produits agricoles résultats et dans des actions du comité veda. Pistes nouvelles d'utilisation des déchets cellulosiques et ligneux. 1979/09. p.225/265. 1979/ 03/13­14; pistes nouvelles d'utilisation des déchets cellulosiques et ligneux développement de la végétalo­chimie. Minag­C 6302, Minag­C.6302 RESEDA. 663 LA BIOMASSE, PASSE, PRESENT ET FUTUR ­ BIOMASS, PAST, PRESENT AND FUTURE, CHARTIER P., MERIAUX S., CNRA ­Versailles, France. Génie rural, 1979, n°10, p.19/23, Langue: français, DS, économie énergie/énergie naturelle/biomasse/ potentiel/déchet agricole/déchet bois/déchet animal/france: prospective alter/ energy economics/ natural energy/biomass/potential/agricultural waste/wood waste/animal waste/francerfuturology/annee 2050. Production nette de carbone dans la biomasse dans le monde. Potentiel énergétique des déchets et sous­produits agricoles et forestiers en France. Projet alter d'alimentation en énergie de la France en 2050 uniquement à partir d'énergie naturelle. PASCAL. 664 OTTENUTA CON IL TRATTAMENTO DEI RIFUITI ORGANICI DAL BIOGAS L'ENERGIA PER LA "NUOVA" AGRICOLTURA . BREGA L., 2p.

Page 193: Farm and Forest Biomass

-99-

665 KOMITEE VOOR HET ONDERZOEK VAN DE VALORISATIE VAN AFVALSTUFFEN IN DE LAND­BOUW OOVAL, Committee for the research and valorization of agricultural waste products. Developing efficient methods for processing by-products and wastes ; waste products in general ; chemistry - general/ processing. DE BOODT M., DE VLEESCHOUWER D., VERDONCK 0., Faculteit van de landbouwweten­schappen van de Rijksuniversiteit te Gent (coupure links 533, 9000 Gent)/ Laboratorium vcor bodemfysica. Bodemconditionering en tuinbouwbodemkunde. AGREP. 666 FUEL FROM (AGRICULTURAL) "WASTE" PRODUCTS, WILLIAMS R.O., LANG R.C./ RADNOR, PA., Chilton Company. Food engineering, V.51 (10) Oct 1979, p.66/67, ill/ ISSN 0015-637X/ Languages: english. 667 SOLAR ENERGY IN ISRAEL/ HIRSCHORN P., BuiIdg syst. Desing; USA, 1979, Vol76/ n°4, p.41/43/ langue : anglais: Revue de plusieurs développements récents de l'utilisation de l'énergie solaire en Israël : captage de l'énergie solaire par des lagunes remplies d'eau (utilisée la nuit dans des serres)/ production de méthane à partir de déchets agricoles/ eoli enne s., énergie des vagues de la mer. PASCAL. 668 A SYSTEM FOR THE UTILISATION OF AGRICULTURAL WASTES IN AN AGRO INDUSTRIAL SETTLEMENT-KIBBUTZ AS A MODEL/ ROUSSEAU I., SHELEF G./ MARCHAIM U./ Aff; Technion israel inst. Technol. Haifa/ Isr. Resource recov. conserv. Nid/ 1979/ Vol.4/ n°1/ P.59/68/ 25 rei., cote : 16839/ langue : anglais. Evolution du potentiel énergétique des déchets agricoles d'Israël. Présentation d'un sché­ma d'utilisation des déchets agricoles, domestiques et agro-industriels dans un kibbouts. Possibilité de couvrir les besoins en énergie d'un kibboutz de 1000 personnes avec le biogaz. PASCAL. 669 PERSPEKTIEVEN VOOR RECYCLAGE VAN AFVALSTOFFEN AFKOMSTIG VAN DE LANDBOUW EN VAN DE AGRO-INDUSTRIELE SEKTOR IN BELGIE. STUDIEDAG 6.9.1978/ Louvain-la-Neuve. Perspective sur le recyclage des déchets de l'agriculture et du sec­teur agro-industriel en Belgique. Journée d'étude du 6.9.1978. Louvain-la Neuve 670 M0NSEUR X/ HOFMAN M./ Programme national de recherche et de développement dans le domaine de l'économie des déchets et des matières premières secondaires/ perspectives du recyclage des résidus de l'agriculture et des industries agricoles en Belgique. Aperçu général de l'utilisation des résidus de l'a­griculture et des agro-industries en Belgique. Institut de Recherches Chimi­ques/ Bruxelles/ 10p. 671 NAVEAU H.P., Programme national de recherche et de développement dans le domaine de l'économie des déchets et des matières premières secondaires. Perspectives du recyclage des résidus de l'agriculture et des industries agricoles en Belgique; 06.09.78. Recyclage des résidus de l'agriculture par bioconversion en méthane. Université catholique de Louvain/ 1978/ 21p. 672 IRRIGATION LIFT PUMP UTILIZING SOLAR ENERGY AND BIOMASS AND SOLAR POWERED LIFT PUMP/ MUTHUVEERAPPAN/ KUNCHITHAPATHAM/ IYNKARAN, Annamalai Univ./ dept. mech. eng./ Annamalainagar 608101/ Ind. Sun, mankind's future source of ener­gy. International solar energy society congress/1978-01-00/New Delhi; USA/ Ed New York Pergamon press/ 1978/ Vol.3, p.1896/1899, 11 réf., langue: anglais.

Page 194: Farm and Forest Biomass

-100-

D¿veloppement d'une intallation de pompage utilisant la vapeur d'eau produi­te par un collecteur solaire a concentration et une chaudière auxiliaire brû­lant des déchets agricoles. PASCAL. 673 INVESTIGATIONS ON THE UTILIZATION OF PEANUT HULLS IN FEED AND NON-FEED PRO­DUCTS, BURDICK D., ALBRECHT W.J., Project : 7902-20520-003, Agency :ARS 7902, 31.07.74 to 31.07.78, Perf. org. : R.B. RUSSEL agr Research Cntr., Location P0 BOX 5677, Athens 6A, Objectives : Evaluate peanut hulls and other cellu­iosi c wastes as well as wax substitutes and wax extenders for use in manufac­turing artificial fireplace logs. Determine the efficacy of peanut hulls as a carrier for liquid supplements. Approach : Various cellulosic wastes will be evaluated alone and in combination with peanut hulls for combustibility and other properties related to development of quality fireplace logs. Va­rious waxes and combinations of waxes and tall oil pitch, low mol, wt. poly­ethylene waxes, binders, etc. also will be evaluated to determine their feasibility in log manufacture. The absorption by peanut hulls of liquid supplements will be determined as well as their suitability for feeding to dairy cows. USDA CRIS. 674 CROP RESIDUES AS ENERGY SOURCES : ASSESSING THE COST AND ENERGY FEASIBILITY OF DIRECT FIRING, STARR P.J., FINN-CARLSON D.W., NACHTSHEIM C.J., Aff; Univ. Minnesota dept. mech. eng. USA. Energy sources, USA, 1978, Vol.3, ne3-4, p.353-373, 5ref., langue : anglais. Présentation d'une méthode d'étude de practicabilité de l'utilisation comme combustible de déchets agricoles. Application numérique au Minnesota. PASCAL. 675 PROSPECTS 0F BIOGAS PRODUCTION FROM ORGANIC RESIDUAL AND WASTE MATERIALS FROM AGRICULTURAL PRODUCTION, BAADER,W. Location:Inst.Landmaschinenforsch., Bundesforschungsanst. Landwirtsch. Braunschweig D 3300, F.R.G., Jrnl: Tagungs-ber., Dtsch. Sonnenforum, 1st Coden, 42TLAQ, Pubi.: 77, Series 3, p.133/42, Language : Ger. Publisher: Dtsch. Ges. Sonnenenergie. Address : München, F.R.G., Identifiers, review biogas prodn waste. Chemical Abstracts 676 AN EVALUATION OF THE USE OF AGRICULTURAL RESIDUES AS AN ENERGY FEEDSTOCK, ENERGY FROM BIOMASS, Unit. States, Energy Research and Development Adminis. Div. of Solar Energy. Fuels from Biomass Branch. Menlo Park, Calif. SRI Inter. 1977, California. V. ill, 28cm, Language : english. Includes bibliographies Contents : V. I. Summary and general information, Government Source : Fede­ral, Document type : monograph AGRICOLA. 677 FOOD, FERTILIZER AND AGRICULTURAL RESIDUES : PROCEEDINGS OF THE 9th CORNEL AGRICULTURAL WASTE MANAGEMENT CONFERENCE, CORNELL Univ., Ithaca, NY 1977, Cornell university state university New York, state college of agriculture and life sciences, Ithaca NY USA, American society of agronomy , USA, ameri­can society of agricultural engineering, USA, CS : Cornell university state university New York, state college of agronomy, USA-American society of agricultural engineering, USA Waste management conference. 9/1977-00-00/ Ithaca, NY, USA, Ed.: Ann Arbor, MICH, Ann Arbor Science Publishers, 1977, VIII-727. P.: ill, h.t., 23 cmh.t., 0-250-40190-8, langue : anglais, Epandage agricole des eaux usées et des boues résiduaires. Production d'énergie à partir des déchets agricoles. Traitement des déchets d'animaux. PASCAL.

Page 195: Farm and Forest Biomass

-101-

678 THE PRODUCTION OF METHANE FROM FARM WASTES IN HIGH RATE DIGESTERS. Developing efficient methods for processing by-products and wastes, super­fluous dung and urine, domestic animals in general, other man-made resources, biochemistry (including enzymology) and biophysics, nutrition physiology, processing. DUNICAN L.K., NEWELL P.J., University college, Galway, faculty of Science, Dept. of microbiology. IE 130101 75 8001, 1975. AGREP. 679 BENUTTING VAN ORGANISCH AFVAL VIA METHAANGISTING. Methane fermentation of organic refuse. Developing efficient methods for processing by-products and wastes ; refuse, garbage, industrial wastes ; superfluous dung and urine, effluent, sewage mineral fertilizers, fungi, sea weed, algae, lichen, yeast, population biology (E.G. population dynamics and genetics), biochemistry (including enzymology) and biophysics, processing; WAART J. DE. Organisatie voor toegepast natuurwetenschappelijk onderzoek - TND (organization for ap­plied scientific research in the Netherlands -TND) voedingsorganisatie TND (organisation for nutrition and food research TND). Civo - Centraal. Institu. voor voedingsonderzoek TND (central Institute for nutrition and food Research TND). Utrechtseweg 48, P.O.B. 360, 3700 AJ Zeist, 1974. AGREP 680 AGRICULTURAL WASTES AND ENERGY - SOME PROBLEMS AND POTENTIALS, BATTY J.C., Utah Science 35(1974) 2 : 66/71, afbn. tabn. 20 lit. opgn. Afvalstoffen kunnen nuttiger gebruikt worden voor de methaanfermentatie. Het gevormde methaan (En C02) kan nuttig gebruikt worden als brandstof en C02 bemesting in kassen - sommige kastuinders in de VSA kunnen moeilijk aan brandstof komen­maar mogelijk ook voor C02-bemesting via het irragatiewater voor veldgewassen. Het slib dat bij de vertering van het afval ontstaat kan een nuttig gebruik vinden las mestof of veevoeder. Bij volgende hoge brandstofprijzen wordt zelfs de teelt van "brandstofgewassen", bv. hooi, denkbaar, in dit geval zou een belangrijke bijdrage geleverd kunnen worden aan de nationale brandstofvoor-zienung (Doe).

3.3. Ag_roH_nd Jst_rJ_a_l wastes

681 LE SECTEUR AGRO-ALIMENTAIRE FACE AU PROBLEME DE L'ENERGIE - OCDE, Rapport général, préparatoire à la réunion d'experts du 19-22 mai 1980 à Paris, 84p. 682 ANALYSE DES CONSEQUENCES LOCALES DE L'INTRODUCTION ET DU DEVELOPPEMENT DE LA BIOTECHNOLOGIE DANS LES FILIERES AGRO-ALIMENTAIRES TRADITIONNELLES EN EUROPE ET DANS LES PAYS EN VOIE DE DEVELOPPEMENT. Mesure de l'impact sur l'ordre et les échanges agro-alimentaires internationaux entre les socio-économies con­cernées. Cas des filières protéiques. CRACC0 E., SAUBOIN M., ROUSSEAU P., Université Catholique de Louva in-la-Neuve - Recherche en cours, 1980-1982. 683 IMPACTS PREVISIBLES ET STRATEGIES DE DEVELOPPEMENT DE LA BIOTECHNOLOGIE DANS LES FILIERES AGRO-ALIMENTAIRES EUROPEENES TRADITIONNELLES; Cas des fi­lières protéiques, CASTAGNE M., FL0RI0T J.L., GAUTHIER F., Institut National Polytechnique de Lorraine, Nancy. Recherche en cours, 1980-1982. 684 L'IMPACT DES BIOTECHNOLOGIES SUR LE TIERS MONDE, LES DOMAINES DE L'ALIMENTA­TION ET DE L'ENERGIE. SALOMON J.J, BEINSTEIN J., Paris - CNAM - Recherche en cours. 1980-1981. 685 VALORISATION ENERGETIQUE DES EAUX RESIDUAIRES DE CONSERVERIE DE LEGUMES, M0RFAUX J.N., ALBAGNACG., TOUZEL S.P., - Epuration - INRA, Villeneuve D'Astq. Colloque International CENECA, Paris 27-29 février 1980, p.423

Page 196: Farm and Forest Biomass

­102­

686 ENERGY PRODUCTION FROM WHEY, MOULIN G. and GALZY P., ENSAM, France, Session III, Paper HI/10, International conference on energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in cooperation with the Dept. of Energy, London. 687 METHANISATION ET EPURATION DES EFFLUENTS D'INDUSTRIES AGRICOLES ET ALIMENTAI­RES, BORIES Α., MAUGENET J., Exemple des eaux residuai res de distilleries. INRA, Narbonne, Colloque International CENECA, Agriculture et Energie, Paris 27­29 février 1980, p.422. 688 INSTITUT NATIONAL DE GESTION ET D'ECONOMIE RURALE, IGER ­ 24, rue Chaptal, 75009 Paris. Les Agriculteurs, Consommateurs et Producteurs d'Energie. Mars 1980, 170p. 55 Ff. TTC Franco. Après avoir fait le point sur la situa­tion énergétique globale et surtout sur les consommations de la production agricole et des I.A.Α., l'essentiel de ce travail s'attache : ­ à l'analyse des possibilités d'économie dans le secteur agro­alimentaire, matériel agricole, opérations de séchage et déshydratation, chauffage des serres et des bâtiments d'élevage, modifications des façons culturales, économies d'énergie sur les coûts indirects. ­ à faire le point de l'état de la recherche et de l'expérimentation concernant les énergies de rempla­cement en décrivant les processus mis en oeuvre, les expériences en cours, en donnant des éléments de coût, dans des domaines aussi divers que : * la valorisation des eaux chaudes et tièdes (géothermie, rejets d'eaux

chaudes, pompes à chaleur) * les applications thermiques de L'énergie solaire (chauffe eau solaire, chauffage des locaux, serres solaires, sé­chage des récoltes, fours solaires, . . . ) , ­ la production d'électricité

solaire (pompe solaire, centrales solaires, voie photovoltaïque, production hydraulique, énergie éolienne), ­ la bioconversion et les recherches sur la biomasse (paille, fumiers et lisiers, bois, production d'alcool, ordures ménagères et déchets agricoles et alimentaires, nouvelles cultures énergé­tiques, . . . ) .

689 UTILIZATION OF ANIMAL, CROP AND PROCESSING RESIDUES, Invest : DOBIE J.Β., HILLS D.J., MILLER G.E., Project : CA­D­AER­2971­H, Agency : CSRS CALB, 25.03. 75 to 24.03.80, Perf.org.: Agri, engineering. Location : Univ. of California, Davis Cal.. Objectives : investigate means and processes for obtaining greater utilization of animal, crop and food processing plant wastes by recycling, conversion and energy recovery techniques. Control and reduction of air, water and soil pollution would be a basic consideration. Approach : laborato­ry and field studies would be conducted on open field burning of crop resi­dues and pyrolysis and incineration for any recovery, animal and food proces­sing wastes would be examined for recycling to animal feeds, all types of wastes would be studied in soil plots for recovery of nutrients and encou­ragement of soil bacteria conversion to useable plant nutrients. USDA CRIS. 690 TECHNIQUES DE VALORISATION ENERGETIQUES DES DECHETS AGRO­ALIMENTAIRES SELON DES TECHNOLOGIES SIMPLES AVEC DES IMPLANTATIONS DISPERSEES, PROCHES DES PRO­DUCTIONS AGRO­ALIMENTAIRES. Ministère des Universités, 75­Paris (FRA). Ecole nationale supérieure d'agronomie et de industries alimentaires, 33­Nancy (FRA), Fédération nationale de l'industrie des engrais, 75­Paris (FRA), Cycle de formation permanente énergie et agriculture, autonomie énergétique par valorisation des déchets des activités agro­alimentaires, 1979, 9p. 1978.11/21.23. Exemple : de la fermentation anaerobie productrice de méthane. RESEDA.

Page 197: Farm and Forest Biomass

-103-

691 TECHNIQUES DE VALORISATION ENERGETIQUES DES DECHETS AGRO-ALIMENTAIRES SELON DES TECHNOLOGIES SIMPLES AVEC DES IMPLANTATIONS DISPERSEES, PROCHES DES PRO­DUCTIONS AGRO-ALIMENTAIRES. Ministères des Universités, 79-06622. IREP-27974, 75-Paris (FRA), Ecole nationale supérieure d'agronomie et des industries alimentaires, 33-Nancy (FRA), Fédération nationale de l'industrie des engrais, 75-Paris (FRA). Cycle de formation permanente énergie et agriculture. Autono­mie énergétique par valorisation des déchets des activités agro-alimentaires. 1979, 9p. 1978/11/21.23. Exemple de la fermentation anaerobie productrice de méthane. RESEDA. 692 ENERGY RECYCLING FROM CLOUDY DAMP IN BREWERIES, BIEHNER, - EnergierQckgewin-nung aus Schwadendunst in Brauereien - Ctry : XE-DE, Typl: J/AS, Lang: De. Jrnl: Doemensianer (F.R.G.), Impr. 1979, ISSN 0344-6816, Note : 3 ill, Summary De, Cl It : V.19Í2), p.79/80. AGRIS. 693 BIOMASSE DAI SOTTOPRODOTTI DELLE INDUSTRIE AGRARIE, Biomasses from by-products, of agricultural industries. Developing efficient methods for processing by­products and wastes, refuse, garbage, industrial wastes, fibre plants and oil crops in general, leguminous vegetables, légumes in general, processing GALOPPINI C , FIORENTINI R., ANELLI G-, MASSIGNAN L., LEPIDI A.A., AGREP. 694 ENERGY POTENTIAL FROM FOOD PROCESSING WASTES, ALPERT J.E., EPSTEIN ELIOT, Energy resources Co, Mass, Presented at information transfer ine/et al tech­nology for energy conservation conf., Tucson, Jan 23.25, 79, P597 (7). Tech­nical feature : energy conversion of food processing wastes is surveyed. Most food processing wastes are used as animal feeds because of their organic content. Solid wastes produced can be processed into alcohols. Combustion of dry wastes is the simplest and most energy-efficient energy conversion process available. Pyrolysis, gasification and anaerobic digestion of wastes produced by the food processing industry is insufficient to make a signifi­cant impact on US energy policy. (A diagram, 4 graphs, 5ref., 4 tables). ENVIROLINE. 695 CONVERTING WASTE TO RESOURCES - UTILIZATION OF RESIDUES FROM AGRICULTURE AND AGRO-INDUSTRY. LOEHR RAYMOND C , Cornell Univ., Presented at agricultural Inst, of Canada 59th annual conf. New Brunswick, aug. 19.23, 79(11). Tech­nical report : several technologies for the utilization of agricultural and agro-industry residues are described, Various programs throughout the world that are investigating, evaluating, and encouraging residue utilization and resource conservation efforts are examined. The feasibility of residue, utilization depends on the characteristics of the residue, the amount of residue that is realistically available on a transportation and the availa­bility of a market for the resultant product. 52 References, 1 table). ENVIROLINE. 696 BESEITUGUNG UND VERWERTUNG VON INDUSTRIELLEN FERMENTATIONSROCKSTANDEN. Removal and Re-cycling of wastes from the fermentation industry, Developing efficient methods for processing by-products and wastes ; refuse, garbage, industrial wastes, fungi, sea weed, algae, lichen, yeast, biochemistry (in­cluding enzymology) and biophysics, transport and handling, processing. KASTER E., NIESE G., Universität Giessen, Institut für Landwirtschaftliche. AGREP.

Page 198: Farm and Forest Biomass

-104-

697 INTEGRATED BIOLOGICAL AND AGRICULTURAL SYSTEMS, COOMBS J-, Aff. Tate & Lyle Ltd., Reading Berks, GBR, Soltech'78. The middle east solar exhibition and conference 1978-04-24/Bahrain, GBR, 1978, p.23.28, Langue : anglais, Concep­tion de systèmes intégrés de production d'aliments, de combustibles liquides (éthanol, methanol) à partir de déchets et de cultures d'algues utilisant les effluents des usines de transformation avec gazéification des algues par digestion anaerobi e. PASCAL. 698 PROGRAMME NATIONAL DE RECHERCHE ET DE DEVELOPPEMENT DANS LE DOMAINE DE L'ECO­NOMIE DES DECHETS ET DES MATIERES PREMIERES SECONDAIRES. Perspectives de re­cyclage des résidus de l'agriculture et des industires agricoles en Belgique, DEROANNE., le 06.09.78, Recyclage des résidus agro-industriels par hydrolyse enzymatique. Faculté de Sciences Agronomiques de l'Etat. Gembloux, 1978, 21p.

3.4. Dome£t j_c_wastes_

699 THE UTILIZATION OF SOLID URBAN WASTES IN ORDER TO SAVE ENERGY, MAGAGNI, AULO, Location : Azienda Munie, Nettezza Ig. Urbana, Padova, Padua, Italy, Jrnl : Smaltimento Rifiuti Solidi, Pulb: 79, p.179/225, Language : It. Avail: Frigerio, Alberto. Identifiers : review waste ethanol biogas, tar waste review. Publisher: Edizioni Di Esse Ti, Address: Milan, Italy. Chemical Abstracts. 700 ELECTRICITY FROM MUNICIPAL WASTES, CARTER A.W., I.E.E. Conf. Pubi, GBR, 1979, n°171, p.379/380, T International Conference on future energy, concepts/1979/ London, Langue : anglais, Production d'électricité à partir du méthane issu des digesteurs de boues de traitement d'eaux usées (couplage des moteurs utilisant le méthane avec les alternateurs). Production d'électricité à partir de la vapeur haute pression produite par les incinérateurs d'ordures ménagères. Potentiel futur et évaluation économique. PASCAL. 701 NEW ENGLAND PLANT TURNS TRASH TO ENERGY, KAISER ROBERT BLAIR, New York Times, Oct.27, 79, P8, News feature : the refuse energy systems co. Located in sau-gus, Mass, buys municipal refuse at an average of 8 14.82 Ton, and without using any other fuel, turns the garbage into steam and sells it to the gene­ral electric Co. For its jet engine plant, also Located in saugus, the trash-to-power conversion process is described. Techniques implemented to prevent potential odor and ash problems are discussed. Possible applications of the trash-to-power scheme are explored (1 map, 1 photo). 702 FIRING AND CO-FIRING OF PROCESSED URBAN REFUSE IN UTILITY OPERATIONS, KLUMB DAVID L., HOLLANDER HERBERT I., (Union Electric Co, M0) and, (Gilbert/Com­monwealth, PA), presented at the new fuels & advances in combustion techno­logies symp. New Orleans, mar. 26.30, 79, p.193 (13), Technical report : steam raising incinerators have been utilized for many years for disposing of discarted urban wastes, which now have come to be regarded as an ongoing local source of fuel. The use for steam/power generation is investigated? The processing of urban wastes through shredding and separation of metals and glass, and the firing of the combustible fraction as a supplemental fuel in coal fired boilers are described. While raw refuse may be regarded as a low grade fuel. It can become reasonably predictable in its physical and thermo-chemical properties when beneficiated and offers the opportunity to recover non-renewable material resources such as tin, steel, and aluminium (1 graph, 5 references, 6 tables). ENVIROLINE.

Page 199: Farm and Forest Biomass

­105­

703 REFUSE TO ENERGY A CLOSED­LOOP SYSTEM­CHICAGO'S SOUTHWEST SUPPLEMENTARY FUEL PROCESSING FACILITY, LEVITIN DAVID, NIGRO EMIL F., RYDER WILLIAM,C, Chicago Dept of public works, Presented at information transfer inc.et al technology for energy conservation conf., Tucson, Jan 23.25, 79, P409(4). Technical fea­ture : Chicago's approach to ameliorating the municipal solid waste disposal problem by converting the waste to fuel is surveyed. The operation of a solid waste fuel processing facility is described. The plan allows the city to con­serve valuable low sulfur coal and to offset the costs of waste disposal with the benefits of resource recovery. (1 diagram). ENERGYLINE. 704 COMMERCIAL UTILISATION OF MUNICIPAL SOLID WASTE, Chemi. Age, India, 0009­2320, IND, 1979, Vol.30, n°9, p.819/822, 8 réf., langue : anglais, Projet d'instal­lation de digestion anaerobie de déchets urbains pour la ville de Calcutta, analyse économique prévisionnelle de l'installation. PASCAL. 705 LES BOUES DES STATIONS D'EPURATION. Leur utilisation en agriculture, avril 1979, Chambre d'agriculture, Pas­de­Calais. 706 POLITIQUE DES DECHETS, BILAN ET PERSPECTIVES TECHNIQUES ET SCIENCES MUNICIPA­LES, N°7 ­ 1978/7/­, p.374/376, Politique des déchets, bilan et perspectives. Minag­Perio RESEDA. 707 STADTISCHE ABFALLE ­ IHRE BEDEUTUNG IN LOKALEN ENERGIEKONZEPTIONEN, MEIER W., Vortrag, gehalten im Gottlieb Duttweiler Institut, Jan. 1978. 708 GRENZEN DER BIOERNERGIE. Limites de la bioenergie. Limits of bioenergy. LUTHI J.E., Äff; Gebr. Sulzer AG, Wintherthur, CHE, Conference on nuclear energy/1978/Zürich, CHE, S.D., p.Rl1.1­R11.10, Langue : allem., DS: économie énergie/énergie naturelLe/biomasse/potent i el/Suisse/bois/méthane/digestion anaerobie/energy economics/natural energy/biomass/potent i a1/Swit2erland/wood/ methane/Anaerobic digestion. Estimation de la production possible de méthane à partir de boues résiduaires et de déchets agricoles en Suisse. Potentiel de production de bois comme combustible. PASCAL. 709 CONCEPTUAL DEVELOPMENT 0F A SOLAR TOWN IN IRAN, BAHADORI M.Ν., Pahlavi Univ., solar energy cent., Shirar, Irn, Sun, Mankind's future source of energy. In­ternational solar energy society congress/1978­01­00/New Dehli ; USA, Ed: New York Pergamon press, 1978, Vol.3, p.1411/1455, 24 réf. langue : anglais. Etude de différentes conceptions d'une ville résidentielle pour 1000 familles n'utilisant que l'énergie solaire ou ses dérivés (biomasse) pour son alimen­tation en énergie. PASCAL. 710 LE PROCEDE BRGM DE TRI ET VALORISATION DES ORDURES MENAGERES BRUTES ­ TECHNI­QUES ET SCIENCES MINIPALES, N°10, 1977/10:­, p.406/408. Méthode de tri et valorisation des ordures ménagères, évaluation économique ­ procédé, MINAG­PERIO RESEDA. 711 LA RECUPERATION DANS LES RESIDUS URBAINS, TECHNIQUES ET SCIENCES MUNICIPALES, N°10. 1977/10/­, p.389/405, Politique d'économie de matières premières, la récupération et triage des ordures ménagères puis la possibilité d'une com­mercialisation. MINAG­PERIO. RESEDA.

Page 200: Farm and Forest Biomass

-106-

712 LES COMMUNES FACE AUX ORDURES MENAGERES, COLARDEAU J., Revue des collectivi­tés locales, N°179, 1977/9-11:-, p.4/16, Les communes et les ordures ménagè­res, collects, traitement, financement du service d'enlèvement. MINAG-PERIO. RESEDA. 713 HANDBOOK OF SOLID WASTE DISPOSAL, PAVONI,J.L., HEER J.E., New York, Van Nos­trana Reinhold Co., 1975, New York XI, 549p., ill, 23cm, Van Nostrand Rein-hold environmental engineering series LCCN 74026777 ISBN 0442230273, Langua­ges : english, includes bibliographies and index, document type : monograph, descriptors : refuse and refuse disposal, recycling (waste, etc.), refuse as fuel. AGRICOLA.

IV TECHNICS USING BIOMASS, ITS COLLECTION AND TRANSPORT

4.1. General studies, those covering several types

714 L'ENERGIE SOLAIRE EN AGRICULTURE, de l'utilisation indirecte de l'énergie so­laire : (biomasses forestières et énergie, filières thermochimiques de valori­sation de la biomasse, bioconversion des déchets agricoles par fermentation méthanique, lagunage des eaux usées et énergie, aspects agronomiques, éner­gétiques et économiques de l'utilisation des pailles et fumiers, programmes français et communautaires). Ce document est disponible auprès de l'A.D.E.P. R.I.N.A., 16, rue Claude Bernard 75231 Paris, Cedex 05. Le montant de la par­ticipation aux frais de reprographie est de 50 Ff. 715 MICROBIAL PRODUCTION 0F ENERGY SOURCES FROM BIOMASS, RIGHELATO R.C., Location: Group Res. Dev. Tata & Lyle Ltd, Reading/Berks, Engl., Jrnl : Philos. Trans. R. Soc. London, Ser. A. Pubi: 80 Series, 295, Issue: 1414, p.491/500, Identi­fiers: méthane manuf biomass fermn, ethanol manuf biomass, fuel manuf biomass fermn, waste fermn fuel manuf. Chemical Abstracts. 716 HEAT SUPPLY SYSTEM FOR THE COMMUNITY OF SENT, Pilot project for an integral, economical ecologically beneficial communal beat supply system, which is to be as self-sufficient as possible. Designed by: IGEK Ingenieur-Gemeinschaft für Energiehaushalt im kommunalen Bereich dipi. Ingenieure ETH/SIA/5. Inter­national conference on energy from biomass, Brighton 4-7 November 1980. Commission of the European Communities, in cooperation with the Dept. of Energy, London. 717 ENERGY AND CHEMICAL PRODUCTION FROM WOOD RESIDUES, HAJNY G.J., SPRINGER E.L., BAKER A.J., Agency: FS FPL, 14 JUN 78 to 14 JUN 83, Project: FPL-3409, Perf. Org: Forest Products Lab., Location: P.O.B. 5130, Madison WIS, Objectives: Foster efficient use of wood residues for chemicals and energy production by providing authoritative evaluation of available technology and developing improved techniques for chemical and biochemical conversion and fuel uses of wood. Approach: in the area of chemicals, three subjects will be investigated the fractionation of solubilization of wood components, the hydrolysis (sac-charification) of cellulose, and the further conversion of saccharification products to more useful materials. The first year's work will include criti­cal reviews of available technology and of past research findings. On the subject of wood fuels, a summary review of past work at the Forest Products Lab. will be prepared. Next, uptaded reports on technology for briquetting and charcoal production will be published. L'SDA CRIS.

Page 201: Farm and Forest Biomass

­107­

718 HIGH TEMPERATURE STABILIZATION AND MOISTURE REMOVAL FROM ANIMAL WASTES FOR BY­PRODUCT RECOVERY, JEWELL W.J., DONDERO N.C., VAN SOEST P.J., Project : NYC­123584, Perf.Org. Agri Engineering, Location : Cornell Univ. Ithaca NY. Agency: CSRS NY.C, 26 Apri 76 to 30 Sep 80,0bjectives : an ideal animal waste treatment and residue recovery system would convert obnoxious wet ani­mal wastes to an odorless, stabilized, pathogen­free material with moisture content less than 40 % in a simple process without addition of large amounts of energy. The goals of this study will be to determine the feasibility of developing such a process and to build a bench scale pilot unit that will be utilized to meet the project goals and to demonstrate its potential. Approach: The basic steps that will be utilized to meet the project goals are : Deter­mination of kinetics of organic carbon decomposition and oxygen transfer li­mitations in semi­solid animal wastes created by combining the treated and dried animal wastes with the wet raw wastes : determine the heat released during aerobic stabilization and identify means of conserving the energy to achieve autoheating of the organics, measure the rate of moisture removal from autoheated animal wastes : combine the above into a simple single unit pilot plant that would achieve high rate organic stabilization and simulta­neous moisture removal : and determine, at temperatures of 60. to 70.C. auto­heating requirements to produce pathogen destruction and maximum microbial production of protein. USDA CRIS.

719 PLANNING FOR TRANSPORT FUELS FROM BIOMASS THE NEW ZEALAND EXPERIENCE, HARRIS G.S., Executive Officer, New Zealand Energy Research and Development Commit­tee, Auckland, New Zealand, Summary : This paper discusses a system study of the potential of energy farming for transport fuels in New Zealand. The results of the systems study indicate directions for on­going research, de­velopment and demonstration. Current and proposed research projects are lis­ted. Session VII, VII/K3, International conference on energy from biomass Brighton 4­7 November 1980, Commission of the European Communities, in coope­ration with the Department of Energy, London. 720 LE CHOIX SOLAIRE : UNE ENERGIE QUI ENTRE DANS LA VIE QUOTIDIENNE ­The Solar Choice : an energy which is getting into everyday life ­ VAUGE CH., France; Ed: Paris : CNRS Paris, TCH0U, 253p, ill, h.t., 24cm h.t., 2­7107­0140­5 (Tchou) 2­222­02326­2 (CNRS) Langue : fran., Ouvrage consacré aux différentes techniques d'utilisation de la biomasse et de l'énergie solaire. PASCAL. 721 L'ECONOMIE PAR LA BIOMASSE ­ Savings through Biomass ­ SOURIE J.C, INRA, Economie Rurale, Thiverval­Grignon, 78850, Fra., Nuis, et environnement : Fra., 1979, N°83: p.26/30, Lang : fran., Etude de la praticabilité de la conversion des pailles et fumiers par combustion, gazéification et digestion anaérobie, aspects agronomiques, énergétiques et économiques. PASCAL. 722 CHEMICALS FROM RENEWABLE RAW MATERIALS, SPEAR M., Chem. Engr, GBR, 1979, n°345, p.419/421, langue : anglais. Possibilités d'utilisation de la biomasse en tant que matière première. Description de divers procédés de traitement, fer­mentation, digestion anaérobie, pyrolyse. PASCAL. 723 THE POTENTIAL 0F BIOMASS, RAHMER Β.Α., Petroleum Economist, GBR, 1979, Vol.46, n°10, p.417/422, Langue : anglais, Revue des divers procédés de conversion de la biomasse. Estimation des prix de revient dans différentes formes des pro­duits obtenus a partir de la biomasse et comparaisons avec les prix de re­vient conventionnels (methanol, ethanol, gaz à pouvoirs calorifiques moyen et élevé, ammoniac, fuel oil et électricité). PASCAL.

Page 202: Farm and Forest Biomass

-108-

724 BIOMASS-FEEDSTOCK OF THE FUTURE, Processing : GBR, 1979, Vol.25, ne5, p.38/39, langue : anglais, Revue des différents procédés d'utilisation de la biomasse traitement chimique, fermentation, digestion anaerobie, pyrolyse, gazéifica­tion. PASCAL. 725 EFFICIENCY IMPROVEMENTS IN BIOENERGY CONVERSION SYSTEMS, LEWIS CHr.W., Loca­tion : Energy Stud. Univ. Strathclyde, Glasgow, G4 OLZ Scot., Jrnl: Energy Convers. Pubi: 79, Series 19, Issue 3, p.125/131, Identifiers : solar energy conversion biomass, combustion fermn, biomass, bacteria digestion biomass, gasification pyrolysis biomass. Water photolysis solar energy. Chemical Abstracts. 726 REVIEW OF BIOMASS TO FUELS, KEENAN J.D., Aff: Univ. Pennsylvania, Dept Civil Urban Eng., Philadelphia PA 19104 USA, Process Biochim, GBR, 1979, Vol.4, n°5, p.9/30, (7p), 49 réf., langue : anglais. Prévision de la disponibilité de biomasse aux Etats-Unis à convertir en combustibles pour la période 1975-2020, Aperçu sur différentes méthodes de conversion : fermentation éthanol, fermentation butanol-isopropanol fermentation acetone-butanol, fermentation hydrogène, digestion anaérobie, Prévision de prix de revient de l'énergie thermique produite par différents procédés. PASCAL. 727 MICROBIAL DEGRADATION 0F LIGNIN, CRAWFORD D.L., CRAWFORD R.L., Univ. Idaho, Dept. Bacteriol. Biochem. Moscow ID 83843 USA, Aher. Chem. Soc, Div. Petro­leum Chem., Prepa. USA, 1979, Vol.24, n°3, p.855/868, 89 réf., Langue anglais. Revue des connaissances actuelles sur la microbiologie de la dégradation de la lignine. PASCAL. 728 PRELIMINARY CHARACTERIZATION OF TASE BIOMASS TECHNOLOGIES, HARPER J.P., BALLOU S.W., HABEGGER L.J., SOBEK A.A., ANT0N0P0UL0S A.A., Location : Argon-ne Natl Lab. Argonne, IL USA, Jrnl : Report Pubi 79, Issue : CONF-790638-4, 11p., Citation : Energy Res. Abstr. 1979,4(22), Abstr n°52796. Avail: NTIS, Identifiers : biomass technol solar energy, waste solid technol, manure conversion technol. Chemical Abstracts. 729 CHEMISCHE NUTZUNG BIOLOGISCH ERZEUGTER ROHSTOFFE-STAND UND ENTWICKLUNG -Utilisation chimique des matères premières d'origine biologique. Etat actuel et développement - Chemical utilization of biological produced raw materials. Status and prospect; FISCHER F., Aff: Tech. Univ. Dresden; Wissenchaftsbe-reich Pflanzenchem, Dresden DDR, Z. Chem., DDR 1979, Vol.19, n°9, p.332/343 44 réf., CC 730.C.06, Structures chimiques des composants principaux carbu­res de la biomasse et possibilités de leur valorisation chimique. Descrip­tion des différents procédés de traitement : traitement chimique, fermenta­tion, pyrolyse. Possibilité d'augmentation de la production de biomasse. PASCAL. 730 CAHIERS DE L'ACADEMIE DES SCIENCES : EXPOSES SUR L'ENERGIE - Notebook of the Academy of Sciences : Reports on Energy - Académie des Sciences, Paris, FRA, CS: Académie des Sciences, Paris Fra. Ed: Paris - Acad. S c , 1978, 144p. h.t.. Compte rendu de la séance du 6 février 1978 à l'Académie de Sciences, consacrée à l'énergie. Il réunit 6 exposés abordant : l'énergie nucléaire, l'énergie solaire (bio-conversion, photosynthèse, biomasse, et conversion physique : conversion photovoltaîque, chauffage, thermochimie, ..) les

Page 203: Farm and Forest Biomass

­109­

énergies de compléments éolienne, géothermique, et marémotrice, celle­ci no­tamment dans le cas de la baie du Mont Saint­Michel. Les risques et nuisan­ces associées à chacune d'elles, sont également examinés. PASCAL. 731 BIOCONVERSION ET TRANSFORMATIONS THERMOCHIMIQUES DE LA BIOMASSE, JAYET P.A., 1978, ­ Ecole Nationale Supérieure des Mines, CNRA, INRA, Versailles ­Résumé : informations sur les procédés de gazéification et les gazogènes. 732 ENERGIEGEWINNUNG AUS BIOMASSE, INDEN P.P., Technische und wirtschaftliche Aspekte mikrobiel 1er Konversionsverfahren. Electrotechnische Zeitschrift, ETZ­A, bd. 99, 1978, n°6, s.351/355, 12 litt.henv. 733 NEW CONCEPTS IN WASTE UTILIZATION AND BIOMASS, BENTE P.F. Jr, Energy Techno­logy Conference, 5/1978/Washington,DC. USA. Ed: Washington, Government Ins­titutes, 1978, p.796/803, 2 réf. Langue : anglais. Revue d'un certain nombre de principes en cours de développement pour produire des combustibles à par­tir de la bio­énergie, c­à­d l'énergie solaire stockée dans les végétaux par le processus de photosynthèse, production de biomasse, récolte et traitement combustion, conversion par microorganismes. PASCAL. 734 BIOMASS CONVERSION. United States, Congress, House Committee on Govern. Opera. Environ., Energy and Natural resources Subcommittee, Washington, US, Govt. Print Off, 1978, D.C., III, 160p, ill, 24cm, LCCN 79600995, Language : engl. Includes bibliographical references. Govt Source : Federal, Document type monograph. AGRICOLA. 735 ALTERNATE SOURCES OF HEAT ENERGY FOR RURAL MAINE, SMITH N., HUFF E., RILEY J., Agency: CSRS ME, 01 MAR 78 to 30 SEP 81, Project ME08104, Perf.Org: Agri Engineering, Location : Univ. of Maine, Orono ME. Objectives : Evaluate the feasibility of new sources of heat energy for domestic agricultural and in­dustrial use in rural Maine. Approach : the solar assisted heat pumps now in operation will be monitored and developed further. The wood chip furnaces now in operation and being designed will be monitored and developed further. Small solid waste burners and batch loaded wood furnaces will be developed for broiler litter. Techniques for large scale harvesting and handling of logging residues and wood fuel produced in short rotation systems will be developed. Other energy sources with possibilities for rural Maine will be evaluated, e.g. peat bogs, bark piles, right of way clearances, etc. USDA CRIS. 736 AN EXTRACELLULAR LIGNASE: A KEY TO ENHANCED CELLULOSE UTILIZATION, HIRA Α., BARNETT S.M., SHIEH C.H., M0NTECALV0 J. Jr, Äff: Univ. Rohode Island, Dep. Chem. Eng., Kingston RI 02881 USA, IACHE Symp. Ser. USA, 1978, Vol.74, n°181, p.17/20, Descriptions d'essais de laboratoire pour isoler des enzymes sus­ceptibles de dégrader la lignine. Résultats d'essais de dégradation. Conclusions. PASCAL. 737 SANDER DUST, (AND) OTHER MILL RESIDUES CLAIMED AS TUEL FOR PLANT DRYERS, HERLING D., Forest Industries, 1978, 105.9, 60/61, Language : engl. 1pl, ill. This system was developed by Georgia­Pacific Corp. <GP) and Harris Thermal Transfer Products Inc. and installed at GP's Springfield, Oregon, Plywood Mill. Mill residues are burnt by exposure to consistent high temp. (1000 to 1500°F). Less than VA ash remains with most wood species, 2.2X with Western hemlock (Tsuga heterophylla) and 1.4% with maple (Acer.spp). Heat is provided for veneer dryers and for curing coated panels. CAB ABS.

Page 204: Farm and Forest Biomass

-110-

738 CONSTRUCTION MATERIALS FOR BIOMASS-ENERGY SYSTEMS, BAILEY E.C. / Location: Dolio & Metz Ltd, Chicago, IL USA, Jrnl: Sol. Energy Res. Insti. (Tech. Rep.) SERI/TP, Pubi 79, Issue : ERO/TP-31-248, Reliab. Mat. Sol. Energy Workshop Proc. Vol.2. Pt.2, 1978, p.483/92. Identifiers : review biomass energy mater. Chemical Abstracts. 739 PRELIMINIRAY ENVIRONMENTAL ASSESSMENT OF BIOMASS CONVERSION TO SYNTHETIC FUELS, DINOVO, S.T., Cincinnati, Ohio, Industrial Environmental Research Lab., Office of Research and Development, Environmental Research and Protection Agency, Springfield,Va, Available through the Natl Tech. Inform. Serv. 1978, OHU XIX 346p. ill, map, 28cm, Inferagency energy-environment research and development series : EPA-600/7-78-204. Language : Engl., Includes bibliographical refer. Govt. Source : Federal. Document type : monograph. AGRICOLA. 740 CHEMICAL FEEDSTOCKS AND FUELS FROM LIGNIN. DREW S.W., KADAM K.L., SHOEMAKER S.P., GLASSER W.G., HALL P., Aff : State Univ. Virginia Polytech. Inst., Blacksburg VA 24061 USA, AICHE Symp. Ser. USA, 1978, Vol.74, n°181, p.21/25, 35 réf. Liste des procédés utilisés pour la décomposition chimique de la li­gnine en produits chimiques de faible poids moléculaire. Premiers résultats d'étude de la transformation enzymatique de la lignine. PASCAL. 741 AN EXTRACELLULAR LACCASE : A KEY TO ENHANCED CELLULOSE UTILIZATION, MONTECALVO J. Jr., BARNETT S.M., Aff: dep. Food. Sci. Congr. Univ. Rhode Island, In : Pacific Chem Eng Congr 2. PROC. Denver Colo, 1977, New York, ED: AM Inst. Chem. Eng, S.D., Vol.2, p.777/780, 5ref. Etude expérimentale de la séparation d'un enzyme capable de dégrader la lignine et faciliter le traitement par hydrolyse de la cellulose. PASCAL. 742 RELAZIONE TRA CARATTERISTICHE FISIOLOGICHE E GENETICHE DI LIEVITI PER LA PRODUZIONE DI BIOMASSE. RELAZIONE TRA SUBSTRATO CULTURALE E COMPOSIZIONE CHIMICA. Interrelation of the physiological and genetical characteristics of yeasts used in biomass production relationship between the cultural media and the chemical composition. Determination of properties of products, other fodds, fungi, sea weed, algae, lichen, yeats, concentrates, population bio­logy, (e.g. population dynamics anf genetics). Biochemistry (including enzy-mology) and biophysics, chemistry-general, physiology-genral, processing CRAVERI R., Ministero della Pubblica Istruzione, Universita degli Studi di Milano - Facoltà di Agraria. (V. Celoria, 20100 Milano,) Istituto di Micro­biologia Agraria e Tecnica (V. Celoria 2, 20100 Milano.) 1977 AGREP. 743 ASSESSMENT OF METHODS FOR DIRECT CONVERSION OF AGRICULTURAL RESIDUES TO UTILI-ZABLE ENERGY FORMS, BAILIE R.C., CARNS H.R., Agency : ARS 1109, 18 JUN 75 to 17 SEP 76, Project : 1090-16062-001-C. Location West Virginia Univ, Morgan-town WVA. Objectives : provide a technical and economic assessment of conver­sion systems which may be used to convert agricultural residues to fuel for single farms or small agricultural communities. Approach : this is a state-of-the-art evaluation to be based on existing data for the various processes and will include an analysis of the energy efficiency of each process alone, as well as the direct combustion, anaerobic digestion, both thermophilic and mesophilic, for the production of methanes and alcohos, pyrolysis - complete and partial, chemical reduction, hydro-gasification, catalytic gasification, enzymatic reduction, and combined hydrolysis fermentation.

Page 205: Farm and Forest Biomass

-111-

Progress : 75/06 77/12. This report is a technical and economic assessment of methods for the direct conversion of agricultural residues to usable energy on single farms, feedlots, processing plants, or small agricultural communi­ties. The size constraint implies that the amount of technical skills and operator time be minimized. The study considers energy conversion systems with design capacities ranging from 2 to 2000 tons of organic material per day. Production of energy forms for both mobile and stationary use was considered. The report examined all energy production schemes available in the literature. This screening eliminated the more obviously impractical. The more practical alternatives are examined in terms of energy conversion efficiency, economics, environmental impact/ technical and operational problems, and the state of the art. Systems examined in detail in this report are anaerobic digestion, pyrolytic production of low Btu gas, hydrolysis and fermentation to ethanol and Fischer-Tropsch pyrolysis to liquid fuels. Publications : 75/06 77/12. No publications reported this period. USDA CRIS. 744 ANALYTISCHE UNTERSUCHUNGEN AM LIGNIN. Analytical Investigation into Lignin. Determination of Propertiers of Products : Fibre materials, wood products, Forests in general, analytical chemistry, processing. SCHWEERS U., FAIX 0., Bundesforschungsanstalt für Forst- Und Holzwirtschaft, Reinbek, 2020 Hamburg, Leuschnerstr. 91), Institut für Holzchemie und Chemische Technologie des Holzes (2050 Leuschnerstr. 91). 1972. AGREP.

4.2. Bi oconversjO£

745 BIOMASSE - BIOCONVERSION : QUELQUES LOIS FONDAMENTALES ET REFLEXIONS, AUBART Chr., Centre de recherches de la Société Commerciale des Potasses et de l'Azote. Aspach le Bas 68700 Cernay. Otto Reisinger Lab. de Botani. et de Microbiolo, Centre 2ème Cycle, Case officielle n°140, 54037 Nancy; G. VANNIER Museum National d'Histoire Naturelle. 91800 Brunoy. Revue Agriculture - 02/81. 746 BIOMASSE - BIOCONVERSION : QUELQUES APPLICATIONS -1979-, AUBART Chr. et 0. REISINGER. Centre de Recherches de la Société Commerciale des Potasses et de l'Azote. Aspach le Bas, 68700 Cernay. Revue Agriculture - 02/1981. 747 LE BIOMETHANE A LA FERME, GIDA, Paris, I.T.P., M.N.E., 1980, 21/29,7, 103p. tabi, fig, graph, bibi., (28,89 Ff). Cette étude fait le point sur * la biochimie et la microbiologie de la méthanogenèse * l'installation expérimen­tale de Boigneville (I.T.C.F.) * la cuverie de fermentation. Nombreux schémas Importante bibliographie. Réalisé par le GIDA, qui regroupe les principaux Instituts Techniques Agricoles, ce document est destiné aux agriculteurs et à leurs conseillers. Analyse de la bibliographie agricole et rurale n°2/80. 748 THE ROLE OF MICROORGANISMS IN WASTE DISPOSAL; MOE P.G., BISSONNETTE G.K., Agency : CSRS WVA, 01 SEP 75 to 30 SEP 80, Project : WVA00244. Perf. Org. Plant Science, Location West Virginia Univ., Morgantown WVA. Objectives : Study : anaerobic digestion for diposal of wastes generated in a family dwel­ling unit : disposal of effluent and sludge from community sewage disposal plants, generation of methane gas through the anaerobic digestion of animal manures, aerobic composting of manures, soil applications as a waste dispo­sal system for industrial waste materials, disposal of acid mine drainage, and the disposal of industrial wastes in aquatic environments. Approach: Lab. and field experiments will be conducted of waste applications in aquatic and edaphic ecosystems. Systems will be evaluated for their microbiological po­pulations and biological activity. Environmental factors will be manipulated

Page 206: Farm and Forest Biomass

-112-

to estimate optimum conditions for biological activity. Effects of toxicity synergism and antagonism within the populations will be investigated. USDA CRIS. 749 BIOMETHANE TOME 1 - UNE ALTERNATIVE CREDIBLE - TOME 2 - PRINCIPES TECHNIQUES UTILISATIONS. LANGRANGE B., Edisud. La Calade, 13100 Aix-en-Provence, 1979, broché 16x24, Tome 1, 206p, prix indicatif : 47F, Tome 2, 249p, prix indica­tif: 43F, Les bio-conversions sont les techniques de transformations, par des mécanismes biologiques, de matière ou d'énergie. La technique de produc­tion de biométhane, plus particulièrement traitée dans ce dossier, est, pour l'instant, celle qui est à la fois la moins compliquée et la plus riche en possibilités. Nous n'excluons toutefois aucune autre technique qui pourrait présenter, dans certains cas, plus d'avantages que la production de méthane . Ces quelques lignes, par lesquelles débute l'ouvrage, définissent globalement les intentions de l'auteur. Celui-ci précise d'autre part que le premier tome traite des techniques de bio-conversion et plus particulièrement des fermen­tations et des cultures d'algues, et que, dans le second, on trouvera toutes les informations nécessaires à la bonne marche d'un digesteur. En fait, le second tome apparaît plutôt comme le développement de certains passages du premier, qui suffirait peut-être à ceux qui veulent seulement recueillir des notions générales sur le problème. Ce premier tome, lui, se divise en cinq chapitres (dont le 1er composé d'un série de sept annexes). Les 2 pre­miers chapitres (le tiers environ du texte), de caractère très général, étu­dient la matière organique et ses modes de traitement. Le troisième (un autre tiers environ du texte), intitulé géopolitique du biométhane , fait un tour d'horizon détaillé des réalisations de 24 pays. Le chapitre 4, très bref, (le 10ème du texte), sous le titre, pour une technologie appropriée, examine en fait les aspects politiques, psychologiques et sociaux de la question. C'est celui qui donnera le plus matière à discussion - l'auteur ne cache d'ailleurs pas sa sympathie pour les écologistes sincères - qu'il oppose à ceux qui ne songent qu'à tirer profit de l'engouement actuel à ce sujet. Analysé dans Bulletin d'Information du CNEEMA ne270 Mai 1979. 750 LE SECOND TOME, Lui revient en détail, en 5 chapitres suivis d'une série de 9 annexes, sur les aspects techniques du problème, encore que ses vues trop optimistes sur l'utilisation du méthane pour la traction susciteront aussi des discussions très vives. Quant aux annexes, on retiendra qu'elles compor­tent notamment de nombreuses références bibliographiques. Quoi qu'il en soit, l'ouvrage plaira, non seulement par la somme de données qu'il apporte, mais aussi par sa présentation attrayante, du fait de nombreuses illustrations et aussi parce que B. LAGRANGE ne dédaigne pas, parfois, de manier l'humour. BI CNEEMA N°270 Mai 1979. 751 BICOMBUSTIBLES = Biosphère, biomasse, bioconversion, biocombustibles, 1979, 96p. Ed Masson. 752 BIOCONVERSION DE L'ENERGIE SOLAIRE. CHARTIER Ph., Comes - Réunion du 18 mars 1979, 15p. 753 ENERGY FROM THE BIOLOGICAL TRANSFORMATION PROCESS (Energy from Fermentation . wastè air from barns, biogas and alcohol) Energie auà biologischen Umwand­lungsprozessen. BAADER W., ORTH H.W., Agrarwirtschaft und Energie Munich 1978. Hamburg, Verlag Paul Parey. Berichte über Landwirtschaft, Sonderheft, Neue Folge. Germany.(FR), Bundesministerium für Ernährung, Landwirtschaft und Forsten. 1979 (195), 1979, p.237/248, ill. Languages : German, 11 ref. AGRICOLA.

Page 207: Farm and Forest Biomass

­113­

754 BIOCONVERSION OF AGRICULTURAL WASTES INTO FUEL GAS AND ANIMAL FEED. COLLERAN E., BOOTH Α., BARRY M., WILKIE Α., NEWELL P.J., and DUNICAN L.K., Univ. Col­lege, Galway, Session III Paper HI/25. November 1980, 4­7, Brighton, Inter­national conference of energy from biomass, Commission of the European Com­munities in cooperation with the Department of Energy London. 755 PIOTECHNIK, GLOGER M., Technische Rundschau 6 marts 1979, n°10, S.L. Demons­tration. 756 PRACTICAL PATHS TO PLANT POWER, PFULG F., CERES, 1978, 11.5, 19/22, Lang: engl., 3 ref, Bioconversion processes are presented as being especially re­levant for regions handicapped by lack of transport and sophisticated tech­nology. The article shows the enormous impact that the technology of biogas and some similar solar techniques could have on agricultural ventures using them. It concentrates on strictly practical aspects and deals exclusively with the developing countries. Descriptors: solar energy : methane, produc­tion, developing countries, bio­energy, energy sources. CAB ABS. 757 AN ENERGY EFFICIENT SYSTEM FOR TREATING FOOD WASTES. HEMPHILL, BRIAN W., Chicago, Institute of Food Technologists. Food technology, V.33 (6) June 1979, p.44/48, ill, charts, ISSN 0015­6639, Lang: Engl. 5 ref, Abstract : Factors that can cause problems in biological processes for wastewater treatment in­clude a high concentration of soluble organic matter, highly variable flow, and organic loading conditions. Processes used are fixed­film and suspended growth (activated sludge), problems associated with these processes are mi­nimized by an activated bio­filter (ABF) process, which provides stable treatment under adverse conditions and exhibits lower energy requirements. BOD removal is increased in the bio­cell, and the mixed liquor has a high level of process stability. Design criteria for a typical ABF process are given and adaptation for partial treatment (roughing) is described AGRICOLA. 758 BIOTECHNOLOGY IN ENERGY PRODUCTION AND CONSERVATION. BIOTECHNOLOGY AND BIO­ENGINEERING SYMPOSIUM, N°8, SCOTT Ch.C, ed. Symposium on Biotechnology in Energy Production and Conservation Gatlinburg 1978, New York, John Wiley, 1979. New York VI 513p., ill, Lang: Engl., Includes bibliographies and index Subfile : other US. (not exp. stn. ext.USDA since 12/76), document type monograph. AGRICOLA. 759 ETHANOLIC FUELS FROM RENEWABLE RESOURCES IN THE SOLAR AGE. GREGOR H.P., JEFFRIES T.W., Columbia Univ. Dep Chem Eng. Applied Chem., New York NY 10027 USA. Ann: New York ACAD SCI. USA, 1979, Vol.326, p.273/287, 12 ref; Descrip­tion d'un procédé de fermentation de sucres ou de grains avec utilisation de membranes au lieu de la distillation. Prix de revient du traitement. Pré­sentation d'un procédé de production d'éthanol à partir de la cellulose par hydrolyse et utilisation de membrane. Prix de revient prévisionnel de l'étha­nol ainsi produit. PASCAL. 760 BIOCONVERSION 0F PLANT BIOMASS TO ETHANOL QUARTERLY/BIMONTHLY REPORT, U.S., Dept of Energy (Washington). District of Columbia Nal. TP 358.B52, Lang: English. Govt. Source : Federal, Document type Series : Descriptors: Biomass energy ­ Periodicals : alcohol, Periodicals. AGRICOLA.

Page 208: Farm and Forest Biomass

­114­

761 ΒΙΟ­ENERGY DIRECTORY, Wash. DC, Bio­energy council, 1979, 219p. S24.00, Technical Feature : descriptors : bioconversion. ENERGYLINE. 762 MICRO­ORGANISMS AS TOOLS FOR BIOMASS CONVERSION AND ENERGY GENERATION. Ctry: XF. Typl: J/AS, Lang: En, Fr, Subs : P05, SILVE E.J.DE. Jrnm : Impact of Science on Society (UNESCO), Impr. 10.1979, Note : Fairs/RN8000501, 4diagr. 1 map, 3 tab, 19 réf., Cllt : V.29 (4), p.361/374. AGRIS. 763 BIOLOGICAL PATHS TO SELF­RELIANCE : A GUIDE TO BIOLOGICAL SOLAR ENERGY CONVER­SION, Ctry : US. Typl: B/M Liti : Ζ, Lang : En. Sube: P05, ANDERSON R.E., Impr: New York (USA); Van Bostrand Reinhold Co, 91979). ISBN 04­423­02314, Note : ill, Bibliography, p.345/357, Includes index US (Nal. TP 360.A63) Cllt 367 p. Desc. Biomass Energy : Solar Energy (En). AGRIS. 764 BIOKONVERSION, Biologisch­technische Systeme zur Energiegewinnung. Studie der Dornier­System Gmbh. Hrsg : Bundesministerium für Forschung und Technologie Jülich O.J., (nach 1977) 765 SOLAR ENERGY CONVERSION THROUGH BIOLOGY ­ IS A PRACTICAL ENERGY SOURCE. HALL D.O., Aff: Univ. London King's Coll., London SE24 9JF, GBR, Energie solaire, Conversion et applications. Institut d'ete (1977­06­19/Car Cargese, Fr.) Ed. Paris CNRS, 1978, p.603/631, 114 ref, Lang : anglais, synthèse biblio­graphique des travaux consacrés à la conversion de l'énergie solaire par utilisation de systèmes biologiques. PASCAL. 766 MICROBIAL ENERGY CONVERSION, Hrsg SCHLEGEL H.G., BARNES J., Oxford, (u.a.) Pergamon Press 1977. 767 BIOKONVERSION ­ BIOLOGISCH­TECHNISCHE SYSTEME ZUR ENERGIEGEWINNUNG, Studie der Dornier­System Gmbh im Auftrag des BMFT. 1977/78. 768 ENERGY FROM BIOCONVERSION OF WASTE MATERIALS. DE RENZO D.J., Park Ridge, N.J. Noyes data Corpt. 1977, 233p. lit, opgn, Pollution technology review, n°33. PUDOC

4.2.1. Hydrolysis and alcoholic fermentations

769 PRODUCTION OF ETHANOL FROM WASTES VIA ENZYMATIC HYDROLYSIS OF CELLULOSE, ANDREONI P., AVALLA R., GIORGIO G DI, LOPOPOLO M., MANCINI Α., CNEN, Italy, Session III Paper III/9, International conference on energy from biomass, Brighton 4­7 November 1980. Commission of the European Communities, in coope­ration with the Department of Energy, London. 770 UTILIZATION OF AGRICULTURAL WASTES AS ENERGY SOURCES ­ ENZYMATIC HYDROLYSIS OF CELLULOSE TO GLUCOSE; Contractor DG XII CEC, ALFANI F., Programme 1979­1983, Gianfreda L., Project E = Energy from biomass. Università degli Studi di Napoli ­ Italie.

Page 209: Farm and Forest Biomass

­115­

771 ETHANOLHERSTELLUNG UNTER ENERGIEWIRTSCHAFTLICHEM ASPEKT. STAND DER TECHNIK MISSELBORN K., Braunsweinwirtschaft 120 (1980) 91­96 Verfahren und Energie­aufwand für Aufschluss, Garung und Distillation werden dargestellt. Insbe­sondere erfordert die Distillation nach den konventionellen Verfahren noch sehr viel Energie. Durch energetische Kopplung konnte der Energieaufwand halbiert werden. 10 Abb, 2 tab, 5 lit, ref. Zuckerind. 105 (1980), 414s. 772 LIQUEFACTION AND SACCHARIFICATION OF AGRICULTURAL BIOMASS ­ Contractor DG XII CEC, PILNIK W., Programme 1979­1983 Agricultural University, Project E = Energy from biomass. Salverdaplein 10, P.O.B. 9101, 6700 HB Wageningen, The Nederlands. 773 630 CARBOHYDRATES AS RENEWABLE FEEDSTOCKS, C0MMBS J., KHAN R, RIGHELATO R.C., A.J. VLITOS, In World conference on future Sources of Organic raw Materials, Chemrawn 1, Held Toronto, Canada, 10/13 July 1978, Ed. L.E. St Pierre and G.R. BROWN, Pubi. Pergamon Press, Oxford 1980, 533/542 E. Prospects for the production of fuel or chemical feedstocks from carbohydrates (sugar or starch) crops are surveyed. Aspects which have been or are being studied by Tate & Lyle are described, with reference to agriculture and biology, processing of cane to obtain sugar and starch to glucose syrup, chemical modification of sucrose, and fermentation of sugars to microbial polysaccharides or etha­nol, ref. SIA 42 (1980), S. 76. 774 204 RAPID ETHANOL FERMENTATION OF CELLULOSE HYDROLYSATE. 2 PRODUCT AND SUB_ TRATE INHIBITION AND OPTIMIZATION OF FERMENTER. DESIGN. T.K.GH0SE and R.D. TYAGI ­ Biotechnol, Bioeng, 1979, 21(d), 1401­1420 E ­Cf, pree. abstr. in the fermentation of bagasse hydrolysate, the inhibition of yeast growth and of ethanol production with increasing conens. of reducing sugars and of ethanol in the medium was studied. Kinetic equations which can be used in the design of optimum fermentation systems were derived. Substrate inhibition was grea­ter than in the fermentation of pure sugars to ethanol, ref. SIA 42(1980) S. 24. 775 INCREASED ENERGY EFFICIENCY OF SUBSTRATE PREPARATION FOR ALCOHOL FERMENTATIONS. DETR0Y R.W., BOTHAST R.J., HERMAN A.I., Agency : ARS 3102, 08 MAR 79 to 08 MAR 84, Project : 3102­20540­027, Perf; Org. USDA­ARS Fermentation Lab Northern Regional Res Center. Location 1815 Ν Univ. St Peoria ILL. Objectives Develop new chemical and biochemical systems to more efficiently convert plant polysaccharides to fermentable sugars and recover nutrients from fermenta­tion by­products in order to decrease the energy required for alcohol produc­tion. Approach : investigate new biological, chemical, physical or integra­ted processes for saccharification of grain starch in contrast to the tradi­tional energy­intensive energy­process. Apply biological and/or chemical procedures to grain and crop residues to render starch and lignocellulosics more amenable to subsequent enzymatic hydrolysis to fermentable sugars. Eva­luate biochemical and chemical delignification of lignocellulosic agri­resi­dues. Select microorganisms capable of preferential biodelignification of residues. Explore a cellulase­ catalyzed hydrolysis of lignocellulosics to glucose coupled with direct yeast fermentations. Develop methods for the useful recovery of protein from distiller's grains. USDA CRIS. 776 RAPID ETHANOL FERMENTATION IN IMMOBILIZED YEAST CELL REACTOR.GH0SE Ţ.K., BANDYOPADHYAY K.K., Biotechnol. Bioengn. 22 (1980), n°7, 1489.

Page 210: Farm and Forest Biomass

­116­

777 203. RAPID ETHANOL FERMENTATION OF CELLULOSE HYDROLYSATE 1. BATCH VERSUS CON_ TINOUS SYSTEM. GHOSE T.K. and TYAGI R.D., BiotechnoL. Bioeng. 1979, 21 CD) 1387­1400. E. Bagasse was milled to 150 urn delignified by autoclaving in 1 wt/vol % NaOH at 120°C for 1 h, and hydrolysed withcellulose from Trichoderma recsei QM 9414. The hydrolysate contained 6­7 wt/vol % total reducing sugars, of which ­ 70 % was glucose, it was concentrated to 10­20 wt/vol % glucose in a rotary vacuum evaporator. Amedi urn based on this soin, was fermented to ethanol under anaerobic conditions by a strain of Saccharomyces cerevisiae in batch and continuous cultures at pH 4.0 and 30eC with cell recyle, with 23.6 g initial biomass/1, 9.7 wt/vol % ethanol was produced in 6 h. In con­tinuous aerobic culture with cell recycle and 0.127 vol. air/voi per min. 48.5 g biomass/1 was achieved and the max. ethanol productivity was 32.0 g/1 per h, ­ 7 times that in a continuous process without cell recycle or aera­tion. Ethanol yield on glucose in the hydrolysate was 95/97 '/. of theoretical. REF SIA. 778 INDUSTRIAL ALCOHOL BY CONTINUOUS FERMENTATION AND VACUUM DISTILLATION WITH LOW ENERGY CONSUMPTION, ANON, Ctry: US, Typl B/M, Lang: Engl. Corp: Chema­pec, inc USA, Chemapec T.E.R. Process, Impr: Woodbury, N.Y. USA, Chemapec 1979, Cllt: 44 leaves, AGREP. 779 INNOVATIVE FERMENTATION TECHNOLOGY FOR ALCOHOL PRODUCTION. BOTHAST R.J., DETR0Y R.W., HERMAN A.I., Agency: ARS 3102, 08 MAR 79 to 08 MAR 84, Project: 3102­20540­028, Perf. Org: USDA­ARS, Engineering­Dev Lab Northern Regional Res Center. Location : 1815 Ν Univ. St Peoria III. Objectives : increase the efficiency of alcohol fermentation through development of new fermentation ability, selection of microbial strains with greater fermentative ability, and by applications of secondary fermentations to better utilize process by­products. Approach : develop and evaluate novel fermentation processes for converting glucose to alcohol. Evaluate selected microorganisms for their ability to produce increased levels of fermentative enzymes that can more effectively convert substrates to alcohol. Assess selected microbial strains and new isolates for their ability to produce alcohol under a varie­ty of fermentation parameters, i.e., batch, continuous, cell recycle, and immobilized cells­enzymes. Explore efficient production of alcohol through fermentations of distressed or modified grains. Evaluate methods for further fermentation of process by­products after recovery of protein. USDA CRIS. 780 KEY FACTORS IN THE HYDROLYSIS OF CELLULOSE, SAEMAN J.F., Aff: USDA Forest Service, Madison WI 53705 USA, Amer. Chem. Soc, Div. Petroleum Chem. Prep. USA, 1979, Vol 24, n°2,p.472/480, 13 ref. Lang : anglais, Revue des connais­sances sur les facteurs clefs de l'hydrolyse de la cellulose suivant diffé­rents procédés : hydrolyse à l'acide dilué en un ou plusieurs étages, hydro­lyse à l'acide concentrée, modifications de la cellulose par prétraitement, hydrolyse enzymatique. PASCAL. 781 FUELS AND CHEMICALS FROM BIOMASS, LADISCH M.R., FLICKINGER M.C, TSAO G.T., Purdue Univ.,A.A. Potter Cent., W.Lafayette in 47906 USA. Energy, GBR, 1979, Vol.4, n°2, p.263/275, 75 réf., Lang: anglais. Historique de l'hydrolyse des matériaux cellulosiques pour l'obtention de sucres fermentescibles. Descrip­tion du procédé purdue (hydrolyse suivie par fermentation en alcool) La voie vers une industrie chimique basée sur les carbohydrates. Nature des substrats de fermentation dérivés de la cellulose. PASCAL.

Page 211: Farm and Forest Biomass

-117-

4 . 2 . 2 . ^ a e r o b i £ di£estK>n

782 METHANE, GENERATEURS A GAZ METHANE, (Traduit de l'anglais : par R; Tharé) FRY I.J., Le Pâquier Suisse, Eds Rougemont, 1977, 21/29, 7, 36p, tabi, fig., bibl;18 f. Il est possible d'inciter et d'accélérer la dégradation anaérobie naturelle en plaçant les déchets (déjections animales comme rebuts végétaux (dans des digesteurs). L'auteur, qui a une expérience pratique de tels ap­pareils,leur consacre environ le dernier tiers de sa brochure. Les deux pre­miers tiers se partagent à égalité entre : des généralités (historique des recherches, intérêt énergétique de la récupération du gaz méthane) une étude de la biologie de la digestion (influence de la température comportement des diverses matières premières, importance d'une juste proportion carbone/azote) et un aperçu des possibilités et utilisations tant du gaz recueilli que des boues digérées. Ces quelques considérations théoriques sont explicitées par les descriptions détaillées de trois digesteurs continus. (D'après la Revue de l'Agricultue). 783 GENERALITES SUR LE TRAITEMENT DES DEJECTIONS ANIMALES PAR VOIE ANAEROBIE EN VUE DE LA PRODUCTION DE BIOGAZ : le gaz de fumier et le gaz de li sier, BOURNAS L., COILLARD, Bull, d'information du CNEEMA, Mai 1980, p49/54. 784 BIOGAS INSTALLATION FOR A SLAUGHTERHOUSE IN THE FRG. LINDAUER G., AGRAR, Und Hydrotechnik Gmbh, SIXT H., 0. SCHULZE KG. Session III, Paper III/29, Inter­national conference on energy from biomass, Brighton 4­7 November 1980. Com­mission of the European Communities, in cooperation with the Department of Energy, London. 785 PROPOSALS FOR THE ANALYTICAL MODELLING OF A DIGESTER, LAVAGNO E., RAVETTO P., RUGGERI B., Politecnico di Torino, Italy; Session III, Paper HI/26, Inter­national conference on energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 786 ANAEROBIC DIGESTION OF GREEN BIOMASS FOR METHANE PRODUCTION; BONETTI M., BRUNETTI Ν., FRAMONDINO U., MARZETTI P., PACCIARONI F., CNEN, Italy, Session III, Paper III/23, Anaerobic digestion of different types of terrestrial and aquatic green biomass has been tested in 200 liters digestor at mesophilic conditions and with a 20­day detention time. The biogas production depends on the amount of volatile solids present in the feedstock material and ul­timately on the reactor loading rate. The biogas produced ranged from 20 to 80 liters per kilogram of fresh biomass. These values correspond to a orga­nic carbon­to­biogas conversion efficiency ranging from 30% to 60 %. Inter­national conference on Energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 787 ANAEROBIC DIGESTION, Edited by D.A. STAFFORD, B.I. WHEATLEY and D.E. HUGHES, Univ. College, Cardiff U.K., 6X9" (15.5x23cm) XII + 528p, 155 ill, 1980. This book, which contains the proceedings of the First International Sympo­sium on Anaerobic Digestion held in Cardiff, 17­21st Sept. 1979, presents a wide range of papers contributed by international experts. An ever increa­sing demand for alternative energy resources has stimulated new interest in the production of methane gas from waste materials. Additional 'spin­offs' from the process, known as anaerobic digestion are the reduction in the pollution load of these wastes and the production of useful solid and aqueous residues for land fertilisation of animal feed supplements. The topics include the basic microbiology and biochemistry of anaerobic diges­tion and extend knowledge on the potential of controlling the system, toge­

Page 212: Farm and Forest Biomass

­118­

ther with a worldwide survey of digester systems and the newer types curren­tly under development. Economic and commercial aspects are also discussed. ISBN 0853349045, abstract made by Applied Science Publishers. 788 FERMENTATION TO BIOGAS USING AGRICULTURAL RESIDUES AND ENERGY CROPS, STAFFORD D.A., HUGHES D.E., Univ. College, Cardiff U.K., Session III, Paper HI/22, International conference on energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities in cooperation with the Department of Energy, London. 789 BIOGAS, PANKHURST E.S., British Gas Corp, London GBR, Gas Engng, Manag, GBR, 1980, Vol.20, n°1, p.3­14, 63 ref, lang : anglais, Principe de la digestion anaerobie, Comparaison du traitement des déchets et des végétaux. Prix de re­vient prévisionnel en grandes unités. Revue des travaux publics sur la produc­tion d'hydrogène par fermentation et par biophotolyse de l'eau. PASCAL. 790 AN ASSESSMENT OF SOME RECENTLY INSTALLED COMMERCIAL ANAEROBIC DIGESTION IN THE U.K., MEYNELL P.J., B.A.B.A, UK, Session III, Paper HI/31, Internatio­nal conference on energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 791 FINDINGS OF B.A.B.A.'s SUB­COMMITTEE TO PRODUCE A CODE OF PRACTICE ON SAFETY IN DIGESTERS; The British Anaerobic and Biomass Assoc. Code of Practice Sub­Committee UK, Session III, Paper HI/30, International conference on energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities in cooperation with the Department of Energy, London. 792 COMPUTER AIDED DESIGN OF ANAEROBIC DIGESTERS FOR ENERGY PRODUCTION, D.L. HAWKERS, The Polytechnic of Wales, UK, Session III; Paper HI/27, Interna­tional conference on energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities in cooperation witi the Department of Energy, London. 793 TWO­PHASE PROCESS FOR THE ANAEROBIC DIGESTION OF ORGANIC WASTES YIELDING ME­THANE AND COMPOST, Contractor DG XII. CEC, WIERTSEMA P., Programme : 1979­1983, De Staat der Nederlanden, the Netherlands, Project E = Energy from biomass. 794 TWO­PHASE PROCESS FOR THE ANAEROBIC DIGESTION OF ORGANIC WASTES, YIELDING METHANE AND COMPOST, Contractor DG XII ­ CEC BRUKENS Β.Α., Programme 1979­1983, Project E = Energy from biomass, Institute for Storage and Processing of Agricultural Produce (JBVL) Bornsestewg, 59. P.O.B. 18, 6700 AA Wagenin­gen, Pays­Bas. 795 A NOVEL PROCESS FOR THE ANAEROBIC DIGESTION OF SOLID WASTES LEADING TO BIOGAS AND A COMPOST­LIKE MATERIAL, RIJKENS B.A., Institute for Storage and Proces­sing of Agricultural Produce, The Netherlands, Session III, Paper III/28, International conference on energy from biomass, Brighton 4­7 November 1980. Commission of the European Communities, in cooperation with the Depart­ment of Energy, London.

Page 213: Farm and Forest Biomass

-119-796 THE FEASIBILITY OF THERMO-ANAEROBIC DIGESTION FOR METHANE GENERATION FROM ORGANIC WASTES. Contractor : DG XII-CEC, LETTINGA G., Programme 1979-1983, Rensink J.H., WIERTSEMA P., Project E = Energy from biomass State Agricul­tural Univer. Salverdaplein 10, 6701 DB Wageningen Pays-Bas. 797 ANAEROBIC DIGESTION FOR ENERGY SAVING AND PRODUCTION; LETTINGA G., Dept. of Water Pollution Control Agricultural Univer., De Dreijen 12, Wageningen, Summary : A survey is presented of the present knowledge about the effect of important environmental factors on anaerobic digestion and of the state of art concerning the practical application of the process for both energy pro­duction and energy saving. Although additional research is still required in certain aspects, it may be foreseen that a significantly increased use will be made of the process in the near future both for wastewater treatment (e-nergy saving + energy production) as well as for the more production of ener­gy. Session III, Paper III/1, International conference on energy from biomass Brighton 4-7 November 1980. Commission of the European Communities, in coope­ration with the Department of Energy, London. 798 BIOGAS PRODUCTION FROM ANAEROBIC DIGESTION OF ANIMAL MANURE, BARLETT H.D., PERSSON S.P., BRANDING A.E., Agency : CSRS PEN, 01 JUL 78 to 30 JUN 82, Project: PEN02345, PERF.0rg: Agri Engineering, Locat: Pennsylvania State Univ. University Pk, PA. Objectives : Determine the effects of operational and en­vironmental factors on methane production by anaerobic digestion of animal residue at raised temperatures. Approach : The 100m anaerobic digester de­veloped for studies on methane generation from dairy manure will be operated to determine the effects of the following on biogas production rate and qua­lity. Recycle liquid separate from digester effluent as dilution water. Use of milking center wastewater for dilution water. Pretreat poultry manure to reduce for dilution water. Pretreat poultry to reduce ammonia concentration. Develop automatic controls for reduced labor. Conduct tests of biogas as combustion engine full. Progress :78/01 72/12. Modifications have been made to the manure feeding system of the 100m digester to reduce capital cost. The outlet location has been altered to alleviate occasional clogging prob­lems and provide for the installation of dewatering equipment to recycle the supernatant as dilution water in order to evaluate its potential for in­creased gas production. Temperature and pressure controls have been installed in the biogas system to provide automatic control of boiler operation and excess gas release in relation to the digester environmental needs and con­ditions. The digester will be operated during 1979, to evaluate the modified manure feeding, dewatering, and control system in relation to operational re­liability, gas production, and labor saving. Publications : 78/01 78/12, no Publications reported this period. USDA CRIS.

799 DESIGN PARAMETERS AND EQUATIONS FOR ANAEROBIC BI0C0NVERSI0N OF ORGANIC WASTES. YANG P., Agency: SAES HAW, 01 APR 77 to 30 JUN 81, Project: HAW00528-S, Perf Org: Agri Engineering, Loca: Univ. of Hawaii Honolulu, HAW, Objectives : Evaluate the rate constants (based on biological concepts) and equations for the design and prediction of production of methane and degree of stabiliza­tion of organic waste in the batch, semi-continuous flow with constant solid recycle systems. Investigate the operational stability of constant sludge recycle system at normal and shock loading conditions. Approach : Lab. and pilot scale operations will be used for the evaluation of design parameters for batch operations. These parameters will be applied as the design crite­ria for the development and operation of semi-continuous flow and constant sludge concentration recycles continuous flow systems. Animal wastes, crop residues, and sewage treatment sludge will be used for demonstrating the ap­plication of design parameters evaluated from Lab. and pilot scale studies. USDA CRIS.

Page 214: Farm and Forest Biomass

-120-

800 EQUIPMENT »STRUCTURES FOR ON-FARM ENERGY PRODUCTION AND UTILIZATION FROM AGRI­CULTURAL WASTES AND RESIDUE, FISCHER J.R., Agency: ARS 3402, 06 FEB 79 to 06 FEB 84, Project: 3402-20400-006, Perf. Org: USDA-ARS Bioengineering Res. Agricultural Eng & Bldg, T-12, Loca: Univ. of Missouri, Columbia MO. Objecti­ves : Determine physical biological and chemical relationships that occur during anaerobic digestion of agricultural residues. Develop equipment, ope­rating technology and management procedures for on farm production of metha­ne gas from agricultural residue, develop method whereby methane gas may be effectively utilized on the farm to replace the use of fossil fuel energy, and evaluate the recycling of digester effluent as a source of fertilizer. Approach : Lab. studies will be conducted using six; 20 liter model digester systems to evaluate agitation requirements, effects of antibiotics, and the effect of rations on anaerobic digestion of swine manure for biogas produc­tion. A 420liter prototype digester will be used to study the effect of loa­ding rate on biogas production. Also this unit will be used in a comparison study of mixed mesophillic digestion with plug flow digestion. The farm size digester will continue to be used to : define management problems verify reliability of equipment and the automatic control systems, maximise gas pro­duction from recycled solids and conservation of energy, and evaluate energy and effluent utilization. USDA CRIS. 801 ENGINEERING SYSTEMS FOR MANAGEMENT AND USE OF ENERGY FROM BIOMASS, COCHRAN B.J., THOMAS C.H., Agency: CSRS LAB, 01 OCT 77 to 30 SEP 80, Project: LAB01 952, Perf Org: Agri Engineering, Loca: Louisiana State Univ. Baton Rouge LA. Objectives : determine the feasibility of designing and constructing an on-farm fuel genrator using biomass material as an energy source. Determine al­ternate means of utilizing agricultural products as sources of energy. Cha­racterize and improve energy mangement strategies for environmentally and economically acceptable crop production systems. Approach : Investigate the various processes known for producing fuels from biomass materials. The processes determined most feasible for farm size generators will be thorou­ghly evaluated using biomass materials to produce fuels. The types of mate­rials such as crops, weeds, grasses and animal waste, capable of being con­verted into fuels will be determined. Fuels produced from biomass will be tested for use in internal combustion engines heating buildings and crop drying. Methods of storing fuels on the farm will be considered. Evaluate methods through systems analysis for reducing energy imput to crop produc­tion. Each cropping operation will be evaluated with respect to all opera­tions to determine the total energy effect of the operation. Techniques of utilizing some agricultural residues as energy for processing with respect to quality, management and cost will be studied. The feasibility of trans­porting some residue from the production area will be determined. USDA CRIS. 802 STUDIES IMPROVE BIOMASS TO SNG CONVERSION, FRANK James R., Loca: Gas Res. Inst. Chicago, IL USA, Jrnl: Hydrocarbon Process, Int. Ed; Coden: IHPRBS, Pubi: 80 Series 59 Issue 4, p117/121, Identifiers: natural gas subsitute manuf biomass biomass anaerobic fermn, methane manuf, kelp anaerobic ferm, methane manuf. Chemical Abstracts. 803 METHANOGENESE ET DECHETS AGRICOLES- METHANE PRODUCTION AND AGRICULTURAL WAS­TES, ZELTER S.Z., Genie rural : Fra., 1979, n°10, p.6/15, lang : Fran. Dif­ficultés de la digestion anaerobi e en continue. Etude expérimentale de l'in­fluence de différents paramètres sur la digestion anaerobie en discontinue de fumier et lisier de porc, de paille et de tiges de maïs. Prix de revient du méthane produit. Evaluation du potentiel énergétique récupérable à l'état de biogaz en France. PASCAL.

Page 215: Farm and Forest Biomass

-121-

804 METHANE FERMENTATION APPLIED TO THE USE OF AGRICULTURAL RESIDUE FOR ENERGY PRODUCTION, BROUZES H., Ctry: XI-FR., TypL: B/AM., Lang: Fr., Subs: P05T00, Institut de Recherche Chimique Appliquée, 75, Paris (France), Recherche de Base-Formation), Corp: Association pour la promotion Industrie-Agriculture, 75, Paris, La fermentation méthanique appliquée à la valorisation énergétique des déchets agricoles, Mllt: Energy valorization of agricultural by-products Results and balancesheets of actions of VEDA commission (Energy valorization of agricultural wastes) - meeting 13/14 March 1979, Paris, Valorisation éner­gétiques des sous-produits agricoles, Résultats et bilans des actions du Comité VEDA (Valorisation énergétique des déchets agricoles,) Journées d'é­tudes et de réflexions 13-14 mars 1979, Paris, Conf. Journées d'Etudes et de Réflexions - direction Générale à la recherche scientifique et technique (DGRST) 75 PARIS, Impr 75, APRIA 1979, Note: 11 tables, Cllt: p.117/148, AGRIS. 805 AN ECONOMIC METHOD OF GETTING ENERGY FROM SLURRY (METHANE DIGESTER) DUNICAN L.K., Dublin, An Foras TaLuntais, Farm and Food Research, V.10, (3), June 1979, p.80/81, ill, ISSN 0046-3302, Lang: English, Document type : article AGRICOLA. 806 LE BIOGAZ, UNE AUTRE FORME DU GAZ NATUREL, Biogas, another form of natural gas, BLONDIN G., Gaz de Genève, Genève 1211 CH, Gaz eaux usées, CH, 1979, Vol.59, n°10, p.440/446, Cote 467, lang: français. Principes de la digestion du fumier et des végétaux, Caractéristiques du gaz produit. Perspectives d'utilisation. Potentiel énergétique pour la Suisse. PASCAL. 807 ANAEROBIC WASTEWATER TREATMENT WITH EMPHASIS ON SLUDGE RETENTION (energy recovery, methane production) Ctry: SE, Typl: B/M, Lang: En. FROSTELL B., Corp. Teckniska Hpegskolan, Stockholm Sweden, Impr; Stockholm Sweden, Oct 1979, Note: 85 ref. Summary (En) A dissertation bound with a collection of 5 reprints, Cllt: 88p. AGRIS. 808 NEW FUEL OLD SOURCE; REMEDIOS EDWARD C , BOYD WILLIAM D., (Pacific Gas and Electric Co, Calif) and (Southern California Gas Co), presented at 1GT New Fuels & Advances in combustion technologies symp. New Orleans, Mar 26/30, 79, P53 (15) Research Report : A 1TPD pilot plant was built to determine the economic feasibility of synthetic natural gas production from cattle feedlot waste, the construction and operation of the plant are described, both the mesophyllic and thermophilic digesters were successfully started up and are producing a gas with a methane content of about 60 '/.. A two-box sponge iron purifier scrubs out hydrogen sulfide present in the digester gas, the bio-gas, with a heating value of 600 BTU, can be fired efficiently in industrial boilers. The plant requires an investment of S12.8 million, and the estima­ted average-year gas cost is S3.44miUionBTU, Results indicate that SNG pro­duction from cattle feedlot wastes is both technically and economically feasible. (A diagram, 6 photos, 3 tables). ENVIR0LINE. 809 ANAEROBIC FERMENTATION OF AGRICULTURAL WASTES, POTENTIAL FOR IMPR0VMENT AND IMPLEMENTATION, JEWELL W.J., Agency: SAES NYC, 03 JUN 76 to 02 JUN 79, Pro­ject: NYC-123360, Perf Org: Agri Engineering, loca: Cornell Univ. Ithaca NY. Objectives : Determine the potential for optimizing technology related to anaerobic fermentation of agricultural wastes : identify fermentor designs capable of more rapid or more efficient recovery of energy containing by­products of gas, nutrients and solid residues, and to demonstrate the feasi-

Page 216: Farm and Forest Biomass

-122-

bility of improved fermentors using small laboratory models followed by large scale pilot plants. Studies will be conducted dairy cow wastes. Approach : this study will be divided into 3 major efforts *identification of improved fermentor designs using small scale laboratory models, definitions of optimi­zed fermentor designs, and demonstration of new process feasibility in large scale pilot plants. Two general concepts will guide the development of futu­re optimized anaerobic fermentation technology : Simplistic operation invol­ving minimal manpower and the elimination of the waste by production of use­ful energy-containing by-products. The focus will be on the transformation of a waste into useable but currently unrecovered energy-containing by-products. The Cornell study has identified two unique anaerobic fermentation system decisions : one could be capable of operation with the simplest of demands on the farm : whereas a complex unit may accomplish stabilization, methane production, liquid-solids separation and pathogen destruction in one unit operation. USDA CRIS. 810 METHANE FROM ANAEROBIC DIGESTION OF FRUIT AND VEGETABLE PROCESSING WASTES (waste disposal, fuel generation). LANE A.G., Ctry: AU, Typl: J/AS, Lang: En. Subs : P05 TOO, (Commonwealth Scientific and Industrial Research Organisation) North Ryde, Australia, Div. of Food Research. Jrnl: Food Technology in Aus­tralia, Impr: May 1979, ISSN 0015-6647. AGRIS. 811 METHANE FROM HUMAN, ANIMAL AND AGRICULTURAL WASTES. RENEWABLE ENERGY RESOUR­CES AND RURAL APPLICATIONS IN THE DEVELOPING WORLD, LOEHR R.C., Pubi: Boulder Colorado, USA, Westview Press for the American Association for the Advance­ment of Science. 1978, 129/150, ISBN 0-89148-433-1. Lang: En. 13 réf., 3 tab; 2 fig, AAAS Selected Symposium 6 by anaerobic digestion. It is pointed out that the use of alternative energy technologies in rural areas of developing countries should be aimed at reduction of human drudgery, minimum capital investment and operating expense, and production of energy in a 'form conve­nient for storage. In addition, where biomass conversion is concerned, agri­cultural productivity should be increased, the efficiency of the use of bio-mass (wood, cattle dung, crop residues) must be increased, and the use of plant fuels in general must be decreased to prevent deforestation and main­tain soil tilth. The production of methane by anaerobic digestion of human animal and agricultural wastes comes close to meeting most of these goals by producing a combustible gas that can be stored and a stabilized residue that is a valuable fertilizer, in équipement that can be built and maintai­ned on a village level. The experience that has already been gained at the village level in countries such as Taiwan, India, Korea, and the People's Republic of China justifies optimism about the prospects of increasing the use of this process. Nevertheless, competent technical guidance and a care­ful evaluation of social and economic feasibility are needed in each situa­tion. Descriptors : Energy, methane, waste utilization, developing countries, China, India, Taiwan, methane production, bio-energy. CAB ABS.

812 KINETIC STUDIES ON BIO-GAS EVOLUTION FROM BUFFALO DUNG, RAST0GI R.P., SINGH H.J., KAUSSHAL KISHORE, Aff: Univ. Gorakhpur 273001 Ind., Indian J. Technol. 0019-5669, 1979, Vol.17, n°1, p.5/10, 18 ref;. Etude de l'influence de la température de la dilatation et de la période d'incubation sur la cinétique de la digestion anaerobie d'excréments de buffle. Influence de différents additifs : Alpha, Naphtylamine, Diphenylamine, edta et hydroquinone. PASCAL.

Page 217: Farm and Forest Biomass

-123-

813 FERMENTATION METHANIQUE EN DISCONTINUE DES DECHETS AGRICOLES. ACTIONS COMITE VEDA, Rapport Final, M. ZELTER, INRA, Dec. 1978, 21p. 814 BIOGAS IN THEORY AND PRACTIVE. BIOGAS IN THEORIE UND PRAXIS, BAADER U., DOHNE E., BRENNDORFER M., KTBL, Schrift, 1978, n°229, 133p, ISBN 3-7843-1655-7, Lang: DE, 150 ref, 36 fig, 35 tab, The principles, techniques of methane production from organic waste material, biochemical processes invol­ved, factors affecting theni. ¡naterial characteristics, particle size of so­lids, gas yield, space requirement, properties of the gas and sludge produ­ced, the installation and equipment required, energy consumption for heating the fermenting material, and for driving the pumps and agitators, are discus­sed. The energy needs may be covered by heat recovery, by using some of the gas produced, their storage, legislation governing their use, équipement nee­ded for using the gas for domestic purposes, crop or animal production and economics, are considered. CAB ABS. 815 A STUDY OF A COMPLETE DISPOSAL RECYCLE SCHEME FOR AGRICULTURAL SOLID WASTES. NORMAN R., BUSBY M., Agency: CSRS TENX, 29 NOV to 30 NOV 78, Project: TENX-PR-0002-34022, Perf Org: Civil Engineering. Loca: Tennessee agrie and Ins State Univ. Nashville Ten. Objectives : The anaerobic conversion of manure to methane gas will be studied to determine if this process is adaptable to the needs of the small farmer. Can this process be used as a complete farm waste recycle scheme ? Will the by-products of the process be beneficial to the farmer, i.e. can he make use of the methane and the sludge ? Is the pro­cess economical ? What level of the technical competence is required to con­struct, operate and maintain the unit ? Approach : A "bio-gas" plant after the design of Singh will be designed and constructed by Tennessee State Univ. Various mixtures of animal manure and farm clippings will be batch fed to the units until gas production commences. Determine an optimum mix for decomposi­tion and methane production the feed will be analysed primarily for its fei— tilizer potential based on the design efforts, labor required for construc­tion, feed composition gas quality and quantity, sludge quality and quantity, length of time required for decomposition and gas production, and on the main­tenance required, adaptability of the process to the needs of the small far­mer will be determined. USDA CRIS. 816 METHANE PRODUCTION FROM LIVESTOCK WASTES BY ANAEROBIC DIGESTION, K0K0R0P0UL0S P., BENGSTON H.H., Southern Illinois Univ. Dept. Eng. Technol. Edwardsville II, USA Annual Conference on Energy 5/1978/Rolla MO USA, Ed: Rolla, Univ. of Missourai-Rolla, Extension div., S.D., p.177/182, 4ref, Lang: anglais, Des­cription d'une procédure expérimentale pour l'étude de la digestion anaero­bi e des déchets animaux. Présentation et analyse de données expérimentales Construction d'un modèle de la digestion anaerobi e. PASCAL. 817 ANAEROBIC FERMENTATION OF AGRICULTURAL RESIDUE Potential for Improvment and Implementation" JEWELL W.J. et al. (10 CO-AUTHORS) 1978. U.S. Dept. of Ener­gy. Final Report HCP/12981-07, Feb. Available through NTIS, 427 Switzenbaum. M.S. and Jewell W.J., 1978, Anaerobic attached film expanded bed reactor treatment of dilute organics, In press J. WATER POLLUTION CONTROL FEDERATION and presented at the 51st annual conference. Anaheim, California, Jewell W.J., et al. (8 co-authors) 1976. "Bioconversion of agricultural wastes for pollu­tion control and energy conservation". Final report n°TID-27164, U.S. Energy Research and Development Administration. Sept. Avail: Jewell W.J., 1978, "Small farm methane generation potential' Proceedings of the Second Annual

Page 218: Farm and Forest Biomass

-Í24-

Syinposium on Fuels from biomassi. U.S. Dept of Energy. Rensselaer Polytechnic Institute, Troy, New York, June 22, 1978. USDA CRIS. 818 EQUIPMENT AND STRUCTURES TO MANAGE AND UTILIZE AGRICULTURAL WASTES AND RESI­DUES FOR ENERGY PRODUCT, FISCHER J.R., Agency: ARS 3402, 26 NOV 75 to 26 NOV 78, Project: 3402-20400-003, Perf Org. USDA ARS Bioengineering Res Agricul­tural Eng Bldg T-12, Loca: Univ of Missouri Columbia M0. Objectives deve­lop methods and équipement for on-farm anaerobic digestion of agricultural residues for energy utilization. Approach : Lab. studies on anaerobic diges­tion will develop design and operational criteria for digestion equipment through determination of physical and chemical parameters such as optimum carbon-nitrogen ratio, digester loading rates, gas production, heavy metal, ammonia, and antibody toxicities. The effect of using a hydraulic manure flushing system and settling basin in conjonction with digestion will be investigated. A prototype anaerobic digester, funded by the University of Missouri, is being built at the UMC swine complex. The design and operatio­nal feasibility of this digester will be evaluated to provide a basis of recommandations for on-farm facilities. These studies are being coordinated with research at the NRRC on methane generation from animal waste. USDA CRIS. 819 DESIGN ANALYSIS OF SMALL SCALE ANAEROBIC DIGESTER IN INDIA. Energy from bio-mass and wastes : symposium papers presented August 14/18 1978, Washington D.C. USA, Chiranjivi C. Dept of Chemical Engineering, Andhra University Waltair, India, Pubi: Chicago Illinois USA, Institute of Gas Technology, 1978 p.449/464, Lang: engl., 5 ref, 8 fig, 2 tab, Biogas plants have tremendous prospects in India as seventy five percent of the people live in villages. The total amount of gas that can be produced from dung and night soil is equivalent to 930miIlion tons of coal. Alternate materials to cow dung are to be found and used to augment the gas potential further. Various models of bio-gas plants are reviewed with respect to their methods of construction and operation. The present cost of a bio-gas plant is high and it can be brought down by minimising the piping, valves and utilizing cheaper materials of construction. The need for research on the suitability of agricultural wastes as feed materials to the bio-gas plants and the effect of the C/N ratio on gas. production is emphasized CAB ABS. 820 METHANE : PLANING A DIGESTER. PRISM PRESS, 1977, MEYNELL P.J.. 821 PILOT PLANT PRODUCTION OF METHANE BY DIGESTION OF FEEDL0T WASTE, COE W.B., RHODES R.A., Agency: ARS 3102, 20 AUG 75 to 20 JUN 77, Project: 3090-20401-001-C1, Loca: Hamilton Standard Div of UAC, Windsor Locks CON, Objectives : confirm performance of anaerobic digestion of feedlot waste for production of fuel gas and establish the nutritional value of effluent solids. Approach : design and construct a pilot plant at U.S. Meat Animal Research Center to process 350 pounds per day of beef cattle waste. Monitor operation to deter­mine process stability, equipment performance, and yield of methane gas. Incorporate effluent solids from digestion of the waste into experimental diets and evaluate with sheep and cattel to determine acceptability and nutri­tional value. Ascertain feasibility of the process as a pollution abatment and energy conservation system for feedlots. Progress: 73/05 77/06, A pilot plant at USMARC for the anaerobic digestion of animal wastes was designed, constructed and initially operated under contract by Hamilton Standard Div. of United Technologies. The facility was designed to operate over a wide ran­ge of conditions and with varied waste materials. The 1250-gallon digester is designed for standard operation at 100 pounds d.b. input waste per day.

Page 219: Farm and Forest Biomass

­125­

The pilot plant became operational in November 1976 and is functioning in a stable mode at a feed rate of 0.25 pounds/cu.ft., 11 daytime, 52 degrees C , with gas yield of 8 cu.ft./pound v.s. introduced (14 cu.ft./pound v.s. des troyed). The contractor has fulfilled its obligations and ARS research with the facility 3090­20401­001­C will be terminated, Publications : 73/05 77/06, n° Publications reported this report. USDA CRIS. 822 PRETREATMENT OF CELLUL0STIC WASTE TO INCREASE ENZYME REACTIVITY, NESSE Ν., HALLICK J. and HARPER Ü.M., Biotech. & Bioeng. 19 : p.323/326, 1977. USDA CRIS. 823 BIOCONVERSION OF AGRICULTURAL WASTES FOR ENERGY CONSERVATION AND POLLUTION CONTROL. JEWELL W.J., DAVIS H.R., GUNKEL W.W., Agency : SAES NYC, 23 MAY 74 to 30 SEP 76, Project : NYC­123321, Perf. Org.: Agri Engineering, Loca: Cornell Univ. Ithaca NY, Objectives : Determine the overall feasibility of using ana­erobic digestion of agricultural operations , organic wastes to provide an energy source for agricultural operations while reducing and controlling pol­lution. Factors to be determined for a 60 cow diary operation and a 1000 head beef feedlot operation will include * total energy needs of the production operation * net energy available from methane generation after the energy re­quirements of the process are deducted, opportunities to use net energy, man­power requirements, waste handling and residue disposal alternatives, and economic implications. Approach : Use a multi­disciplinary approach to con­duct a study with known or easily synthetized data to determine the feasibi­lity of organic conversion to an energy source. The approach will not be to demonstrate again that the methane can be generated from organic wastes. Important areas such as the following : overall contribution of waste hand­ling process to well­being of agriculture and to environmental quality, avai­lability of equipment and technology detailed disposition of processed waste materials, and net cost of energy production and pollution control. USDA CRIS. 824 STUDIES IN METHANOGENESIS, OLBRICH S.E., Agency: SAES HAW, 01 JUL 74 to 30 JUN 75, Project : HAW00240, Perf Org. Animal Science, Loca: Univ. of Hawaii, Honolulu, Objectives : Develop, perfect and biologically define an animal waste recycling system(s) for Hawaii which would not only help solve the animal waste disposal problem, but produce some economically valuable by­products (methane, sludge fertilizer and possibly a high protein feed). Approach : A two­phase experimental approach will be utilized. The first will involve small­scale controlled laboratory digester experiments to find and define an optimum set of range of conditions needed for maximum methane production. The second phase will involve a pilot plant designed to provide maximum research versatility, thus allowing for comparison of batch vs. continuous fermentation systems, comparison of single vs. series digester systems. Progress : 73/01 75/06, Changes in chemical composition of feed­lot manure were studied during a six­month beef fattening period. Samples were relatively constant in composition after the first few weeks« Studies were conducted on small (4 liter) laboratory digesters using different sub­strates, different temperatures and different total solid values. Methane output was measured. Difficulty was encountered in maintaining constant out­put of biogas in the thermophylic temperature range (120­140 (0) F). Publications : 73/01 75/06; No publications reported this period. 825 UTILIZATION OF AGRICULTURAL WASTES, ROWE R.J., HASSAN Α., Agency : SAES ME, 01 JUL 73 to 30 SEP 76, Project ME06100. Perf Org. : Agri Engineering, Loca: Univ. of Maine, Orono ME. Objectives : Investigate alternatives for cons­tructive utilization of Maine's organic agricultural wastes. Approach :

Page 220: Farm and Forest Biomass

­126­

Investigate anaerobic digestion. Investigate algae culture for further waste treatment and as a food source for aquaculture systems. Investigate an inte­grated agriculture­aquaculture production system, with waste recycling. Pro­gress 74/01 76/12. The full scale anaerobic digester was closed down after difficulties with effluent disposal. 1500 gallons of effluent were stored to simulate overwintering in a shallow lagoon. Odor production ceased as the surface froze and did not reappear until May 1976 when a temperature of 60.F was reached. Preliminary work on using broiler litter as a boiler fuel was then initiated and will continue under ME 8104. Pubi: 74/01 76/12, Hassan A.E., Putnan G.S. and N. Smith. Design and operation of a demonstration unit for methane generation". ASAE Paper n°75­4539. Smith N. "Use of broiler lit­ter as fuel", ASAE Paper NA76­118. USDA CRIS.

4.2.3. Aerobi£ fermentation

826 LES METHODES Jean PAIN, Un autre jardin, Ida et Jean Pain, 50p. Domaine Les Templiers 83930 Villecroze. 827 A SYSTEM ANALYSIS OF THE CAMDEN CITY COMPOSTING OPERATION AND A PROJECTION OF THE STATEWIDE POTENTIAL, NIESWAND G.H., SINGLEY M.E., BOLÁN P.M. Agency: SAES NJ, 01 JAN 77 to 31 DEC 79, Project ; NJ00560, Perf Org : Biological & Agri Engineering. Loca: Rutgers Univ. New Brunswick NJ. Objectives : The development of a descriptive integrated inflow/outflow model of the total composting operation based on material, energy, and information flows through the system. The determination of the applicability of the composting process on a statewide basis. Develop a design and operating manual based on the Camden Composting operation. Approach : A descriptive model of the composting operation will be developed. Fundamental resources, activities and interac­tions will be identified and integrated into a systems model. When the opera­tions actually begin, the model will be evaluated and inputs and outputs will be quantified. The statwide potential for composting operations will involve an inventory of sewage treatment plants, an identification of bulking agent sources, selection of suitable sites for composting operations and identifi­cation of disposal areas. A network model will be developed to determine op­timum locations for composting operations. USDA CRIS. 828 MARKTPROSPEKTIE VAN COMPOST IN HET KADER VAN DE RECYCLAGE VAN ORGANISCHE AFVALSTOFFEN, Eindrapport dec. 1978, Diensten eerste Minister, Programmatie Wetenschapsbeleid. Prospection des marchés pour le compost dans le cadre de recyclage de déchets organiques. Rapport final sec 1978, Service du premier Ministre ­ Programme Scientifique ­ Bruxelles. 829 COMPOST SCIENCE/LAND UTILIZATION, BOLÁN M.P., NIESWAND G.H. and SINGLEY Μ.E., 1978, Towards a statewide composting program in New Jersey, Sept/Oct. 1978. 19(5) : 30­35. USDA CRIS. 830 K0MP0STERINGSVARME ­ FERMENTATION AEROBIE ­ AEROBIC FERMENTATION ­ BERTHELSEN L., VARME : DNK, 1979, Vol.44, n°5, p.108/112, Résumé: Eng, 5 ­ Etude d'un projet d'utilisation de la chaleur produite sur la fermentation aérobie de déchets animaux. Description de trois installations prévues à cet effet, dont deux en cours d'étude à l'institut agricole danois. Possibilité de chauffer une maison consommant normalement 5000 l de fuel­Oil par an par la fermentation des déchets de 34 vaches. PASCAL.

Page 221: Farm and Forest Biomass

-127-

4 .3 . ThermocheitiicaL conversion

4 . 3 . 1 . GejTeraJL_ ¿tud ies

831 KENETIC STUDIES OF PYROLYSIS AND GASIFICATION OF WOOD WITH OXYGEN UNDER PRES­SURE, RENARD J.C. and DIVREY Α., Lab. de Marcoussis, France, Session IV, Paper IV/12, International conference on energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 832 REALISATION D'UN ENSEMBLE DE GRANULATION A CHAUD SUR PLATEAU SEMI­REMORQUE ET ESSAIS DE LONGUE DUREE SUR LE TERRAIN, Contractor DG XII­CEC, BOURNAS L., MORIN M., CARRASSE M., Programme 1979­1983, Project E = Energy from biomass, CNEEMA, Sari Promill, Alsthom Atlantique. 833 PYROLYSIS AND COMBUSTION OF WOOD IN RELATION WITH ITS CHEMICAL COMPOSITION, MELLOTTEE H., and RICHARD J.R., CNRS, France, Monties Β INRA, France, Session IV, Paper IV/3, International conference on energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 834 LES FILICRES THERMOCHIMIQUES DE VALORISATION DE LA BIOMASSE, MOLLE J.F., Etu­des CNEEMA, Fév. 1980, n°460, p.11/25. 835 SEPARATION OF LIGNOCELLULOSE INTO HIGHLY ACCESSIBLE FIBRE MATERIALS AND INTO HEMICELLULOSE FRACTION BY THE STEAMING­EXTRACTION PROCESS, PULS J and DIETRICHS H., Institute of Wood Chemistry & Chemical Technology of Wood, Germany, Ses­sion III, Paper HI/11, International conference on energy from biomass, Brighton 4­7 November 1980, Commission of the European Communities, in coope­ration with the Department of Energy, London. 836 THE HIGH INTENSITY COMBUSTION OF STRAW BALES TO RAISE STEAM FOR POWER OPERA­TION, Contractor DG XII­CEC, Queen Mary College, University of London, Pro­gramme 1979­1983, Project E = Energy from biomass. 837 FINAL DEVELOPMENT OF A LARGE STRAW­FIRED FURNACE/HEAT EXCHANGER SYSTEM FOR USE IN GRAIN DRYING ­ SMALL STRAW­FIRED SYSTEM FOR FARM HOUSES AND PREMISES. Contractor DG XII­CEC, IVING J.D., University of Nottingham UK, Programme 1979­1983, Project E = Energy from biomass. 838 A JOINT PROGRAMME FOR THE INVESTIGATION OF PROCESS PLANT FOR THE THERMAL CON­VERSION OF BIOMASS, WILSON H.T., and SMITH E.L., Foster wheeler Power Products Ltd, London, University of Aston Birmingham, Session IV, Paper IV/16, Inter­national conference on energy from biomass, Brighton 4­7 November 1980, Com­mission of the European Communities, in cooperation with the Department of Energy, London. 839 ENERGY FROM BIOMASS : THE USE OF AIR SCRUBBERS FOR HEAT EXTRACTION FROM STRAW FURNACES. PEDERSEN T.T., Contractor DG XII­CEC, Programme 1979­1983, Jord­brugsteknisk Institut, Veterinary and Agricultural University, Rolighedsvej 23, 1958 Copenhagen V., Denmark, Project E = Energy from biomass.

Page 222: Farm and Forest Biomass

-128-

840 A PROCESS FOR THERMO CHEMICAL CONVERSION OF WET BIOMASS INTO HEAT ENERGY, HAVE H., Institute of Agricultural Engineering the Royal Veterinary and Agri­cultural University, Agrovej 10, DK 2630 Taastrup, Denmark, Session IV, Pa­per IV/9, International conference on energy from biomass, Brighton 4-7 Nov. 1980, Commission of the European Communities, in cooperation with the Dept. of Energy, London. 841 EXTRACTION OF HEAT ENERGY FROM ANIMAL WASTE BY COMBINED DRYING, COMBUSTION AND WATER VAPOUR CONDENSATION, Contractor DG XII-CEC, Jordbrugsteknisk Inst., Royal Veterinary and Agricultural University, Rolighedsvej 23, DK 1958, Co­penhagen V, Denmark, Programme 1979-1983, Project E = Energy from biomass. 842 THE COMBUSTION,PYROLYSIS, GASIFICATION AND LIQUEFACTION OF BIOMASS, REED T.B., The Solar Energy Research Institute (SERI), Golden, Colorado, Session IV, VI/K2, International Conference on energy from biomass, Brighton 4-7 Nov.1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 843 THE CONVERSION OF BIOMASS TO FUEL RAW MATERIALS BY HYDROTHERMAL TREATMENT, BOBLETER 0., BINDER H., CONCIN R., BURTSCHER E., University of Innsbruck, Austria, Session IV, Paper IV/8, International conference on energy from biomass, Brighton 4-7 Nov. 1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 844 DELEGATION GENERALE A LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE, DGRST, Paris, ASSOCIATION POUR LA PROMOTION INDUSTRIE AGRICULTURE, APRIA, Paris, France. Journées d'études et de réflexions valorisation énergétique des sous-produits agricoles, resultatset plan des actions du comité VEDA, Point sur les recher­ches dans les domaines de la pyrolyse et de la gazéification des déchets végétaux, 1979/09, p.185/221, 1979/03/13-14, Etudes et résultats des recher­ches dans les domaines de la pyrolyse, les voies de recherche : brûleur a sciure de bois, Combustion d'écorce sur grille. Brûleur mixte fuel sciure, production de charbon de bois, gazogene, combustion de la paille, gazogène à charbon de bois, gazogène en suspension, brûleur à paille, MINAG-C 6302, RESEDA. 845 WOOD-BURNING DEVICE PRODUCES CLEAN, CHEAPER FUEL -GASIFIER-, Madison, Wis. Forest Products Research Society. Forest products journal, V.29, (12>. Dec 1979, p.55, ISSN 0015-7473, Language : english. AGRICOLA. 846 WOOD AS A FUEL : BUILDING YOUR OWN WOOD STOVE, TAYLOR R.E., Moscow, Idaho, The Service, current information series, Idaho, University, Cooperative, Ex­tension Service, July 1979, (486), 3p., Languages : english AGRICOLA. 847 WOOD AS A FUEL : WOOD-BURNING FURNACES, TAYLOR R.E., Moscow, Idaho, The Ser­vice, current information series., Idaho, University, cooperative, Extension service, June 1979, (482), 2p., Languages : english, 2 ref. AGRICOLA. 848 MATERIAL PROBLEMS AT COMBUSTION AND GASIFICATION OF BIOMASS (peat and wood products), TARKPEA P., Loca : Studsvik Energitek, AB, Nykoeping, Swed., Jrnl : Report Pubi, 79, Issue : STUDSVIK/E2-79/36, p.42, Lang : Swed., Cita­tion : Energy res. Abstr. 1979 4(22), Abstr, n°52799. Avail : NTIS, Identi-

Page 223: Farm and Forest Biomass

-129-

fiers : corrosion fLuidized combustion biomass, gasification fLuidized biomass corrosion, peat fLuidized gasification corrosion, wood fLuidized gasification corrosion. ChemicaL Abstracts. 849 GASIFIERS FOR RETROFITTING GAS/OIL COMBUSTION UNITS TO BIOMASS FEEDSTOCK, REED T.B., JANTZEN D.E., CORCORAN U.P., Loca : SoL. Energy Res. Inst. Golden CO, USA, Jrnl: Energy Eng. Technol. Coden: EEGIDS, Pubi: 79 Series 1, p.144/149, Meeting date : 78, Identifiers : Biomass gasification gasifier. Chemical Abstracts. 850 TECHNOLOGY AND ECONOMICS OF CLOSE-COUPLED GASIFIERS FOR RETROFITTING GAS/OIL COMBUSTION UNITS TO BIOMASS FEEDSTOCK, REED T.B., JANTZEN D.E., CORCORAN W/P. WITHOLDER R., Loca: Solar Energy Res. Inst. Golden, CO USA, Jrnl: Sol Energy Res. Inst - Techn. report- SERI/TP, Pubi: 79, Issue: SERI/TP-49:183, RETROFIT, PROC.WORKSHOP AIR GASIF., p.8/1-8/16, Identifiers : wood gasification fuel gas combustion, biomass gasification fuel gas combustion, furnace firing fuel gas biomass, boiler conversion fuel gas biomass. Chemical Abstracts. 851 WOOD AS A FUEL : FIREPLACES, NILSSON S., Moscow, Idaho, The Service, current information serie, Idaho, University, cooperative, extension Service. Sept 1979, (493), 4p., ill, Language : english. AGRICOLA. 852 FLUIDIZED-BED REACTOR APPLICATIONS, KOSSIRIN, HERBERT M., DAVIS ROBERT D., Techno: Energy resources Co, Mass, presented at IGT New Fuels 8 Advances in Combustion technologies symp. New Orleans, Mar 26/30, 79, p.421 (12), Techn. report., the application of fluidized-bed reactor technology to pyrolysis/ gasification of agricultural wastes and to the combustion of coal, petroleum coke, oil shale, and lignite is examined. Pyrolysis feedstocks include wood chips, logging wastes, rice hulls, paper, sludges, waste oil, municipal solid waste, manure, and tires. The fluidized-bed pyrolysis system discus­sed produces a low BTU gas, a pyrolitic oil, and a pyrolitic char from agricultural wastes. The system also has the ability to fire high sulfur feedstocks and a variety of solid fossil fuels and still meet federal and state emission stantdards. (1 diagram, 3 graphs, 2 tables). ENVIROLINE. 853 RESEARCH, DEVELOPMENT AND COMMERZIALIZATION ACTIVITIES ON BIOMASS ENERGY IN THE UNITED STATES, KLASS Donald L. IGT presented at Commission of European Communities biomass for energy, Conf. London, JUL 03/79, p61 (8), Survey report : almost all major universities and research institutes in the US, have started programs directed to biomass energy and industry, particularly Larger chemical and petroleum companies, are also getting involved. The fe­deral fuels from biomass program for R&D has grown from 20.6miIlion in FY 75 to 226.9miIlion in FY 79, about 2% of the US total energy supply is deri­ved from biomass, but fossil fuel prices are still sufficiently Low to make the economics of producing substitute fuels borderline or unattractive current projects in the US, are highlighted. Forest biomass, grass and cultivated plants, water-based biomass, anaerobic digestion, pyrolysis and other ther-mochemical processes, and commercialization ventures are discussed. Large-scale integration biomass synfuel systems are not expected to be constructed and operated until the late 1980's or early 1990's. ENVIROLINE.

Page 224: Farm and Forest Biomass

­130­

854 WOOD AS A FUEL : WOOD STOVE INSTALLATION AND SAFETY, KARSKY T.J., Moscow, Idaho, The Service, current information series, Idaho, University, coopera­tive, extension Service, July 1979, (485), 4p;, ill, languages : english. AGRICOLA. 855 WOOD AS A FUEL :SM0KE PROBLEMS AND THEIR CURES, KARSKY T.J., Moscow, Idaho, The Service, current information series, Idaho, University, cooperative, ex­tension Service, June 1979 (481), 2p. ill, languages : english, 4 ref, docu­ment type : article. AGRICOLA. 856 WOOD AS A FUEL : CHIMNEYS (construction design), KARSKY T.J., Moscow, Idaho, The Service, current information series, Idaho, University, cooperative, extension Service, June 1979, (479), 4p; ill, NAL:275.29 ID131DC, language: english, 3 ref, document type : article. AGRICOLA. 857 STICK WOOD FURNACE RESEARCH AT THE UNIVERSITY OF MAINE AT ORONO, HILL Richard, C. Univ. of Maine, presented at wood energy inst. wood heating seminar, 5 St Louis, SEP 12 79, p6.(9). Technical report : the Univ. of Maine has designed and built several generations of stick wood furnaces, experiences to date are summarized, topics discussed include * environmental problems of wood combus­tion processes, performance parameters of stick wood furnaces, and safety factors, various components of the furnaces are described in detail, problems encountered with operation of specific furnace designs are considered, and solutions are presented. (2 diagrams, 3 photos) descriptors : Conf Paper, Wood energy, Furnaces, Heat Exchangers, Stack emissions, Energy storage. ENERGYLINE. 858 WOOD AS A FUEL : building an easy starting fire, HANLEY D., Moscow, Idaho, The Service, current information series, Idaho, University, cooperative, Extension Service, Aug. 1979, (495), 1p, ill, language : english. AGRICOLA. 859 THERMOCHEMICAL CONVERSION OF BIOMASS TO GASOLINE, DIEBOLD J.P., SMITH CD., Loca : Nav. Weapons, Cent., China Lake, CA 93555 USA, Jrnl: Biosources Dig. Pubi: 79, Series 1 Issue 4, p.218/26. Identifiers; alkene manuf waste solid pyrolysis, gasoline manuf waste solid pyrolysis, steam pyrolysis solid waste alkene Chemical Abstracts. 860 POTENTIAL OF BIOMASS TO SUBSTITUE FOR PETROLEUM IN CANADA, PHILIPS CR., GRANATSTEIN D.L., WHEATLEY Μ.Α., Äff: Univ. Toronto dept Chem. Eng., Toronto Ontario M5S 1A4, CAN, A.CS. Symp. Ser. USA, 1979, Vol:90, p.133/164, 25 ref, langue : anglais, Etude du potentiel de la biomasse pour remplacer Le petro­le au Canada du point de vue de La disponibilité et du coût des matières premières, des technologies de conversion (combustion, gazéification, liqué­faction) et des coûts de conversion. PASCAL. 861 POTENTIAL ENERGY PRODUCTION IN RURAL COMMUNITIES FROM BIOMASS AND WASTES, USING A FLUIDIZED­BED PYROLYSIS SYSTEM, Energy from biomass and wastes : symposium papers presented August 14/18, 1978, Washington, D.C USA, EPSTEIN E., KOSSTRIN H., ALPERT J., Energy Resources Co, Inc, Cambridge, Massachu­setts, 02138 USA, Pubi. Chicago, Illinois, USA, Institute of Gas Technology 1978, p.769/780, language : eng., 6 ref, 5 fig, 2 tab. A model is presented

Page 225: Farm and Forest Biomass

­131­

whereby waste materials and biomass are utilized to generate energy through fluidized­bed pyrolysis, advantages of the pyrolysis system energy are high thermal efficiency/ multiple feed stock capabilities/ control of air emis­sions/ and production of usable products (oil/ gas and char). The fluidized bed reactor used in this work was designed by Energy Resources Co. Inc./ to handle 500 kg/hr of feed. The reactor has a bed diameter of 0.5 m and a fluidized height of 1.1 m. Materials tested included sawdust/ paper, corncobs, sewage sludge, manure/ wood chips, and municipal solid wastes. Gas, oil/ and char yields as a function of temperature are presented. Experimental pyroly­sis of corncobs showed that gas yields increased steadily with temperature up to 900°C and leveled out at 60%. Oil yields decreased rapidly down to about 7%. The char data were highly variable/ characteristics of the products and their uses are described. CAB ABS. 862 PYROLYSIS/ Chapter 6, SOLTES E.J. and ELDER J.T., 1978/ forthcoming book : Organic Chemicals from Biomass, I.S. Goldstein/ Ed. CRC Press. USDA CRIS. 863 THERMAL DEGRADATION ROUTES TO CHEMICALS FROM WOOD/ SOLTES E.J. and ELDER J.T. 1978/ Special Paper, 8th World Forestry Congress/ Jakarta/ Oct. USDA CRIS. 864 AGRICULTURE EXPT STATION GENEVA NY ­ CONVERSION OF SOLID WASTE FROM GRAPES AND APPLES TO DIRECTLY UTILIZABLE HEAT ENERGY, WALTER R.H./ Agency: SAES NYG/ 01 MAY 74 to 30 JUN 75/ Project : NYG23356/ Perf. Org. Food Science & Tech­nology/ Loca : Ν Y Agriculture Expt Station Geneva NY. Objectives : Study the conversion/ of the chemical energy existing in apple and grape pomace into economical, directly utilizable heat. Approach : the physical­chemical properties of apple and grape pomace will be studied. In order to ascertain the factors conductive to the manufacture of briquets. The data obtained will provide the scientific­technical input into the engineering and construction of briquet manufacture. Progess : 73/03 75/06, Grape and apple processing wastes containing 69­f76 % moisture were molded into briquets either by cons­tant rate dehydration and partial decompôst ion, prior to addition of a binder or by sulfuric acid transformation to a charred intermediate, followed by low temperature pyrolysis before addition of a binder. The resulting increa­se in density of combustible carbon by the latter, method raised the gross heat of combustion over the former by 30 %. These wastes are amenable to a variety of treatments, in the wet or dry state, that would provide charcoals with different physical­chemical properties. Pubi: 73/03 75/06, No publica­tions reported this period. USDA CRIS.

4.3.2. £yrolys_is_

865 GASEOUS FUEL BIOMASS BY FLASH PYROLYSIS, CAUBET S., CORTE P., FAHIM C , TRAVERSE J.P./ Université Paul Sabatier, France, Session IV, Paper IV/6/ In­ternational conference on energy from biomass, Brighton 4­7 Nov. 1980, Commis­sion of the European Communities, in cooperation with the Qspartment of Energy, London. 866 FAST PYROLYSIS OF BIOMASS AT SHORT RESIDENCE TIME, DEGLISE X., RICHARD C , R0LIN Α., and FRANCOIS H., Lab. de Photochimie appliquée Université de Nancy I Case Officielle 140,54037 Nancy Cedex France, Session IV, Paper IV.7, Inter­national conference on energy from biomass, Brighton 4­7 Nov. 1980, Commis­sion of the European Communities in cooperation with the dept. of Energy. London.

Page 226: Farm and Forest Biomass

­132­

867 THE PYROLYSIS OF TROPICAL WOODS : THE INFLUENCE OF THEIR CHEMICAL COMPOSITION ON THE END PRODUCTS, PETROFF G. and DOAT J., Centre Technique Forestier Tro­pical, France, Session IV, Paper IV/5, International conference on energy from biomass, Brighton, 4­7 Nov.1980, Commission of the European Communities, in cooperation with the Department of Energy London. 868 ON THE INFLUENCE OF THE DIFFERENT PARTS OF WOOD ON THE PRODUCTION OF GASEOUS COMBUSTIBLE PRODUCTS BY PYROLYSIS, RICHARD J.R. and CATHONNET M., CNRS, Fran­ce, Session IV, Paper IV/4 Nov. 1980, International conference on energy from biomass, Brighton, 4­7 Nov. 1980, Commission of the European Communities in cooperation with the Department of Energy, London. 869 ENERGY RELATED TECHNOLIGICAL DEVELOPMENT, WALAWENDER W.P., FAN L.T., MATTHEWS J.C., Agency : CSRS KAN, 26 APR 76 to 30 SEP 81, Project : KAN00946, Perf. Org. Chemical engineering, Loca: Kansas State Univ. Manhattan KAN, Objectives: This project is directed at development of a continuous pyrolysis pilot plant facility for the recovery of useful products from animal wastes. Produce a synthesis gas (composed primarily of CO. H(2), C0(2) and CH(4) from feedlot manure. Approach : The development involves low pressure falsh pyrolysis in a fluidized bed designed to maximize both gas yield and quality. USDA CRIS. 870 PYR0LYSIS­GASIFICATI0N OF ORGANIC RESIDUES, FOREST S AGRICULTURE, FOR ENERGY AND PRODUCT RECOVERY, BRINK D.L., Agency : CSRS CALB, 25 01 74 to 30 SEP 84, Project: CA­F*­FPL­2905­H, Perf Org: Forest Products Lab. Loca: Univ. of California Berkeley CAL, USA. Objectives : Develop data for design of pro­cesses involving production of energy, isolation of fuel gasses and/or orga­nic chemicals, and/or inorganic chemicals of value from biomass residual generated in forestry and agricultural enterprises, Approach : Bench­scale reactor will be redesigned and operated specifically to provide indirect heat by incoporating down or cross­draft gasifer with shaft or rotary­type gasi­fier to maximize production of energy, organic products of value, and/or syn gas. USDA CRIS. 871 SOLAR FLASH PYROLYSIS OF BIOMASS, ANTAL Michael J., Jr, R0D0T Mich., ROYERE CL; VIALARON Α., Loca: Dep. Mech. Aerosp. Eng. Princeton Univ. Princeton, NJ 08544 USA, Jrnl : Sun 2 (Two), Proc. Int. Sol. Energy Soc. Silver Jubilee Congr. Coden : 43HSAS Pubi: 79, Series 1 p.159/63, Publisher: Address: Elms­ford Ν.Y. Avail, Boeer Karl W., Glenn, Barbara H.: Identifiers : review solar pyrolysis biomass. CHemical Abstracts. 872 AN EXPERIMENTAL INVESTIGATION OF THE AQUEOUS PYROLYSIS OF BIOMASS, RAMAKUMAR R., HUGHES William L., Loca: Oklahoma State Univ. Stillwater, OK 74074 USA, Jrnl: Proc. Front. Power Conf. Publ:79, Series 12, p.II/1­II/8, Identifiers: biomass water pyrolysis methane formation, newsprint water pyrolysis methane formation, cotton water pyrolysis methane formation, sawdust water pyrolysis methane formation, hydrocarbon formation biomass water pyrolysis Chemical Abstracts. 873 PYR0LYSIS­C0MBUSTI0N, AIR POLLUTION CONTROL FOR THE KRAFT RECOVERY PROCESS, BRINK D.L., 1978, Final report to Environmental Protection Agency, Contract n°68­02­0016, April, 275p. USDA CRIS.

Page 227: Farm and Forest Biomass

-133-

874 A FLOW REACTOR TECHNIQUE FOR THE STUDY OF WOOD PYROLYSIS, BRINK D.L., and MASSOUDI M.S., 1978, I. Experimental J. Fire and Flamebility 9(2), P.176/188. USDA CRIS. 875 CONSTITUENTS OF A COMMERCIAL WOOD PYROLYSIS OIL, LIN S.C., WOLFHAGEN J.L. and SOLTES E.J., 1978, Presentation, American Chemical Society Miami Beach; Sept USDA CRIS. 876 FLAME-FORESTRY LANDS ALLOCATED FOR MANAGING ENERGY; LOWTHER James D., Tyndall Air Force Base, Fla. NTIS Report AD-A059 993, Sep 78 (28). Special report : Investigated was the feasibility of using wood grown on US Air Force instal­lations as fuel to supply the heating energy requirements of the installations, replacing conventional fossil fuels. Several installations in Florida, Tennes­see, and Louisiana have the potential to supply significant portions of their heating energy requirements with non-merchantable timber grown on the instal­lations. Methods of converting these installations to wood-burning systems are described. ENVIROLINE.

4.3.3. £ombustion

877 LE CHAUFFAGE AU BOIS; Sept 1978, 40p., Cahier n°16 du : Centre Technique ou Bois, le chauffage au bois, Joseph POUSSET, 153p., Ed de la Lanterne. 878 A DESIGN STRATEGY FOR THE IMPLEMENTATION OF STOVE PROGRAMMES IN DEVELOPING COUNTRIES, Juseph S with Shanahan Y Intermediate Technology Development Group, London, Session VI, Paper VI/7^ International conference on energy from biomass, Brighton 4-7 Nov. 1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 879 DEVELOPMENT OF BIOMAS SYSTEMS FOR DRYING CORN, BUCHELE W.F., MARLEY S.J., Agency SAES IOW, 01 JUL 78 to 30 JUN 81, Project : I0W02325, Perf Org: Agri Engineering, Loca: Iowa State Univ. Ames IOW, Objectives : Design, construct, develop, test and promote the use of a cornstalk fueled furnace for grain drying bins. Both direct and heat exchanger furnaces will be developed. Approach : Combustion engineering and grain drying principles will be com­bined to produce an economical design of a cornstalk fueled furnace. Controls will be developed to operate the furnace and control the hot air supply to the grain bin. Progress 78/01 78/12, Performance tests of an existing direct-fired cornstalk burning furnace, have been conducted to determine airflow ra­tes, exhaust gas temperatures, and furnace efficiencies, equipment to measure exhaust gas composition was not available. Cornstalks from the current sea­son (1978) and year old stalks stored as unsheltered stacks were burned. No difficulty was encountered in burning stalks of 30.X moisture content (wet basis). Investigation of available domestic and foreign biomass fired furna­ces is presently underway to identify the design features that should be in­corporated into our next furnace to automatically regulate rate of burning (heat output) and to improve efficiency, Pubi: 78/01 78/12, No publications reported this period, USDA CRIS. 880 HUMIDITY OF COMBUSTION PRODUCTS FROM WOOD AND GASEOUS FUELS, BRAMHALL G., Vancouver, information report VP-XWestern Forest Products Lab., Vancouver, Oct 1978, (182), 10p. ill, ISSN 0045-429X, Lang : engl. 2 ref. Geographic location : Canada, Document type : article. AGRICOLA.

Page 228: Farm and Forest Biomass

-134-

881 BIOMASS BURNING AS A SOURCE OF ATMOSPHERIC GASES CARBON MONOXIDE, HYDROGEN NITROUS OXIDE, NITRIC OXIDE, METHYL CHLORIDE AND CARBON OXYSULFIDE, CRUTZEN Paul J., HEIDT Leroy E., KRASNEC Joseph P., POLLOCK Walter H., SEILER Wolf­gang, Jrnl : Nature (London) Pubi : 79, Series 282, Issue 5736, p.253/6. Chemical Abstracts. 882 ADAPTING ALTERNATE HEAT SOURCES FOR NEW ENGLAND WINTERS, SMITH N., RILEY J.G., HILLS R.C., Agri. Eng. Dept. Maine Univ. Orono, ME USA, Agricultural Enginee­ring 1979, 60.8, 12/14, Lang : engl. 1 fig, 1 tab, A 7000 ft2 building is heated by a 200 000 Btu/h furnace burning wood chip residue from logging. With dry fuel the overall efficiency is 90 X. Further prototypes of the sys­tems are under test. A 2100 ft2 experimental house, fitted with 860 ft2 of trickling water solar collectors on the south wall of an adjacent building has a 600 gal insulated tank inside and a further underground tank outside insulated with 2 in urethane foam. A 2600 ft 2 house has an 800 ft 2 solar collector on the roof deck supplying heat for an air-not-air heat pump sys­tem, the only thermal storage being in the building itself. Cost analyses for the 3 systems are presented and compared with those for conventional heating systems. CAB ABS. 883 SICHERE ENERGIE FOR DEN GARTENBAU ? HANSELMANN, E. Abfallwarme, Deutscher Gartenbau 32 (1978) 18: p.747/749, afb. Vanaf voorjaar 1979 zullen in Stapel­feld (ten Noordoosten van Hamburg) dagelijks 900ton vuilnis verbrand worden. De darrbij vrijkomende energie zal voor het grootste deel geleverd worden aan de elektriciteitscentrale van Sleeswijk-Holstein. De overbijvende energie is voldoende om ongeveer 200 000m2 kassen te verwarnen (Doc). 884 COMBINING SOLAR HEATING WITH A WOOD BURNING FURNACE, BECHTOLD K., STEWART W.E. Jr, Lone Star Industries, Bonner Springs KS, USA, ANNUAL Conference on energy. 5/1978/Rolla MO USA, Ed.: Rolla, Univer. of Missouri-Rolla Extension Div. S.D., p.490/495, 9 ref, langue : anglais, CC : 730.C.02. Etude théori­que des performances et de la rentabilité d'un système comportant une chau­dière au bois montée en série avec un collecteur solaire avec accumulation dans l'accumulateur solaire de la chaleur excedente provenant de la chaudi­ère. PASCAL. 885 HUMIDITY 0F COMBUSTION PRODUCTS FROM WOOD AND GASEOUS FUELS, BRAMHALL G., CORVALLIS Ore, Proceedings .. Annual meeting Western Dry Kiln Clubs, 1978, Language : engl. 3 ref, Subfile : Other US (not exp stn, ext). USDA since 12/76. Document type : article. 886 SELECTION OF OPTIMUM CONDITIONS FOR PRESSING WOOD , dust for use as fuel. Dobor optymalnych parametrow prasowania pylow drzewnych dia celow energety-crnych. FILIPOZAK J., STRUMINSKI J., Prace Komisji Technologi i Drewna 1976, 6. 15/30, Language : PL Summary Lang : En ; 20 ref.PR. Briquettes, suitable for burning in combination with coal were manufactured by pressing dust from particleboard, (Scots) pine wood or beech wood with the application of heat, but without the addition of. a binder. Tables and graphs have English captions. CAB ABS.

4.3.4. Gasifi£ation

887 TWO NEW TYPES OF BIOMASS GASI FIERS DEVELOPED AT CNEEMA, MOLLE J.F., CNEEMA Session IV, Paper IV/11, International conference on energy from biomass,

Page 229: Farm and Forest Biomass

-135-

Brighton 4-7 Nov. 1980, Commission of the European Communities/ in cooperation with the Department of Energy, London. 888 WOOD GASIFICATION UNDER PRESSURE WITH 'XYGEN FOR METHANOL PRODUCTION, Contrac­tor DG XII-CEC, DUBOIS P., NOVELER G., 12 rue de La Baume, 75008 Paris, Programme 1979-1983, Project E = Energy from biomass. 889 PROCESS AND EQUIPMENT FOR THE FLUID BED OXYGEN GASIFICATION OF WOOD, CHRYSOS-TOME G., Creusot-Loire, Paris, Session IV, Paper IV/14, International confe­rence on energy from biomass, Brighton 4-7 Nov. 1980, Commission of the Eu­ropean Communities, in cooperation with the Department of Energy, London. 890 DEVELOPMENT OF AN OPTIMISED PROCESS TO GASIFY BIOMASS FOR FURTHER CONVERSION TO LIQUID FUELS, DAVIS R.J., Foster wheeler Power Products Ltd. London UK Contractor DG XII-CEC, Programme 1979-1983, Project E = Energy from biomass. 891 PROCESS AND EQUIPMENT FOR THE FLUID BED OXYGEN GASIFICATION OF WOOD AND PEAT. BONZON M., Contractor DG XII-CEC, Programme 1979-1983, Creusot-Loire, Project E = Energy from biomass. 892 DEVELOPMENT OF THE DOWNDRAFT GASIFICATION WITH OXYGEN AND SATURATED STEAM IN ORDER TO OBTAIN SYNTHETIC GAS - SYNGAS - FOR THE METHANOL SYNTHESIS. ZERBIN W.O., Capacity 1000 kg wood with 20 % of weight of H20. Imbert-Energietech-nik, Gmbh und Co Kommantit-gesellschaft RFA, Contractor DG XII-CEC, Programme 1979-1983, Project E = Energy from biomass. 893 ADAPTATION OF A METHOD TO PRODUCE LIGENEOUS MATERIAL TO SUIT THE REQUIREMENTS OF A CATALYTIC TRANSFORMATION INTO LIQUID FUELS. ANTOINE R., DELMON B, Univ. Catholique de Louvain Belgique, Contractor 1979-1983, Project E = Energy from biomass. 894 "GASIFICATION - THE PROCESS AND THE TECHNOLOGY, SWAAIJ W.P.M., Twente Univ. of Technology The Netherlands, Session IV, IV/K1, International conference on energy from biomass, Brighton 4-7 Nov. 1980, Commission of the European Communities, in cooperation with the Department of Energy , London. 895 GASIFICATION OF BIOMASS, VAN SWAAIJ W.P.M., Twente University of Technology Netherlands, Contractor DG XII-CEC, Programme 1979-1983, Project E = Energy from biomass. 896 A 4-TO 6-MW WOOD GASIFICATION UNIT : SCALING UP THE GASIFICATION TECHNOLOGY INTO AN UNKNOWN SIZE CATEGORY (case study Guyana)? LINDAUER G. and Dipl.Ing. KRISPIN T., Agrar-und Hydrotechnik Gmbh, Session VI, Paper VI/6, Internatio­nal conference on energy from biomass, Brighton 4-7 Nov. 1980, Commission of the European Communities, in cooperation with the Department of Energy London. 897 PYROLYSIS GASIFICATION OF ORGANIC RESIDUES, FOREST & AGRICULTURE FOR ENERGY AND PRODUCT RECOVERY. BRINK D.L., Agency : CSRS Ca lb, 25 JAN 74 to 30 SEP 84, Project : CA-F*-FPL-2905-H- Perf Org: Forest products Lab., Loca : Univ. of California Berkeley CAL, Objectives : Develop data for design of proces­ses involving production of energy, isolation of fuel gases and/or organic chemicals, and/or inorganic chemicals of value from biomass residual genera­ted in forestry and agricultural enterprises. Approach : Bench-scale reac­tor will be redesigned and operated speciafically to provide indirect heat by incorporating down-or cross-draft gasifier with shaft or rotary-type

Page 230: Farm and Forest Biomass

-136-

gasifier to maximize production of energy, organic products of value, and/or syn gas. USDA CRIS. 898 SOLAR ENERGY COLLECTION & BIOMASS GASIFICATION fOR ENVIRONMENTAL MODIFICATION OF LIVESTOCK SHELTERS, PARKER B.F., (WINTER D.W.), Agency : ARS 7802, 11 JUN 79 to 30 JUN 80, Project : 7005-20400-017-A, Perf. Org.: Inst of Botanical Science, Loca : Univ of Kentucky Lexington KY USA, Objectives : Develop an integrated, multiple-use energy system to heat air for animal structures and for high temperatures grain drying using solar-thermal and biomass gasifica­tion as energy sources with a rock bed heat storage. Approach : Finalize de­sign of solar collector and rock bed system based upon performance test of the solar collector in both modes of operation and upon results of tests using crushed limestone as a heat storage medium. Construct and test biomass gasifier. Optimize system for heating the swine building and for grain drying. USDA CRIS. 899 KINETICS AND MECHANISMS OF STEAM GASIFICATION OF BIOMASS IN THE PRESENCE OF ALKALI CARBONATES, SEAL0CK L.J.,Jr, WEBER S.L., MUDGE L.K., Loca : Pac. North­west Lab., Richland, WA USA, Jrnl: Biosources Dig., Pubi: 80, Series 2 Issue 1, p13/26. Identifiers : wood gasification steam kinetics mechanisms, fuel gas manuf wood gasification, sodium carbonate catalyst wood gasification, potassium carbonate catalyst wood gasification. Chemical Abstracts. 900 SOLAR ENERGY CONVERSION THROUGH WOODY BIOMASS PRODUCTION. ROLFE G.L., ARNOLD L.E., ZIMMERMAN R., Agency : CSRS ILLU, 01 OCT 77 to 30 SEP 82, Project /* Illu-55-0342, Perf. Org: Forestry, Loca: Univ. of ILLINOIS, Urbana ILL. Objectives : Develop a net energy balance for energy plantations. Determine relationships between four woody species and biomass yield. Determine the optimum spacing and cutting cycle for these species. Determine the nutrient requirements and best method of supplying these nutrients for sustained bio-mass yield. Develop site selection criteria in order to determine those mar­ginal lands best suited for energy production. Approach : A series of field test plots will be established on a range of sites in central and southern Illinois to evaluate the potential of various species for maximum biomass production for energy conversion. Nutrient requirements will also be deter­mined through tissue and soil analysis during the growth period. Energy yields will be measured and a net energy balance developed. KEYWORDS : // EMP f/ENS ENERGY BIOMASS ENERGY-CONVERSION NUTRIENTS SOIL-SITE-RELATIONS FUEL FORESTRY NUTRIENT-REQUIREMENTS SPACING SITE-SELECTION ENERGY PRODUCTION ENERGY-VALUE FUELW00D PLATANUS-OCCIDENTALIS ALNUS P0PULUS (COTTON­WOOD) //EPHP SOLAR-RADIATION, Progress: 78/01 78/12. Preliminary woody biomass production plots were established during the Spring of 1978 to evalu­ate stand establishment requirements on marginal sites in Southern Illinois. Plots included cottonwood, sycamore, autumn olive and silver maple at 9-inch and 12-inch spacing with a range of plot sizes up to .3 ha. From these pre­liminary studies it was determined that intensive site cultivation followed by irrigation and herbicide application are necessay for establishment of these intensive woody production plots. Production data from these prelimina­ry plots will be collected at the end of the second growing season. Herbicide trials indicate sinbar at 1-2 kg/ha to be the most effective herbicide on sycamore plots with minimal damage to the woody plants and karmex at 1-2 kg/ ha to be the most effective on autumn olive plots. Studies are continuing with main planting schedulded for Spring 1979. Publications: 78/01 78/12. White, T.A. and Rolfe G.L. 1979, Solar Energy Conversion through Woody Bio-mass Production, Illinois Research Vol.21, 2P; USDA CRIS.

Page 231: Farm and Forest Biomass

-137-

901 NEW LOW BTU GAS BURNER SYSTEMS FOR INDUSTRIAL APPLICATIONS, WAID Donald E., Loca. Diplomate Am. Acad. Environ. Eng., Maxon Corp. Munci e, IN 47302 USA, Jrnl : New Fuels Adv. Combust. Technol. Symp. Pap. Pubi -79, p.365/76, Pu­blisher IGT address: Chicago III, Identifiers : gas burner energy fuel, coal heating gas burner waste gas fuel energy, low Btu gas burner, fuel gas low Btu, producer gas biomass wood. Chemical Abstracts. 902 GASIFICATION OF CORN COBS IN A PRODUCER GAS GENERATOR, PEART, Robert M., LADISH Michael R., ZINK Harold, BROOK Roger C , Purdue Univ. presented at information transfer Ine/et Al Technology for energy conservation conf, Tucson, JAN 23/25, 79, p.568 (4). Technical Report : the use of a small down-draft gas generator for gasifying corn cobs is discussed, the variables affecting gasifier operation, such as rate of air flow and reaction tempera­ture and the pyrolysis of cellulose are described, the gas produced is low in heat content, and may contain tars and other troublesome components, before the gas can be used in internal combustion engines, it must be scrub­bed or filtered to remove sulfur and tar that would harm the engine (2 dia­grams, 10 references, 3 tables). 903 INVESTIGATION OF GASIFICATION OF BIOMASS IN THE PRESENCE OF CATALYSTS, MUDGE L.K., R0BERTUS R.J., SEALOCK L.J. Jr, MITCHELL D.H., WEBER S.L., STEGEN G.E., Loca : Battette Pac. Northwest Lab., Richland WA USA, Jrnl: Report Coden : D3REP3 Pubi. 79, Issue PNL-SA-7939, p.34., Citation : energy Res. Abstr. 1980 5(5), Abstr n°6673. Avail : NTIS, Identifiers : biomass catalytic gasifica­tion, methanol manuf biomass gasification, methane manuf biomass gasification hydrogen manuf biomass gasification, ammonia manuf biomass gasification, hydrocarbon manuf biomass gasification, carbon monoxide biomass gasification. Chemical Abstracts. 904 HISTORY AND POTENTIAL OF AIR GASIFICATION (OF BIOMASS), H0RSFIELD B.C., Loca: WEYERhăuser Co, Tacoma, WA USA, Jrnl: Sol. Energy Res. Inst., (Tech. Rep.) Seri/TP, Coden: SEISDJ Publ:79, Issue : TP­49­183, Retrofit '79, Proc. Work­shop Air Gasif. p.4/0/1­4/0/16, Identifiers: review biomass gasification air, fuel gas biomass review. Chemical Abstracts. 905 CATALYZED STEAM GASIFICATION OF BIOMASS, Phas II, HOOVERMAN R.H., Loca: Wright Malta Corp., Ballston Spa NY USA, Jrnl: Report, Pubi 79, Issue C00­4736­12, p.108, Avail: NTIS Identifiers : biomass catalyzed steam gasification. Chemical Abstracts. 906 SUITABILITY OF DIFFERENT GASIFICATION PROCESSES FOR ENERGY PRODUCTION IN SWEDEN, FORNHAMMAR U., MAIJGREN B., KELEN T., Loca: Studsyik, Energitek. AB, Nykoeping; Swed. Jrnl : report Publ79, Issue : Studsvik: E­4­79/7 p.76, Lan­gue : Swed, Citation : Energy Res. Abstr. 1979, 4(22), Abstr ne52733, Avail: NTIS, Identifiers : review gasification biomass, Sweden, fluidized gasifica­tion biomass review, peat gasification Sweden review. Chemical Abstracts. 907 GASIFICATION OF SOLID WASTE­POTENTIAL AND APPLICATION OF CO­CURRENT MOVING BED GASIFIERS, GR0ENEVELD M.J., VAN SWAAIJ W.P.M., Twente Univ of Technology Netherlands, applied energy, Jul 79, V5. N3 p.165 (14). Technical report : Gasification processes for solid­waste fuels are discussed. Co­current moving bed gasifiers can be used for the gasification of municipal or agricultural wastes. Operation and design of the gasifier are described. The advantages of this unit compared with other gasifiers involve ash removal processes and

Page 232: Farm and Forest Biomass

­138­

low exit temperature of the product gas. (9 diagrams, 1 graph, 14 references, 2 tables). ENVIROLINE. 908 SURVEY OF BIOMASS GASIFICATION, Volume 1, Synopsis and executive summary. Solar Energy Research Institute, Loca : Golden CO USA, Jrnl: Report, Pubi 79 Issue SERI/TR­33­239 (Vol.1), p.45, Citation : Energy Res. Abstr. 1980 5(4), Abstr n°5492, Avail : NTIS Identifiers : review biomass gasification/ CHEMICAL ABSTRACTS. 909 SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY, FIGUEROA C , ERGUN S., Loca : Lawrence Berkeley Lab., Univ. California? Berkeley CA USA, Jrnl : Report Pubi : 79 Issue LBL­10199, p.22, Citation : Energy Res. Abstr. 1980, 5(7), Abstr. n°9750, Avail: NTIS, Identifiers: biomass gasification liquefaction, synthesis gas prodn biomass. CHEMICAL ABSTRACTS. 910 VALORISATION ENERGETIQUE DE BIOMASSE PAR VOIE DE GASEIFICATION ET EMPLOI DE GROUPES ELECTROGENES, Applications diverses ­ biomass energetic beneficiation through gasification and utilization of power groups, DENNETIERE Α., Colloque Franco­Américain sur les economies d'énergie dans l'industrie 1979­10­18/ Paris, Fra., Ed : Paris, Association nationale de la recherche technique, 1979 p.165/182, Langue : français, Description d'appareils de gazéification de végétaux et de groupes électrogènes à moteur utilisant le gaz pauvre produit. PASCAL. 911 AN ASSESSMENT OF THE GASIFICATION CHARACTERISTICS OF SOME AGRICULTURAL AND FOREST INDUSTRY RESIDUES USING A LABORATORY GASIFIER (Fuel production from rice hulls, cotton gin trash and wood residues). WILLIAMS R.O., GOSS J.R., Amsterdam, Elsevier Scientific Pub. Co. Resource Recovery and conservation V. 3 (4), Dec 1978, p.317/329, ill. ISSN 0304­3967, Languages : english 13 réf.. Document type : article. AGRICOLA. 912 INVESTIGATION OF GASIFICATION OF BIOMASS IN THE PRESENCE OF MULTIPLE CATALYSTS WALKUP P.C., MUDGE L.K., COX J.L., SEALOCK L.J., ROBERTUS R.J., Loca : Pac. Northwest Lab. Battelle Mem. Inst., Richland WA USA, Jrnl : Proc. Annu. Fuels Biomass Symp, 2nd Coden : 41VZA3, Pubi :78, Series A, p.301/319, Publisher: Rensselaer Polytech. Inst. Address: Troy Ν.Y., Avail : Shuster, William W Identifiers : catalyst biomass gasification. CHEMICAL ABSTRACTS. 913 MATERIALS OF CONSTRUCTION FOR GASIFICATION, MACNAB AJ., Loca: C.F. Braun and Co, Alhambra, CA USA, Jrnl: Sol. Energy Res. Inst., (Tech; Rep.) SERI/TP Pubi 79 Issue SERI/TP­31­248, Reliab. Mater. Sol. Energy Workshop Proc, Vol. 2, Pt. 2, 1978, p.537/42, Identifiers: review construction alloy biomass ga­sification, stainless steel biomass gasification review. CHEMICAL ABSTRACTS . 914 CONVERSION OF BIOMASS MATERIALS INTO GASEOUS PRODUCTS, GARRETT Donald E., Loca : Garrett Energy REs. and Eng. Co., Inc., Ojai, CA 93023, USA, Jrnl : Proc. Annu. Fuels Biomass Symp, 2nd Pubi :78 Series 1, p.253/268, Publisher: Rensselaer Polytech. Inst, address : Troy, NY. Avail : Shuster, William W, Identifiers : Fuel gas manufg manure, drying manure fuel gas manufg. CHEMICAL ABSTRACTS.

Page 233: Farm and Forest Biomass

­139­

915 CATALYZED STEAM GASIFICATION OF BIOMASS, COFFMAN John Α., Loca: Wright­Malta Corp., BalLston Spa. NY, USA, Jrnl : Proc. Annu. Fuels Biomass Symp., 2nd Pubi 78, Series 1, p.287­300. Publisher : Rensselaer Polytech. Inst, address: Troy NY, Avail: Shuster William W, Identifiers: fuel steam gasification bio­mass. CHEMICAL ABSTRACTS. V. BIOMASS PRODUCTS ­ CARBURANTS AND FUELS

5.1. General studies or those covering several products

916 Sous­groupe "C" ­ VEHICULES A MOTEUR GROUPE SPECIAL ­ CARBURANTS DE SUBSTITU­TION, Compte rendu de la première réunion du "groupe spécial" carburants de substitution CEE­DG XVII,Bruxelles 11.2.1980. 916bis Note de synthèse sur les voies de substitution éventuelles aux carburants conventionnels dans un contexte de raréfaction progressive des réserves pé­trolifères ­ Pillet il.P., commissariat général au Plan groupe de travail sur la demande d'énergie à long terme, sous groupe transports, 11.09.1979, 22P. 917 TECHN0­EC0N0MIC EVALUATION OF THERMAL ROUTES FOR PROCESSING BIOMASS TO METHA­NOL, METHANE AND LIQUID HYDROCARBONS, ADER G., BRIDGWATER Α.V., HATT B., Ses­sion IV, Paper IV/15, International conference on energy from biomass, Brigh­ton 4­7 Nov. 1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 918 L'EMPLOI D'HUILE VEGETALE DANS LES MOTEURS DIESELS, PERNKOPF J., une garantie de ravitaillement en cas de crise ­ Institution Fédérale d'essai et de con­trôle concernant les machines agricoles, Autriche, colloque International GENECA, agriculture et énergie, Paris 27/29 février 1980, p.326. 919 ANALYSIS OF THE FUELWOOD MARKETING AND DISTRIBUTION SYSTEM IN VERMONT, BOUSQUET D., 23 OCT 78 to 22 OCT 81, Project : VTZ00036, Perf. Org.: Fores­try, Loca: Univ. of Vermont Burlington VT, Objectives : Identify and descri­be the physical structure and function of the existing fuelwood marketing and distribution system in Vermont. This will include definition of producer product, channel and ultimate consumer characteristics and requirements. Evaluate the economic performance of the fuelwood processing system. This will include analysis processing, efficiency, costs and returns and costs of fuelwood delivered to consumer. Approach : Fuelwood producers : direct personal interview and direct measurment of process variables, labor, machi­ne and investment costs for different types of producers. Emphasis on defi­ning organization problems and characteristics and potentials. Functions include fuelwood harvesting, "manufacturing" inventory, measurement and sto­rage, transportation and delivery. Methods and time study, energy balance, R.O.I., analysis of delivered cost to consumer. Fuelwood consumers, direct personal interviews with cooperating "urban" and "rural" consumers, utilizing direct and coded questionnaires. Direct area selection, stratified after sampling. Specify situation regarding species, form size, volume, seasoning, storage and delivery seasonal demand, type of end use, pricing costs, USDA CRIS. 920 BIOGAS AND ALCOHOL FUELS PRODUCTION, Proceedings of a seminar on Biomass Energy for City, Farm and Industry Compost Science/Land Utilization.Loca: USA, Pubi: 80, p.246, Publisher : JG Press address : Emmaus PA, Identifiers : book biogas manuf biomass, ale manuf biomass book CHEMICAL ABSTRACTS.

Page 234: Farm and Forest Biomass

­140^

912 THE ECONOMIC REALITIES OF ALCOHOL FUELS, JAWETZ P., SUGAR J., 42 (1980) N°8, Jam/., 13. 922 PHOSPHORIC ACID SYSTEM 10, The generation of hydrocarbon fuels from waste and fermentation compounds, PEARSON D.E., SAWYER J.S., Cleveland J.H., Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) ηβ

2, 245. 923 CONTROL SYSTEMS FOR INTERFACING SOLAR AND BIOMASS FUELS IN AGRICULTURAL DRY­ERS, SHEPPARD A.P., (BUTLER J.L.), Agency : ARS 7702, 13 JUN 79 to 30 JUN 80, Project : 7007­20190­019­A, Loca: Georgia, Institute of Technology Atlanta GA, Objectives : design, construct and test a control unit to interface solar and biomass fuels in crop dryers. Approach : information on currently available control systems for the burning of alcohol and methane will be gathered and an economic analysis will be made. The analysis will include the relative merits of electronic and pilot light ignition in addition to costs. Based on this information of prototype system will be designed constructed and evalua­ted. The feasibility of using a microprocessor to determine the usage of the back­up system based on such data as air humidity temperature solar radiation and time of day, will be determined. Close liaison with other researchers in solar crop drying will be maintained. USDA CRIS. 924 DER BEITRAG DER ENERGIE LANDUIRSTSCHAFTLICHEN URSPRUNGS ZUR VERSORGUNG DER VOLKSWIRTSCHAFT DER WESTLICHEN LANDER MIT KRAFTSTOFF, C.E.F.S. (Nov. 1979) 925 OSTERREICHECHISCHES TREIBSTOFF­ALKOHOL­PROGRAMM, Phase 1, Kristallizations projekt Oberösterreich. Voest­Alpine AG, Linz, Vogelbusch Ges, m.b.h. Wien, Oberösterreichische Stärke­ und Chemische Industrie Ges m.b.h. Aschach (Apr. 1979). 926 A PROPOS DES CARBURANTS DU FUTUR, II, Concerning future fuels II, GREN0N M., Rev. Energ. Fra, 1979, Vol:30, ne

312, p.118/124, Résumé: engl., Fran., TP LA. Avantages et inconvénients du methanol et de l'éthanol. Prix de revient pré­visionnels de fabrication à partir de diverses matières premières (gaz natu­rel, charbon, déchets urbains, déchets agricoles, etc.) possibilités d'uti­lisation des piles à combustible hydrogène­air. PASCAL. 927 ALCOHOL AND METHANE, LEWIS C.W., Two biological fuels for man, Biologist, Vol.27, n°2, p68/72. 928 ALTERNATIVE FUELS FOR EXISTING ENGINES, THEIR POTENTIAL AND DRAWBACKS, REGLIT­ZKY A.A., BERNHARDT W., HOOKS R.W., Paper presented at 10th World Petroleum Congress 'Sept 1979'. 929 A STUDY OF THE CONVERSION OF AGRICULTURAL WASTES TO LIQUID FUELS, FELBECK G.T. Jr., Agency: CSRS Ri, 01 JUL 77 to 30 SEP 79, Project : RI00019, perf. org: Food Science & Technology, Loca: Univ. of Rhode Island Kingston RI, Objecti­ves : determined by means of simulation experiments the naturally occurring conditions under which various organic materials could be converted to hydro­carbons. Apply the results of these experiments to the problem of geochemical prospecting for oil with particular emphasis on increasing the efficiency of drilling productive wells. Apply the processes developed to the conversion of agricultural waste materials to liquid fuels. Approach : a matrix of organic and inorganic materials blended to simulate marine sediment mixtures will be

Page 235: Farm and Forest Biomass

-141-

subjected to appropriate laboratory conditions to simulate reaction times of up to 10 years at 100c. Reaction products will be compared with crude oil hy­drocarbons to test process validity. The catalytic action of various metal compounds will be evaluated. USDA CRIS. 930 THE MANUFACTURE; AVAILABILITY AND COST OF METHANOL AND ETHANOL MOTOR FUELS,. NORTON J.H.R., S. Afr. Mech. Engr. Zaf. 1979, Vol.29 n°5,p.156/158, 8, lang: anglais. Prévision du prix de revient du methanol et de l'éthanol à partir du charbon et de l'éthanol à partir de sucre et de molasse. PASCAL. 931 ENERGY FROM BIOMASS, WEISS D.E., APPITA AUS, 1979, Vol.33,n°2, p.101/110, 19 ref, lang: anglais, Revue des procédés de production de methanol et d'étha-nol à partir de résidus agricoles et de plantes cultivées à cet effet. Aperçu sur les prix de revient, PASCAL. 932 AUSTRALIA PREPARES FOR PETROL CRISIS, SCOTT W.E., Energy International, USA, 1979, Vol.16,n°11, p.51/54, lang: anglais, Evaluation du potentiel de pro­duction de methanol et d'éthanol à partir de la biomasse en Australie. Déve­loppement d'une installation de digestion anaerobie de déchets de L'industrie alimentaire. PASCAL. 933 ENERGY ALTERNATIVES FOR THE YEAR 2000, SWISS M., Energy Internation., USA, 1979, Vol.16,n°6, p.22/24, lang : anglais, Etat actuel des études sur la pro­duction d'éthanol et de méthane à partir de la Biomasse. Etude de praticabi­lité de centrales éoliennes en Suède. PASCAL. 934 LIQUID HYDROCARBONS BY HYDROGENATION OF VEGETABLE MATERIAL, SILVA CELINA FERREIRA DA, Loca: Brazil, Jrnl: Braz. Pedido PI, Pul: 791016, p.7., Lang: Port. Patent n°7902633, Applic: n°79/2633, date: 790427, Class: C 10G1/00, Assignée: COEMA Commercio de Produtos químicos Ltda, Identifiers: hydrocar­bon manuf bagasse hydrogénation, tetrahydronaphthalene solvent bagasse hydro­génation, cobalt molybdenum hydrogénation catalyst, iron oxide hydrogénation, catalyst, catalyst hydrogénation liquefaction bagasse. CHEMICAL ABSTRACTS. 935 DIESELTREIBSTOFF ERZETZEN?, KANN Holz, Zentralblatt Land- und Milchwirtschaft 67 (1978) 7;5 afb. 936 FUELS FROM BIOMASS, APPROPRIATE TECHNOLOGY, G0DDARD K., 5 (1978) 2, 14/16, Tabn 5 lit. opgn, Omzetting van zonne-energie in biomassa, overzicht van de produkt i e van biomassa door planten, omzetting van biomassa in bruikbare brandstof, omzetting in vloeibare brandstof, gebruik van biomassa in ont­wikkelingslanden (Doe.) PUDOC. 937 COMPUTER PREDICTED COMPRESSION RATIO EFFECTS ON NOX EMISSIONS FROM A METHA­NOL FUELED SI ENGINE, BROWNING LH and PEFLEY RK, Intersociety energy conver­sion engineering conference, 12 Conf, 1977, Proceedings Heri, p.37/43, 14 litt henv, Cassava fuel alcohol in Brazil, p.44/53, 10 litt, henv. Furey RL and Jackson M.W., Exhaust and evaporative emissions from a Brazilian Chevro­let fueled with ethanol-gasoline blends p.54/61, Funk J.E. and Knoche K.F., Irreversibilities, heat penalties and economics for the methanol/sulfuric acid process, p.933/938, 8 litt, henv.

Page 236: Farm and Forest Biomass

­142­

938 INTERNATIONAL SYMPOSIUM ON ALCOHOL TECHNOLOGY, METHANOL AND ETHANOL, Wolfsburg, Nov. 1977, proceedings Hrsg US Department of Energy Washington 1978. 939 CLEAN FUELS FROM BIOMASS AND WASTES : SYMPOSIUM PAPERS, CLEAN FUELS FROM BIO­MASS AND WASTES WHITE, JACK W., Chicago Institute of Gas Technology Sympo. on clean Fuels, from Biomass and Wastes Orlando Fla 1977, Orlando Institute of Gas Technology 1977, Florida, VII 521p., Ill 23cm, LCCN 77369183, lang: engl., includes bibliographies, subfile: other US, Document type : monograph AGRICOLA. a» SKOLEPUBL; LYNGBY, DANMARKS TEKNISKE HOJSKOLE, LABORATORIET FOR ENERGITEKNIK RAPPORT, RE 75­14, Bro: K. Forsog med methanol, ethanol methan brint og ammo­niak med pilotindsprojtning i en forsogsdieselmotor. 1975 62s. Skolepubl. Lyngy, Danmarks tekniske hojskole laboratoriet for energiteknik Rapport RE 75­11, ANDERSEN, H.E.C Motorbrandstoffer fra alternative energi­kilder, introduktion og rsu, é 1975 20s. 5.2. Methanol

942 DEVELOPMENT WORK PRIOR TO THE CONSTRUCTION OF METHANOL SYNTHESIS UNITS OF 1500 METRIC TONS PER DAY MINIMUM, using biomass as a feedstock, contractor DG XII­CEC: BOURNAS et al. Programme 1979­1983, Project E = energy from bio­mass CNEEMA Centre Technique Forestier Tropical, Elf Aquitaine,Total, Energie Développement,Creusot Loire. 943 METHANOL CATALYTIC SYNTHESIS FROM CARBON MONOXIDE AND HYDROGEN OBTAINED FROM COMBUSTION OF CELLULOSE WASTE , MASSON C , BOURREAU Α., LALLEMAND M., SOUIL F., and GOUDEAU JC, Session IV Paper IV/13, Groupe de recherches de Chimie Physique de la Combustion Université de Poitiers ­ Domaine du deffend, Migna­loux­Beauvoir 86800 St Julien l'Ars (France), International Conference on energy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 944 METHANOL AUS BIOMASSE, LITERATURSTUDIE, GERGELY S.M., WIEN, Bundesministe­rium für Handel, Gewerbe und Industrie (Aug. 1979). 945 HERSTELLUNG VON METHANOL DURCH VERGASUNG VON HOLZ, NITSCHKE E. und WEHNER H., Vortrag analBlich der Achema 1979, in Frankfurt/M.

946 CANDÍAN BIOMASS PERSPECTIVE : A NEW INTEREST IN AN OLD FUEL, MARSCHALL James E., Canda dept of the env., presented at Commission of European Communities Biomass for Energy conf. London, Jul 3, 79 Ρ 51 (10), survey report : bio­mass ressources currently supply less than 4% of Canada' primary energy re­quirements. Forest biomass, agricultural biomass and municipal solid wastes were analysed as energy sources in Canada. Forestry ressources dominate the nation's long­term renewable ressource potential for biomass. Methanol is identified as the leaving fuel­from biomass option for Canada. Three biomass conversion options are examined : one relies on biomass alone, one involves a hydrogen donor, and one involves a methane donor. Plant capital and opera­tung costs for each option are considered.Part of canada's S 380millions five­year program for development of solar energy and biomass production is a t 30miIlion program that will permit, by 1985, the use forest biomass to meet as much as 8 % of Canada's total primary energy demand now supplied by fossil fuels (6 tables) ENVIR0LINE.

Page 237: Farm and Forest Biomass

­143­

947 A BIOMASS ALLOCATION MODEL­CONVERSION OF BIOMASS TO METHANOL, AHN Υ.Κ., Äff: Gilbert Associates Inc., Reading PA 19603, USA AMER 24, n°2, p.464/471, 10 ref, Lang: anglais, procédé de conversion de biomasse en methanol. Prix de revient prévu du methanol obtenu à partir de trois sources : paille déchet de bois et résidu de furfurol, présentation et utilisation d'un modèle dé­terministe pour la répartition optimale des matière premières envisagées aux secteurs consommateurs de methanol (centrale électrique transport indus­trie chimique). PASCAL. 948 SOLAR PRODUCTION OF HYDROGEN FUEL, BuiIdg syst. Design USA, 1979, Vol76, n°3, p.19/20, cote 5103, lang : anglais, type TP, LA, conception d'une installa­tion de production d'hydrogène par electrolyse d'eaux usées d'une usine de conversion de biomasse en methanol, ethanol ou autres produits. PASCAL. 949 DU METHANOL A PARTIR DE LA CULTURE DE L'EUCALYPTUS, METHANOL FROM EUCALYPTUS PLANTATIONS, Tech, de l'energ. fra., 1978/1979, n021/22, p.39/41, lang: fran. CC. 730.Α.01.B.05, Aperçu sur la possibilité de produire du methanol à partir d'eucalyptus au Brésil. Besoin de methanol du pays en 1984. Production de bois et surface plantée nécessaires pour cette production. Prix de revient prévisionnel du methanol. PASCAL. 950 MEHT METHANOL DRANGT AUF DEN MARKT, Chemische Industrie, 1978, n°8, 427/432s. 951 METHANOL, Chemical and Engineering News, Vol 56, 9 jian. 1978, s.13. 952 PHOTOELECTROCHEMICAL REDUCTION OF AQUEOUS CARBON DIOXIDE ON P­ΤΥΡΕ GALLIUM PHOSPHIDE IN LIQUID JUNCTION SOLAR CELLS, HALMANN M., Aff: Weizmann Inst. Sci. Rehovot, ISR, Nature GBR, 1978, Vol 275, ne5676, p.115/116, 16 ref. Lang : anglais, Etude expérimentale de la production de formaldehyde ou de methanol par réduction photo­assistée du gaz carbonique. PASCAL. 953 METHANE ET ETHANOL, Le methanol, vecteur d'énergie possible. Dr. BLANQUY, 1978, 10p. Pétrole et Techniques n°252. 954 PROCESS STUDIES ON THE CONVERSION OF METHANOL TO GASOLINE, Industrial and Engineering Chemistry, Process Design and Development, Vol.17, 1978, p.255/ 260, 6 litt. henv. 955 ZWEISTOFFBETRIEB EINES HOCHVERDICHTETEN OTTOMOTORS MIT NORMALBENZIN UND ME­THANOL, PISCHEL H., und PISCHINGER F., Braunkohle, 1978, n°3, s.67/72, 7 litt, henv. 956 A PLAN FOR THE INTRODUCTION OF BIOMASS­BASED METHANOL INTO THE ENERGY ECONOMY WAN Ed., Loca : Sci. Appi. Inc. USA, Jrnl : Proc. Annu Fuels Biomass Symp. 2nd Pubi 78, Series 1, p125/150. Publisher : Rensselaer Polytech., Inst Ad­dress : Troy Ν.Y., Avail : Shuster, William w, Identifiers : methanol manuf biomass. CHEMICAL ABSTRACTS. 957 METHANOL OG "MULTIFUEL" MOTORER, MØRCH S., hvad er methanol ?, Dansk Kemi, Bd 58, 1977, n°3, s.68.

Page 238: Farm and Forest Biomass

­144­

958 A GASOLINE TREE PLANTATION ?, CALVIN M. Agricultural Engineering 58(1977) 11 Nov./ 12/16/ 2 fig. Interview met Dr. Melvin Calvin van het Laboratory of Chemical Biodynamics van de l'Universiteit van Californie/ waarin deze mede­delingen doet over de mogelijkheden om koolwaterstoffen te produceren via de fotosunthese van bepaalde gewassen. Hiermede zouden de Verenigde Staten een deel van hun energievoorziening kunnen dekken. Als voorbeelden worden genoemd alkohol iut rietsuiker/ en olie iut enkele soorten van de familie der Euphor­biaceën, waartoe ook de livea (rubber) behoort. (Doe) PUDOC. 959 MICROBIAL ENERGY CONVERSION/ Ed by­ SCLEGEL H.G. and BARNES J., Λ911, Heri/ Foo.E.L. and Heden CG./ Is a biocatalytic production of methanol a practical proposition ?, s.264/280/ 37 litt. henv. 960 TECHNISCHE ENTWICKLUNG DER METHANOL, SYNTYESE in DER NACHKRIEGSZEIT, s.57/60, 4 litt. Henv. Golemblewski, F.Nevwirth,0. Erfahrungen mit der Lurgi­Niederdruck Methanolsynthese, s.61/63, Schaffrath, M. Die motorischen Eigenschaften von Methanol s.64/69 5litt, henv., Remmets Th, Zukunftsausichten für Methanol als synthetischer Kraftstoff und Brennstoff, s.69/73.

5.3. Alcohol, éthanol

ETHANOL PRODUCTION BY EXTRACTIVE FERMENTATION, MINIER M/ Goma G, Institut National des Sciences Appliquées/ France/ Session 111/ Paper 111/3/ Interna­tional Conference on energy from biomass, Brighton 4­7 Nov. 1980/ Commission of the European Communities/ in cooperation with the Department of Energy; London. 962 A LOW ENERGY SYSTEM FOR THE PRODUCTION OF BIOMASS ETHANOL/ GROUT HJ, ENGLISH M./ Atkins Group Consultants/ Surrey UK, Session III Paper 111/13/ Interna­tional conference on energy from biomass, Brighton 4­7 Nov. 1980/ Commission of the European Communities/ in cooperation with the Department of Energy, London. 963 Schriftliche Mitteilungen der BFH Hamburg vom 4.6 und 27.6.1980, Betreff : Athanol­Kraftstoffgewinnung aus cellulosehaltigen Rest­ und Abfallstoffen. 964 ÄTHANOL ALS ENERGIEQUELLE UND CHEMISCHER ROHSTOFF, Stracosa Gmbh in die Branntweinwirtschaft, Heft 1 1980. 965 ÄTHANOL AUS BIOMASS, Arbeitsbericht der vom Bundesministerium für Handel, Gewerbe und Industrie eingesetzten Arbeitsgruppen, WIEN 1980. 966 RENEWABLE SOURCES OF ENERGY (carbohydrates) COOMBS J., 11p., 1980, Tate S Lyle Ltd, Group Research and Development P.O.Box 68, Reading, Berkshire, R 66 2BX UK. 967 ETHANOL, THE PROCESS AND THE TECHNOLOGY FOR PRODUCTION OF LIQUID TRANSPORT FUEL, COOMBS J., Group Research Development, Tate & Lyle Ltd, Session III, III/K2, International Conference on energy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Communities, in cooperation with the Dept. of Energy, London. 968 346 POWER, from ALCOHOL, BENETT M., Tate and Lyle Times 1979­1980 11 no. 37 winter. Technico­economic factors which influence the prospects for power alcohol production from agricultural crops are

Page 239: Farm and Forest Biomass

-145-

discussed. Particular reference is made to power alcohol programmes in Brazil and other countries and to the suitability of molasses and/or cane juice as raw materials. 969 ETHANOL FROM BIOMASS AS A FUEL FOR THE AUTOMOBILE, BERNHARDT U; MENRAD H, Loca: Forsch. Energietech., Neue Technol. Volkswagenwerk AG Wolfsburg FRG, Jrnl: Branntweinwirtschaft, Pubt:80, Series 120 Issue 6 p.86/91/ Lang: Ger. Identifiers ethanol biomass automobile fuel. CHEMICAL ABSTRACTS. 970 UTILIZATION OF CELLULOSIC FEEDSTOCK IN THE PRODUCTION OF FUEL GRADE ETHANOL/ Yu, MILLER J./ SF Ind Eng. Chem. Prod. Res. Dev. 19(1980) n°Z, 237. 971 ETHANOL/ Eine alternativezur sei nerVerwendung als Brennstoff/ JOHNSON P.J./ Die Möglichkeiten/ Ethanol nicht als Brennstoff/ sondern als Ausgangsmittel zur Erzeugung von Vorprodukten der chemischen Industrie/ wird untersucht Besonders wird die Erzeugung von Ethylen, AcetaIdehyd, Wasserstoff/ Butano1/ Ethylhexanol/ Butadien/ Essigsaure und Essigsaureanhydrid behandelt. 972 ASPEKTE DER ATHANOLGEWINNUNG AUS NACHWACHSENDER BIOMASSE/DAMBROTH M. et al/ AgrarUbersicht 3/1980. 973 PROSPECTS FOR FUELS FROM BIOMASS/ LIPINSKY ES./ Of the numerous types of bio-mass which could be converted into fuels by fermentation or thermochemical processes sugar cane seems especially favourable/ owing to the ease of the fermentation of its carbohydrates to ethanol and the fact that bagasse pro­vides fuel for use in juice extraction and ethanol distillation. Calculations indicate that the process gives a small but perceptible energy gain. Compa­rative costs of fermentation ethanol and petrol are discussed. Non-availabi­lity of fossil fuels may be the factor which governs introduction of the process. 974 ETHANOL FOR FUEL/ PRODUCTION BY ZYMOMANS/ Simplify conversion of agricultural biomass (starch) to ethanol/ a liquid transportation fuel/ by constructing a hydrid bacterium/ zymononae able to degrade the starch and ferment It conti­nuously to ethanol at a high temperature. Approach : thermotolerant Zymomonas strains will be selected, fermentation conditions with starch-derived glucose syrup as substrate will be optimized. Zymomonas cells will be immobilized for conti nous fermentation. Starch degrading pseudomonads will be hybridi­zed with Zymomonas by conjugation/ transformation with isolated DNA/ or trans­formation via plasmid intermediates. Hybrids will be characterized with res­pect to stability, ethanol yields and rate of starch degradation. USDA CRIS. 975 ALCOHOL ENERGY SAVIOR OR WASTREL. JENKINS/ D.M.. The net energy requirements of several processes to manuf. ales e.g. Et Oh from sugarcane from corn/ from corn stover and MeOh 67-56-1 from wood were studied. Fuel required for gro­wing the feedstock and for processing to ale. fuels is considered. Along with total net energy consumption potential savings of petroleum are discussed EtOH from sugarcane and MeOH from wood are energy producers while ETON from consumed in the manuf of 1 Btu EtOH was Estd. at 03 Btu from sugarcane, 12 Btu from corn and 15 Btu from corn stover MeOH from wood consumes 0.45 Btu per Btu product all processes considered consume less energy than coal liquefac­tion, and all can be net producers of liq. fuel if coal is used to generate process heat and electricity. CHEMICAL ABSTRACT a 2/1980.

Page 240: Farm and Forest Biomass

-146-

976 ETHANOL PRODUCTION FROM BIOMASS AVAILABILITY TECHNICAL AND ECONOMIC FEASIBI­LITY IN THE NORTHEAST, Objectives : Develop data base on biomass availability for conversion to ethanol in the Northeast, assess technical and economic feasibility of ethanol production under alternative feedstock, transporta­tion scale, joint production, process fuel, capital and operating cost, by­product and product price scenari, evaluate alternative public policy initia­tives designed to provide incentives for ethanol production. Approach : data collection will be conducted using standard survey techniques and origi­nal source materials. Conventional transportation modeling and Monte Carlo discounted cash flow techniques will be used for the economic analyses based on cost engineering estimates of cost components.CORNELL UNIV.ITHACA.NY-KALTER R.J.. BOISVERT R.N., WALKER L. Period: 11 feb 1980 + 030 Sep. 83. USDA CRIS. 976 ETHYL ALCOHOL PRODUCTION FOR FUEL : ENERGY BALANCE, 0F0LI R., STOUT B.A., Michigan State Univ. USA, Session III Paper 11/12, International conference on energy from biomass, Brighton 4-7 Nov. 1980, Commission of the European Communities, in cooperation with the Department of Energy, London. 977 THE ECONOMIC OF IMPROVING OCTANE VALUES OF GASOLINE WITH ALCOHOL ADDITIVES JAWET^P.lndependant Consultant on Energy Policy 425 East 72 Street, New York NY 10021 USA, Session VII Paper VII/15, International conference on energy from biomass, Brighton, 4-7 Nov. 1980, Commission of the European Communities in cooperation with the Department of Energy, London. 978 NET ENERGY ANALYSIS OF ALCOHOL PRODUCTION FROM SUGARCANE, HOPKINSONS, CS., DAY J.W. Jr, Wash. D.C, American Association for the Advancement of Science, V. 207, (4428) Jan 18. 1980, p.302/304, Land: english. AGRICOLA. 979 BIOMASS ETHANOL AS A CHEMICAL FEEDSTOCK IN THE UNITED STATES, FATHI-AFSCHAR, SAEED, RUDD DALE F., Loca: Chem. Eng. Dep. Univ. Wisconsin, Madison WI 53706 USA, Jrnl: Biotechnol. Bioeng., Pubi: 80 Series 22 Issue 3 p.677/9, Identi­fiers : biomass ethanol chem feedstock. CHEMICAL ABSTRACTS. 980 BIOMASS ETHANOL AS A CHEMICAL FEEDSTOCK IN THE UNITED STATES, FATHI-AFSCHAR, S, RUDD D.F., Biotechn. Bioeng. 22 (1980) 677/99. 981 AGRO INDUSTRIAL SYSTEMS FOR ETHANOL PRODUCTION MC CANN, DJ.PRINCE RGH; Alco­hol Fuels Conf. 1978 4/22-4/30 (eng) Inst Chem Eng. NSW Group Sydney, Austr. Prodn. of EtOH from crops such a cassava sugar beets and sugar cane for use as a power fuel is reviewed with 15 refs. Chemi. Abst. 982 USE OF 95% ETHANOL IN MIXTURES WITH GASOLINE, SCHMIDT A. BAUER H.,Technical Univ. Vienna, Austria, Session VII Paper VII/13, International Conference on ener­gy from biomass, Brighton 4-7 Nov. 1980, Commission of the European Communi­ties, in cooperation with the Department of Energy, London. 983 EFFECTIVENESS OF BIOMASS ENERGY, ENERGY BALANCE IN ETHANOL PRODUCTION, Y0RI-FUJI, T0SHIAKI, Loca: Idemitsu Kosan KK, Tokyo, Japan, Journal: Petrotech (Tokyo) Coden PTRTD3 Pubi 80, Identifiers: review ethanol manuf biomass. CHEMICAL ABSTRACTS.

Page 241: Farm and Forest Biomass

-147-

984 FUELS FROM BIOMASS : ENERGY EFFICIENT PRODUCTION OF ANHYDROUS ALCOHOL, LADISCH M.R., Agency : CSRS IND, 15 MAY 79 to 30 SEP 80, Project : IND46064, Perf Org : Lab. Of renewable ressources engineering, Loca: Purdue Univ Lafayette Ind., Objectives : A new approach is under study whereby the ener­gy needed to produce anhydrous from dilute alcohol is 1/10 of the energy con­tained in the final product. This is possible by combining partial distilla­tion with chemical drying agents. Drying agents incouding metal oxides and hydroxides, sulfate salts and acids, cellulose starch, and cellulosic resi­dues will be studied with respect to equilibrate capacities, optimum condi­tions for use and regeneration durability, and cost. The most suitable will be integrated into a brench-scale process. Successful development will help to give a positive energy balance for production of alcohol from plant mat­ter. Approach : dehydration agent effectiveness will be studied with respect to temperature, vapor rate and starling alcohol concentration. Mass and ener­gy balances will be calculated for the dehydration step alone and for dehy­dration combined with partial distillation. Chemical analysis will be based on gas and liquid chromatography and Karl-Fischer water analysis. Runs will be made with both reagent-grade ethanol as well as fermentation broths. USDA CRIS. 985 DEVELOPMENT OF THE TECHNOLOGY FOR ETHANOL PRODUCTION FROM SUGAR CANE FOR GASOLINE. I evaluation of traditional technology, Garcia Ricardo Rolz Carlos Am. Res. Inst. Ind. Guatemala. Chem. abstr. 986 NOTE SUR L'UTILISATION DE L'ALCOOL COMME CARBURANT, BAUDIN P., Bruxelles, CEE, Sept 79, 8p. 987 LA VOLONTE POLITIQUE DE PRODUIRE DE L'ALCOOL, CAYRE H, Le betteravier fran­çais, 17 déc. 1979. 988 MOTOR FUEL, RONDEAT J., from a still (will maize and sugar cane furnish the gasoline of 2000, biomass, bioconversion, L'essence qui vient d'un alambic (des champs de mais et de canne à sucre fourniront-ils l'essence de l'an 2000 : biomasse, bioconversion, Recherche (France) Sept 79, ISSN 0336-9498, Cllt : V.10 (103) p.908/911. AGRIS. 989 ETHANOL AUS BIOMASSE ALS ZUKÜNFTIGER KRAFTSTOFF FOR AUTOMOBILE, l'ethanol tiré de la biomasse futur carburant pour les automobiles, Ethanol from bio­mass as future fuel for automobiles, BERNHARDT VU, MENRAD H,KONIG A.Wolkswagenverk AG, Wolfsburg, 3180, Deu, Starch, Deu, 1979, Vol 31 n°8, p.254/259, résumé engl. 17 ref;, lang: all., Quantités nécessaires de diverses plantes pour la production d'un litre d'éthanol. Bilan énergétique de production et d'utilisa­tion dans une automobile d'éthanol produit à partir de Manioc, de canne à su­cre et de mélasse. Essais d'automobiles à l'éthanol : consommation spécifi­que et émission de poLluants comparés aux moteurs à essence. PASCAL. 990 ÄTHANOL AUS BIOMASSE, GERGELY S., im Auftrag des Bundesministerium für Handel Gewerbe und Industrie, Wien 1979.

Page 242: Farm and Forest Biomass

148

991 THE BRAZILIAN NATIONAL ALCOHOL PROGRAM. GOCHNARG I. Cidade Univ. BRASIL. Presented at Commission of European Communities biomass for energy conf. London, Jul 3, 79, Ρ 30 (31). Survey reporti the main objective of the brazilian nat'L alcohol program is to reduce Brazil's imported crude oil bill by extending gasoline, blending it with agriculturally produced ethyl alcohol to the extent of 20% in volume. The national energy balance forecast indicates that annual anhydrous alcohol consumption for automotive purposes should increase from 1.73 million CU M in 1978 to 4.7 CU M in 1987. Problems connected with alcohol production, distribution and utilisation are discussed. Indirect benefits resulting from the implementation of the Nat'I alcohol program are described, including improvement of national technology in the agricultural and industrial sectors. Expansion of capital goods production, reduction in regional and individual income discrepancies and substantial increase in employment opportunities (2 graphs, 45 ref, 7 tables). ENVIROLINE 992 GAS0H0L PROGRAM IN BRASIL. YANG (V.); TRINDADE (S.C.) Chen. Econ. Engng. Rev. JPN. Date 1979; vol. II No. 3; p.: 12­19; 7 ref; langue: anglais. Analyse économique du développement de la production d'ethanol au Brésil, en vue de son utilisation dans les mélanges carburants éthanol­essence PASCAL 993 BRAZIL'S GAS0H0L PROGRAM. YANG (V.); TRINDADE (S.C); Aff.: Centro de tecno­logia promon, Rio de Janeiro, BRA. CHEM. ENGNG PROGR.: USA. Date 1979; vói. 75; no.: 4; p.: 11­19; 9 réf.; langue:anglais. Evolution de 1950 à 1977 de la production d'ethanol par fermentation au Brésil. Prévision pour 1985. Procédés de production à partir de la canne à sucre et du manioc. Analyse économique d'usine de production à partir de la canne à sucre et du manioc. PASCAL 994 NATIONALE ALKOHOL­POLITIK (POLITICA NACIONAL 00 ALCOOL) DE ALMEIDA, H.: Brasil Açucareiro 96 (1979) 177­184 Wiedergabe einer Rede zum IV Curso de Introdução höherer Offiziere der Streitkräfte am 22.8.79 in Brasilia. Bis 1985 sollen jährlich 9,2 Mio. m3 Ethanol, davon 6.1 als Kraftstoff und 3.1 als Kraftstoffzusatz, produziert werden und 1.5 Mio. m3 för Industrie und Chemikalien. Zu den bestehendern Ethanolgewinnungsanlagen sollen 200 weitere errichtet werden. Als Rohstoff sollen dienen: Zuckerrohr, dessen Ertrag um 20% gesteigert werden soll (z.B. durch neue Sorten), Maniok, Sorghum, jedoch auch andere geeignete Stoffe, wie Holz, landwirtschaftliche Abfall oder Nebenprodukte, die erprobt werden, ref. Zuckerind. 105 (1980), S. 414. 995 BRAZIL POINTS WAY TO RELIEVE AUSTRALIAN ENERGY PROBLEM. SCOTT (W.E.). Energy Intenation; USA; Date: 1979; vol: 16; no: 7; p.: 42­44. Procédé de production d'ethanol à partir de mélasses utilisé au Brésil. Production prévue en 1980; subventions du gouvernement australien en matière de recherche pour la production d'ethanol. PASCAL.

Page 243: Farm and Forest Biomass

149

996 ALCOHOL FROM CASSAVA IN BRAZIL : PESTS THREATEN YIELDS.SAMWAYS M. ESCOLA SUPERIOR DE AGRICULTURA DE LAVRAS, BRAZIL - WORLD CROPS -sept oct 79 V31 N5 Ρ 181 (4), feature article : as part of Brazil's nat'I alcohol nroqram cassava and suqar cane are being qrown on plantations for alcohol production, the nat'I alcohol nroqram is outlined and mechanisms involved in the bioconversion of cassava to ethyl alcohol are discussed. Although cassava is a renewable ressource insects and Dlant diseases can cause severe damane in leaves and shoots, thereby reducing cassava yield promiment pest species of cassava in minas gerais Brazil are tabulated ENVIROLINE 997 PERSPECTIVES ON THE ECONOMIC ANALYSIS OF ETHANOL PRODUCTION FROM BIOMASS PREBLUDA HJ,WILLIAMS R,aff. Roner Williams technical ?■· economic services inc. Princeton NJ 08540, USA - AMER. CHEM. SOC. DIV. PETROLEUM CHEM. PREPR. USA Date 1979, Vol 24, ne 2 p. 481-487 22 ref. Ianque anqlais avantaqes et inconvénients de l'éthanol utilisé comme carburant. Prix de revient de l'éthanol produit par fermentation des matériaux suivants : céréales, déchets de bois, canne à sucre, manioc PASCAL 998 BIOMASS ENERGY FOR HAWAII - MURATA D, aff. energy o+fice, honolulu HI 96804, USA - AMER. CHEM. SOC. DIV. PETROLEUM CHEM. PREPR. USA date 1979 Voi 24, N° 2 p. 497-499 5 ref. - Description du procédé de production et éthanol par fermentation à partir de molasses. Prix de revient de l'éthanol produit dans une installation pilote de 3600 Gallons/jour à Hawai PASCAL 999 LIQUID FUEL NUTRIENTS AND PURE WATER FROM BIOMASS CONTAINING RESIDUE LANG. JOHN L. Location USA - Journal Braz. Pedido PI Pubi. 791218 paqes 16pp language Port, patent ηβ 78 03762 applic. ηβ 78/3762 date 780612 class. C12C11/08 C05F7/00 - identifiers ethanol fermn cellulose waste CHEMICAL ABSTRACTS 1000 ENERGY AND THE PUBLIC (ALTERNATIVE FUELS) - SKLAR SCOTT - Natl center for appropriate technoloqy wash dc, presented at doe/et al 6TH annual energy conf. (WATEC) Tennessee, Feb 21-23 79, P85 (5) commentary : the development of alternative fuels for transportation is considered, private inventors already have developed automobiles that run on *uel produced from agricultural crops, crops can be used "Or both fuel production and food consumption producing alcohol from crops and runninq automobiles on alcohol fuel are technoloqically and economically feasible- ENVIROLINE -1001 CTRY : USA TYPL : J/AS - Lano. En - SUBC : P05 - Auth GREGOR H.P., JEFFRIES TW TITL : ETHANOLIC FUELS FROM RENEWABLE RESSOURCES (plant biomass) IN THE SOLAR AGE - JRNL : Annals of the New York academy o* Sciences (USA) - Henniker, New Hampshire (USA) 1978 - IMPR ;(1979) ISSN : ISSN 0077-8923 - Note : ill. 12 ref. - US (NAL SOO N484) CLLT : v. 326 p. 273 -287 AGRIS

Page 244: Farm and Forest Biomass

150

1002 Presented at qeothermal ressources council 3rd annual meeting Reno sent. 24­27, ?9 V3 P241 (4) ­TECHNICAL REPORT ï geothermal energy ressources can be utilized to supply the thermal energy requirements of ethanol producing facilities. The production of ethanol requires maximum qeothermal brine temperatures of 350 F 1f corn or wheat is the initial raw material. This application is economically competitive with the use of fossil fuels. The processes of distillation and fermentation, augmented by qeothermal energy, are described. Geothermal energy can be supplied at a cost of % 2.38 and $ 2.29 per million BTU delivered for ressource temperatures of 350 F and 275 F respectively (3 diagrams, 5 references, 1 table) ENERGYLINE 1003 MATERIAL AND ENERGY BALANCES IN THE PRODUCTION OF ETHANOL FROM WOOD WAYMAN M., LORA J.,GULBINAS E., ­ aff: univ.TORONTO dept. chem.enrg.Toronto Ontario M5s 1A4 CAN A.CS. SYMP. SER USA date 1979 vol 90 p. 183­201, 23 ref. ­ Etude des balances matière et en energie dans la production d'éthanol à partir de bois de temblé soit par hydrolyse acide soit par hydrolise enzymatique. Analyse économique d'une installation produisant 10 millions de gallons par an l'un ou l'autre procédé. PASCAL 1004 DISTILLERY FUEL SAVINGS BY EFFICIENT MOLASSES PROCESSING AND STILLAGE UTILIZATION ­ KUJALA ­ Alfa­Laval AB, TUMBA, SWE SUGAR Y AZÚCAR USA date 1979 vol. 74 n° 10 ρ; 13­16, 7 ref langue anglais description de procédés de prétraitement de mélasses avant fermentation et de dépollution et utilisation de distillais dans la production d'éthanol. PASCAL 1005 UTILIZATION OF DISTILLERY WASTE ­ KAUSHAL KISHORE JAIN AK, SHANKER 6. SHUKLA SD H.B. Technol. Inst. Kanpur 208002, IND ­ Chem. age India 009­7320, Ind. date 1979 vol 30 n° 9 ρ 823­826 8 ref. langue anglais ­ présentation de diverses méthodes d'utilisation de résidus de distilleries produisant de l'alcool à partir de mélasses en particulier oar dinestion anaerobie PASCAL 1006 REGENERABLE ENERGY FROM SUGAR GREEN GASOLINE ­ KAMPF H­ sugar y azúcar USA, date 1979 vol 74 n° 10 p. 17­19 ­ résumés de 26 communications sur 50 présentées à une table ronde sur l'éthanol tenue à Vienne en mars 1979 sous l'égide de l'UNIDO PASCAL 1007 ALTERNATIVES FOR ENERGY SAVINGS AT PLANT LEVEL THE PRODUCTION OF ALCOHOL FOR USE AS AUTOMOTIVE FUEL ­ ESPINOSA R. ,C0JULUN V., MARROQUIN F. ­ aff. destiladora de alcoholes y rones SA, Santa Lucia Cots; GTM Biotechnol Bioengn symp; USA date 1979 n° 8 p. 69­74 5 ref Tsymposium on technology in energy production and conservation 1/1978/qat Unburn TN langue anglais ­ étude expérimentale d'améliorations à apporter à la production d'éthanol par fermentation de mélasse en vue de diminuer la consommation d'énergie. PASCAL

Page 245: Farm and Forest Biomass

151

1008 ALCOHOL AS FUEL XAN OIL INDUSTRY VIEW (includes ethanol produced from sugarcane and other crops) Sydney, Pacific publications (Aust) Powder farminq magazine v. 83 c(3) Har 1979, p. 11-1? - ISSN 0O3?-5996 languages English document type : article AGRICOLA 1009 ELECTROCHEMICAL ELECTRICITY from ethanol - Alternative Sources of Enerqy febr. 1978, p. 22-26. 1010 ETHANOLIC FERMENTATION DURINO ENZYMATIC HYDROLIS OF CELLULOSE MEYERS S.G. aff. U.S. Army natick res. development command pollution abatement division, natick MA 01760,USA - A.I. CH.E.SYMP. SER. USA Date : 1978 vol. 74 n° 181, p. 79-83 15 réf. étude expérimentale de la possibilité de combiner la fermentation par levure avec la saccharification enzymatique de la cellulose pour la production d'éthanol PASCAL 1011 COMPARISON OF STIRRED AND IMMOBILIZED CELL REACTORS FOR ETHANOL PRODUCTION SITTON 0G,GADDY J.L.,univ. Missouri dep. chem. eng. Rolla MO 65401, USA Annual conference on energy 5/197S/R0LLA MO : USA ed. Rolla university of Missouri-Rolla extension division dates s.d. p. 192-199, 12 ref. Ianque anglais - étude expérimentale comparative de la vitesse de production d'éthanol à partir du glucose par saccharomyces cerevisiae dans une colonne à garnissage et dans un réacteur à agitation PASCAL 1012 BIOCONVERSION OF PLANT BIOMASS TO ETHANOL SU T.M.-aff. C-Ε LUMMUS, Bloomfield schenectady NY 12301, USA A.I.CH.E. Symp. ser. USA date 1978, Voi 74 n° 181, p. 75-78 10 réf. langue anglais - revue des éléments principaux du prix de revient de la production d'éthanol par bioconversion multietagée de fibres cellulosiques. Premiers résultats d'essais de laboratoire de fermentation directe à l'aide de cultures de microorganismes thermophiles Clostridium thermocellulum procédé susceptible de réduire le prix de revient de l'éthanol PASCAL 1013 DEHYDRATE ETHANOL TO ETHYLENE - TSAO U., REILLY J.W.-aff. C-Ε LUMMUS, BLOOMFIELD Hydrocarbon Progressa; USA date 1978, Vol 57 ne 2 p. 133-136, 2 réf. langue anglais - l'éthanol obtenu par fermentation de produits aqricoles peut fournir une voie de synthese comnétitive de I'éthylène. Description technique et schéma d'écoulement du procédé mis au point par lummus pour cette synthèse PASCAL 1014 COMPARATIVE ECONOMIC ASSESSMENT OF ETHANOL FROM BIOMASS MITRE CORP Metrek Division - United States Dent of Energy division of solar technology - Washington US dept of Energy Assistant secretary for District of columbia - xiv 126 p. i11 28 cm United States - Dept of Energy - Division of Solar Technology - HCP/ET : 2854 lang. English AGRICOLA

Page 246: Farm and Forest Biomass

152

1015 ENZYMATIC HYDROLISE OF CELLULOSE AND SIMULTANEOUS FERMENTATION TO ALCOHOL BLOTKAMP P.J., TAKAGI M, PEMBERTON M.S., EMERT G.H.- aff. Gui I oil chemical co, Merriam KS 66202, USA -A.UCH.E.SUMP.SER.USA date 1978 vol 74n.181 p.85-90 14 ref Etude experimentale en vue d'optimiser la production d'éthanol à partir de la cellulose par hydrolyse enzymatique et fermentation simultanée. 1016 FOOD AND ENERGY CROP SYSTEM-CERVINKA V,R0LLINS G.S, SCHWEICKART V.L,aff.California dep. food, agrie, long-range planning, sacramento ca, USA - Α.I.CH.E. SYMP. SER. USA date 1978, voi. 74 n° 181, p. 6-1? langue Anglais ETUDE de praticabilité technique et économique de la production d'éthanol et d'autres sources d'énergie à partir de déchets agricoles et de cultures énergétiques PASCAL 1017 BIOCONVERSION OF PLANT BIOMASS TO ETHANOL - BROOKS, RONALD E, BELLAMY, U. DEXTER United States - dept of Energy, Division of Solar Energy (Washington) dept of Energy, Springfield, va for sale by the National Technical Information Service 1978 DISTRICT OF COLUMBIA - v. ill : 28 cm languages english -bibliography p. 132-137 - subfile : other us (not exp. stn, USDA, Since 12/76) Government Source : FEDRAL - document type : Monograph AGRICOLA 1018 BIOMASS CONVERSION - HSE COMM COMMERCE GOVT OPERATIONS HEARINGS 95 CON 2 APR 14 78 (163)-Hearing transcript: Hearings were held to evaluate the status of the biomass conversion research, being conducted by the Dr. George TSAO, director of purdue umv's renewable ressources engineering lab. specially considered was the viability of moving to larqe-scale production of alcohol fuels. Using the purdue cellulose hydrolisis process. During the next few years , cost analyses of ethyl alcohol production from corn, molasses, and suqar cane were examined Testimony was elicited from george Τ Tsao and Fred N. Andrews of purdue univ. Russell arndt of the nat'I corngrowers assn, and representatives from usdi and the U.S. battelle memorial inst. memoranda related documents reports, and statements are transcribed (numerous graphs, tables, references) ENERGYLINE 1019 DANSKE MED I ALKOHOLPROJEKT I BRASILIEN - INGENIOREN, 1978, nr 6, S.4 1020 ENERGY FROM AGRICULTURE - MEARS LG,Environment: USA, date 1978, vol: 20 n° 10, p. 17-20, langue anglais - programme de production d'éthanol au Brésil à partir de molasses, de canne à sucre et de manioc. Calcul de la surface nécessaire pour la production de 240 000 M(3) d'éthanol PASCAL 1021 LARGE-SCALE PRODUCTION OF ALCOHOL FROM BIOMASS (including algae, cassava and sugarcane) energy budget, economics, and constraints. Inden P. WAGENER, K. Rio de Janeiro, 0. Academia, Anais Academia Brasileira de Ciencias, v. 50(4), Dec 1978, p. 493-498 ISSN 0001-3765 - Languages : english - 11 ref - document type article AGRICOLA 1022 THE USE OF ETHANOL FROM BIOMASS AS AN ALTERNATIVE FUEL IN BRAZIL -Author : Heitland, H. Czaschkle, H.W. Pinto Ν - location Volkswagen Brasil, Sao Paulo, Brazil - journal Proc - Int Symp. Alcohol Fuel Techno Methanol Ethanol - pubi. 78 Issue CONF 771175 - pages : 1-3, 18 pp. Meeting date : 77 - Publisher NTIS - Address : Springfield Va, Identifiers

Page 247: Farm and Forest Biomass

153 ethanol fuel biomass Brazil, sugarcane ethanol fuel Brazil, manioc, ethanol fuel Brazil. CHEMICAL ABSTRACTS. 1023 A CANADIAN VIEWS ALCOHOL AS A FARM FUEL, Agricultural Engineering, Vol 59, 1978, n°5, s.12/14. 1024 ALCOHOL, BARFOED HC, Dansk Kemi, bd 58, 1977, n°7, s.231/233. 1025 PRODUCTION AND USE OF GRAIN ALCOHOL AS A MOTOR FUEL, an evaluation, KLOSTERMAN Farm Research 35 (1977) 2:3-9 afb 9 lit opgn, Het gebruik van graanalkohol als motorbrandstof kan onze fossiele energiebronnen niet sparen omdat de be­nodigde energie voor het vrijmaken van brandstof uit graan veel meer energie vraagt dan het tot nu toe oplevert (Doe). PUDOC. 1026 ALCOHOLS AS ALTERNATIVE FUELS FOR ONTARIO, SCHWARTZ NV, Chemistry in Canada, febr. 1977, s.27/28. 1027 ETHANOLIC FERMENTATION DURING ENZYMATIC HYDROLYSIS OF CELLULOSE, MEYERS,SG, aff: Natick army res. dev. Command. Natick, Mass. In, Pacific ehem. eng. congr. 2 proc, Denver Colo, 1977, New York, Ed. Am. Inst. Chem Eng, S.D., Vol 2, p.781/785, 9 langues : anglais. Etude expérimentale de la compatibilité entre la fermentation productrice d'éthanol et la saccharification de la cellulose. PASCAL. 1028 SUGARCANE VERSUS CORN VERSUS ETHYLENE AS SOURCES 0F ETHANOL FOR MOTOR FUELS, AND CHEMICALS, LIPINSKY E.S., Reserve LA, Proceedings, New Series American Society of Sugar Cane Technologists, V.7, 1977 (pub. June 1978) p.152/162, Language : english, 9 ref, Documents type : Article. 1029 PRODUCTION D'ALCOOL D'ORIGINE VEGETALE, BLANCKE. P,HACHE J,SANTON JP,TURCKHEIM N.de Société Bertin et Cie Plaisir (France) Rapport Final, 1975, 11.1975 S1 221p. Etude de la faisabilité d'une production d'alcool éthylique à partir de plan­tes en France, production actuelle d'alcool matières premières prix coût, bilan énergétique. Autres possibilités offertes par les denrées alimentaires, les matières cellulosiques, procédés, coût bilan économique, utilisation des pailles, utilisation de l'éthanol RESEDA. 1030 BIOCONVERSION OF WASTES TO HIGHER-VALUED ORGANIC CHEMICALS,COMPERE A.L.,GRIFFITH W.l aff: Oak Ridge nati Lab. Oak Ridge, Tenn. 37830, USA in; Energy conserv. Natl forum, symp. proc. Fort Lauderdale Fla 1975, coral Gables Ed. Clean Energy res. inst. date : S.D., p.181/195, 17 réf.. Cote Y013095, lang: angl. types Tl, SC, LA DU, Différents produits organiques actuellement issus du pétrole et du gaz naturel, et pouvant être obtenus par fermentation. Carac­téristiques du procédé anflow, qui utilise un bioreacteur anaérobie a lit fixé, et permet une fermentation continue des déchets liquides. PASCAL.

5.4. Gasohol

1031 GEGENWARTIG WENIG AUSSICHTEN FOR DEUTSCHES GASOHOL, in BMFT Mitteilungen Heft 2, 1980.

Page 248: Farm and Forest Biomass

154 1032 HOW TO BEAT OPECS HOLD ON DIESEL FUEL, NELSON,M.J., Irrigation age, Janv. 80, V14, N°4, p15 (3), feature article : to reduce US dependence on Opec oil, supplies, ethanol production techniques are being developed efforts by va­rious universities and private individuals in producing alcohol fuels, such as gasohol and diesohol, from grains and vegetables are reported. Work to modify the diesel engine to run on alcohol fuels is examined. While vege­table and grain fuels are not yet cost­competitive with diesel oil, expected increases in Opec oil prices will soon change this situation (2 photos) descriptions alcohols : transportation fuel : diesel ENVIROLINE. 1033 GASOHOL : THE CONTROVERSAL FUEL, OLSEN's Agribusiness Report (1979) 2 : 1+2, Gasohol benzine met 10% ethyl alcohol) kan gebruikt worden om de behoefde aan minerale olie te verminderen de bonidgde alcohol zou uit planten kunnen worden gemaakt, de efficiëntste bron zou sorghum zijn dan wel suikerriet. Mais en cassave komen ook in aanmerking. Produktie op grote schaal van ethanol zou een groot aanbod van fermentaţie residuen (DDG) betekenen, welke de krachtvoermarkt zou kunnen overstromen en depriys van soya zou drukken. De priys van niet voor de consumptie geschikte melasse is al verdubbeld omdat Brazilië deze molasse niet meer exporteert, maar in ethanol omzet (Er is een uitgebreide bibliografie beschikbaar van Olsen Ass.over gasohol voor 35 s.) PUDOC. 1034 GASOHOL FOR ENERGY PRODUCTION, CHEREMISINOFF Nicholas P.,Ann Arbor Mich., Ann Arbor Science Publishers 1979, Michigan, 140p., 24cm, Energy Technology Series LCCN 79088919 ISBN 0250403250, Nal TP358.C5, lang: english, bibliography p.107/127, Subfile other US, (not exp. stn. USDA since 12/76) document type monograph AGRICOLA. 1035 GASOHOL, New role for food industry (Ethanol production from agricultural pro­ducts and wastes as source of fuel) Elias S, Radnor, PA, Chilton Co, Food Engineering V. 51 (10) Oct 1979, p.61/65, ISSN 0015­637X­, lang: english. AGRICOLA. 1036 GASOHOL : DOES IT OR DOESN'T IT PRODUCE POSITIVE NET ENERGY ?, CHAMBERS, HERENDEEN R.A., JOYCE J.J., PENNER P., Univ of Illinois, science Nov. 16, 79 V 206, n°4420, p.789 (7), Technical report : a detailed analysis of energy inputs and outputs is applied to grain­based gasohol. The energy used to pro­duce gasohol is compared with the net energy gain from the fuel product. E­nergy inputs include agricultural and processing energies in terms of non­renewable energy, gasohol is close to the energy break­even point (1 diagram 1 graph, 47 references, 3 tables) ENVIROLINE. 1037 GASOHOL A NEW FUEL SOURCE FROM MOTHER NATURE, compressed air, Nov. 79, v 84, n°11, p.8 (4), feature article : the development of gasohol from its use in Henry Ford's car to its use in 600 pumping stations in the midwest is re­viewed. The benefits of gasohol­higher octane, reduced engine dieseling coo­ler and cleaner burning. Reduced heat build up, less friction, and reduces pollutant emissions are weighted against its uncertainties­storage problems high cost, and the high amount of energy required to produce it. A gasohol project currently being carried out by the archer daniels midlands co of decatur ill. Is described (1 diagram, 3 photos) ENVIROLINE.

Page 249: Farm and Forest Biomass

­ 133 ­

1038 GASOLINE DOES, TOO, MIX WITH ALCOHOL, SCHELLER W.A., MOHR Β.J., äff: dep.chem.Univ. Nebraska, Lincoln, Nebr 68503 USA, Chem Techn USA, 1977, Vol 7,n°10, p.616/623, 11 ref; lang : angl. Performances d'automobiles utilisant un mé­lange à 10% d'éthanol dans de l'essence sans plomb/ Méthode de production d'éthanol par fermentation de céréale. Analyse économique. Projet d'une usine produisant 20 millions de gallons par an (Nebraska). PASCAL.

5.5. Methane

1039 ETUDE DE FAISABILITE D'UNE INSTALLATION METHANIQUE POUR LA COOPERATIVE D'E­LEVAGE DE LA LOIRE, B0URGUET S.M., LANCEL L., DUCR0S S.M., Société Technim Paris, Colloque International CENECA, Paris, 27/29, Fév. 1980, p.426. France Méthane, expérimentation déjection animale. 1040 QUELQUES REFLEXIONS EN 1980 SUR LA PRODUCTION DE METHANE D'ORIGINE AGRICOLE JAYET P.A., SOURIE J.C., INRA Paris, 12p;, 1980 1041 ECONOMISER ET PRODUIRE SON ENERGIE, POURQUOI PAS VOUS ?, Biogaz., Luquet, Pâtre, Mars 1980, 21/24. 1042 LA PRODUCTION ET L'UTILISATION DU BIOGAZ, Die Erzeugung und Verwertung von Biogas, Die Landtechnische Zeitschrift, Avril 1980, p.550/555 1043 CHANCEN FUR BIOGASANLAGEN ?, BONFIG R., in LZ Rheinland, n°1/1980. 1044 TECHNIK UND BAU IN DER TIERHALTUNG, DOHNE E., Les installations de biogaz (avec plans) Biogasanlagen, ­implantation industriel­, Tierzüchter, Fév. 1980 p.74/76 1045 THE UTILIZATION OF BIOGAS FOR ELECTRICITY, DOHNE E., Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), Bartningstr. 49, D 6100, Darmstadt Kranichstein Session VII Paper VII/10, International Conference on energy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Communities in co­operation with the Department of Energy, London. 1046 UTILISATION POSSIBLE DU BIOGAZ.POSSIBILE UTILIZZAZIONE DEL BIOGAS, BIONDI, Informatore Zootecnico, 30 Avril 1980. 1047 USES OF BIOGAS FOR ELECTRIC AND MECHANICAL POWER GENERATION, PICKEN D.J., M.A. Ph.D., C.Eng., and FOX M.F., B.Sc, C. Chem, Leicester Polytechnic. Session VII Paper VII/9, International conference on energy from biomass, Brighton 4­7 NOV. 1980, Commission of the European Communities in co­operation with the Department of Energy, London. 1048 METHANE FROM AGRICULTURAL WASTES AND FROM ENERGY CROPS, COLLERAN E., DUNICAN L.K., University College, Galway, Ireland, Contractor DG XII­CEC, Programme 1979­1983, Project E = Energy from biomass. Déchet agricole et culture éner­gétique. 1049 BIOGAS, BILLEMONT J., Belgique, Pubi Class: Jrnl. Chem Mag. (Ghent) Pubi 80, Series 6, Issue 2, p.21/23/25, Lang : Neth. Identifiers review methane fermn. CHEMICAL ABSTRACTS.

Page 250: Farm and Forest Biomass

­156­

1050 MINAG PERIO, HAURIE M., Interview de G. Ducellier, Protagoniste du gaz de fumier, la journée vinicole (FRA). Ν.15541, 1979/06/09, P.1/2, Le point sur le gaz de fumier, source énergétique RESEDA. 1051 STATE 0F ADVENCEMENT IN STUDIES AND PROSPECTS FOR METHANE PRODUCTION. LE CALL J., Centre national de la Recherche scientifique., Ctru XE­FR, Typl: B/AM, Lang: Fr, Sube: P05, Paris (Fra.), Programme PIRDES, Projet Biocombus­tibles Solaires, Corp : Association pour la Promotion Industrie­Agriculture 75 Paris. 1. Biochemistry and microbiology of methanogenesis. Etat d'Avan­cement des études et perspectives pour la production du méthane, 1. Biochimie et microbiologie de la méthanogenèse. Mttl : Energy valorization of agricul­tural by­products. Results and balance­sheets of actions of VEDA commission ­ Energy valorization of agricultural wastes. Meeting 13/14 03 1979, Paris Fran., Valorisation énergétique des sous­produits agricoles. Résultats et bilans des actions du comité VEDA (valorisation énergétiques des déchets agricoles) Journées d'études et de reflexions, 13/14 mars 1979, Paris, FRA. Conf: Journées d'Etudes et de Réflexions ­ Direction générale à la Recherche Scientifique et Technique (DGRST) 75 Paris, FRA. Impr : 75 Paris, APRIA, 1979, Cote : 14 réf. Cllt : p.83/96. AGRIS. 1052 STATE OF ADVANCEMENT IN STUDIES AND PROSPECTS FOR METHANE PRODUCTION. 2. ECOLOGICAL ASPECTS OF METHANE PRODUCTION. Etat d'avancement des études et perspectives pour la production du méthane. 2­ Aspects écologiques de la production de méthane. RAIBAUD P., CLARA Α., Inra Centre National de Recher­ches Zootechniques, 78, Jouy­en­Josas (FRA°, Lab. d'Ecologie Microbienne. Crty : XE­FR, Typl B/AM, Lang : Fr, Corp : Association pour la Promotion Industrie­Agriculture, 75 Paris, (FRA). Mttl: energy valorization of agricul­tural by­products, results and balance­sheets of actions of VEDA commission, Energy valorization of agricultural wastes), Meeting 13/14 march 1979, Paris (FRA) Valorisation énergétique des sous­produits agricoles ­ résultats et bilans des actions du comite VEDA, (valorisation énergétiques des déchets agri­coles), Journées d'études et de réflexions, 13/14 mars 1979, Paris (FRA). Conf: Journ. d'études et de réflexions. Direction générale à la Recherche Scientifique et Technique, (DGRST), 75 Paris (FRA), 13/14 Mar 1979, Impr : 75 Paris (FRA) APRIA, 1979, Cllt : p.97/113, AGRIS. 1053 ETUDE DES POSSIBILITES NETHAN0GENES DES DEJECTIONS ANIMALES (FUMIER ET LISIER) Methane production from animal manure, SALMON­LEGAGNEUR E., ZELTER S., R0US­TAN J.L., Institut national de la Recherche scientifique, agronomqiue­Services centraux 149, rue de Grenelle, 75007 Paris (FRA). Centre national de recherches zootechniques ­ Domaine de Vilvert, 78350, Jouy­en­Josas, Yvelines, Station de recherches dur l'élevage des porcs.. Developing effi­cient methods for processing by­products and wastes superfluous dung and urine, domestic animals in general; organic chemistry, processing. AGREP. 1054 L'EDF ET L'ENERGIE VERTE, La vocation de l'agriculture française est la pro­duction et l'exportation d'aliments de qualité et non la production massive de simples combustibles, 8p., Le mois de l'environnement, octobre 1979. 1055 PRODUCTION DE METHANE A PARTIR DE DECHETS D'ABATTOIR, Revue "la Récupération" n°4, 26/1/1979,

Page 251: Farm and Forest Biomass

1056 UTILISATIONS PRATIQUES DU METHANE, Le pont , fév. 1979, 80p, 24 F, Ed de la Lanterne, 5 rue du Lac, Magny­Vernois, 70200 Lure. 1057 LE MONDE 18.11.79,SOURIE J.C., Résumé : il n'y a pas encore en France d'Ins­tallations de fermentation suffisamment fiables qui puissent fournir des indications économiques sérieuses. 1058 BIOGAS UNITS (Energy sources), Biogasanlage, BI0LLEY R., Zürich, Schweizeri­scher landwirtschaftlicher Verein, Die Gruñe V 107 (42), Oct. 19 1979, p.17/19, ill, NAL : 17 SCH9, Langue : GERMAN. AGRICOLA. 1059 NEW PROSPECTS FOR BIOGAS UNITS, Neue Chancen für Biogasanlagen, BONFIG R., München BLV Verlagsgesellschaft, DLZ V.30 (11) Nov 1979, p.1548/1552, ill, ISSN 0011­5010, NAL 58.8. T677, Langue : German. AGRICOLA. 1060 BIOGAS : WUNSCH UND WIRKLICHKEIT, GENZMER W., in Betriebswirtschaft Nov. 1979. 1061 GREAT PROGRESS IN BIOGAS, Grosse Fortschritte mit Biogas (Schweizerische Milchzeitung) 1979, 105.29. 196, Langue : DE, Recent developments in biogas are reported briefly including complete installations for biogas production electricity generation using a gas­driven car engine, prefabricated concrete digesters, and studies on the use of bottled biogas for driving engines. CAB ABS. 1062 A BIOLOGICAL SOURCE OF ENERGY, PRACTICAL USE OF METHANE IN CHINA, GAVINELLI C , Una fonte biologica d'energia : l'uso pratico del metano in Cina, Ctry: XE­IT, typl: J/AS, Lang : It, Sube : P05, Jrnl : Acqua Aria (Italy), Impr : May 1979, Ctlt : n°4 p.319/320. AGRIS. 1063 C E ANCHE IL BIOGAS, ORLANDI F.,4p­1979, Méthane ­ Digestion anaerobi e. 1064 PERSPECTIVES IN RECYCLING EFFLUENTS AND ORGANIC METHANE RESIDUES BY ANAERO­BIC MICROBIO FERMENTATION (Fuel gas from agricultural and industrial wastes). SUYS I., AUQUIER C , BINOT R., DELAFONTAINE M., SPEGELAERE P., NAVEAU H., NYNS E.J., (Univ. Catholique de Louvain, Louvain­la­Neuve (Belgium) Lab. des Polymeres Naturels et Lab. d'Enzymologie Appliquée). 3. Cost estimation of methane bioproduction, industrial prospects. ¿Perspectives nouvelles du re­cyclage d'effluents et de résidus organiques en méthane par fermentation microbienne anaerobie, 3 estimation du coût de production du méthane biologi­que. Jrnl: Technique de l'Eau et de l'Assainissement (Belgium), ctry : XE­BE, Typl : J/AS, Lang : Fr, Sube : P05 TOO, Impr : May 1979, ISSN 0040 120X, Note 33 réf., Cllt : n°389, p.29/33. AGRIS. 1065 QUAND ON REPARLE DU GAZ DE FUMIER, Le Sillon belge ηβ1907, Sept 1979. 1066 PRODUCTION DE CARBURANT VEGETAL EN BELGIQUE, Du biogaz en Belgique, Le Sillon belge, n°1916, Nov 1979. 1067 CONSIDERATIONS SUR UNE PRODUCTION DE METHANE A LA FERME, Rapport 1979, Sta­tion de chimie et de physique agricoles de Gembloux.

Page 252: Farm and Forest Biomass

­158­

1068 ALTERNATIVE ENERGY AND ENERGY CONSERVATION IN THE DAIRY INDUSTRY <Biogas/ solar energy). Lang : Fr, Lang : A, London, National Dairymen's Association, The Milk industry V.81, (3) Mar 1979, p.8/10, ISSN 0026 4172, Langu : Engl. 7 ref. Document type : article AGRICOLA. 1069 PRODUCTION OF METHANE GAS FROM STABLE MANURE ON A DAIRY FARM (Energy sources) Perspectieven van methaangaswinning op een melkveebedrij f met 200 g.v.e. POELMA H.R., Wageningen, Stichting Mechanisatie Centrum, Landbouwmechanisa­tie V.30 (6) June 1979, p.645/649, ill, ISSN 0023­7795, Langue : Dutch ­English. AGRICOLA. 1070 BIOGAS, ALKOHOL, BRINT, VARMEPUMPER, STIRLING VARMLUFTMASKINER BØLGEENERGI ANDERSEN C.E., Sekundaere energiformer og energiudnyttelser. Litter. pS Dan­marks Tekniske Bobliotek, Publication n°55, Lyngby 1979. 1071 YOUR SOLAR ENERGY HOME (INCLUDING WIND AND METHANE APPLICATIONS) (l'énergie solaire dans votre maison, ­y compris l'énergie éolienne et le méthane­) HOWELL Derek, USA, Ed: New York, Pergamon Press, 1979, VI­231 p.h.t. 0­08­022685­X, Lang : anglais, Ouvrage pratique et de vulgarisation sur l'utilisa­tion de l'énergie solaire, y compris l'energie éolienne et le méthane, pour des usages domestiques : chauffage, eau chaude, cuisine. 1072 METHANE FROM BIOMASS AND ORGANIC WASTES, HUBBARD D.E., Loca: Long Island Lighting Co., New York NY USA, Jrnl : Oper. Sect. Proc. Am. Gas Ass. Publ­1979, p. D182/D183, Identifiers: review methane manuf biomass waste. CHEMICAL ABSTRACTS. 1073 METHANE (FUEL) FROM FRUIT AND VEGETABLE WASTES, LANE A.G., RADNOR PA, Chilton Food Engineering international V.4 (9), Sept 1979, p.28/32, ill. ISSN 0148­4478, Languages English. Document type article AGRICOLA. 1074 METHANE GENERATION FROM HUMAN, ANIMAL AND AGRICULTURAL WASTES, National Re­search Council, Washington D.C., US Department of Commerce, National Techni­cal Information Service 1979. 1075 SYNTHETIC FUELS METHANE, Citations from the Engineering Index Data Base Search period covered 1970­January 1979, NTIS US Dept. of Commerce, Springfield VA 22 161. 1076 METHANE PRODUCTION FROM BIOMASS AND AGRICULTURAL RESIDUES, WISE D.L., WENT­WORTH R.L., ASHARE E., Dynatech R/D Co, Cambridge MA 02139, USA, Indust. eng. Chem. Prod. Res. Develop., 1979, Vol.18, n°2, p.150­156, 4 réf., Lang: angl. PRESENTATION DU PROGRAMME DE R ET D du Departement of Energy relatif a la pro­duction de combustible à partir de la biomasse, état actuel des différentes études sur la production de méthane par digestion anaerobic PASCAL. 1077 AGRICULTURAL BIOGAS UNITS IN SWITZERLAND, Landwirtschaftliche Biogasanlagen in der Schweiz, Stand Juli 1979, WELLINGER Α., Brugg, Schweizerischer Verband für Landtechnik, Schweizer Landtechnik V.41, (12), Sept 15 1979,p832/836, ill map; Lang : German, Loca : Switzerland. AGRICOLA.

Page 253: Farm and Forest Biomass

­159­

1078 BIOGAS, CONSTANTIN BARON, Loca : Giurgiu, Rom., Jrnl : Rev. Fiz. Chim. Publ­79, Series 16, Issue 12, p.365/8, lang: rom. Identifiers : manure digester fuel gas generation, lab expt, biogas prodn app. CHEMICAL ABSTRACTS. 1079 BIOGAS PRODUCTION FROM CROPS AND ORGANIC WASTES 1. RESULTS OF BATCH, anaero­bic digestions, BADGER D.M., BOGUE M.J., Wellington Dept. of Scientific and Industrial Research, New Zealand Journal Of Science, V. 22 (1), Mar 1979, p.11/20, ill, ISSN 0028­8365, lang : engl., 31 ref, document type: article. Déchet agricole bioconversion. AGRICOLA. 1080 DO BIOGAS UNITS HAVE A FUTURE ? (Agricultural engineering) Haben Biogasanla­gen eine Zukunft ? DOHNE E., München BLV Verlagsgesellchaft DLZ V.29 (7) July 1978, p.836/838, ISSN 0011­5010, lang: german, document type : article. AGRICOLA. 1081 POSSIBLE APPLICATION OF BIOGAS IN FARMING ­ Anwendungsmöglichkeiten von Bio­gas Im landwirtschaftlichen Betrieb, DOHNE E., BRENNDORFER M., Darmstadt, Landtechnik, V.33 (2), Feb. 1978, p.64/67, ill ISSN 0023­8082, Lang : german 7 réf., Loca : German Federal Republic, Document type : article. AGRICOLA. 1082 TECHNICAL PREREQUISITES AND CONSEQUENCES FOR BIOGAS PRODUCTION IN AGRICULTURE Technische Voraussetzungen und Konsequenzen für Biogasgewinnung im landwirt­schaftlichen Bereich, BAADER W, Darmstadt, Landtechnik V.33 (2), Feb 1978, p.61.63, HL, ISSN 0023­8082, lang : german, Loca : Ger. Fede. Repu., Document type : articles. AGRICOLA. 1083 MEHR METHANOL DRANGT AUF DEN MARKT! in Chemische Industrie 8/1979, zitiert bei 9. 1084 MENS EN ENERGIE, N.V. Nederlandse Gasunie, Groningen 1978, 119p. groot for­maat afbn refs., Ter gelegenheid van haar vijftienjarig bestaan gaf de Ne­derlandse Gasunie een boek uit dat een aantal vormen van energie behandelt, onder andere energie uit hout, wind, turf, steenkool, olie en aardgas, een groot aantal tekeningen, foto's en kaarten illustreren de tekst (vB). 1085 STORT SAMARBEJDSPROJEKT OM BIOGAS BYGGER TRE ANLAEG TIL DEMONSTRATION, Dane­mark, Ingeniiren, 1978, ηβ

14, s.6­7. 1086 BIOGAS IN DANISH AGRICULTURE (Energy sources), Biogas i dansk landburg, JENSEN­HOLM C , Horsholm, Statens byggeforskningsintitut, 1978, Energiudvin­ding og energibesparende foranstaltninger i landbruget, NJF­seminar 1977, redaktion Borge Mortensen Jan, S. Strom, p.60/66, 111, lang : Danish, Loca: Denmark, Document type : article AGRICOLA. 1087 INSTALLATION FOR OBTAINING BIOGAS, BUCHER­GUYER A.G., Maschinen fabrik, Loca: Switz, Jrnl: Ger, Offen, Pubi 800327, p.18., lang : Ger., Identifiers: bio­gas manuf app. waste fermn biogas app. CHEMICAL ABSTRACTS.

Page 254: Farm and Forest Biomass

-160-

1088 LARGE AND SMALL AQPLICATIONS OF ENER6Y FARMING, SITTON O.C., KOBYLINSKI E.A. GADDY J.L., aff: Univ. Missouri-Rolla Dep. Chem. Eng. Rolla, MO 65401, USA, Energy crisis-where do we go from here, Univ. of Missouri-Rolla-Missouri, Dept. of natural resources, annual confe. on energy, 4/1977-10-11/Rolla MO USA, Ed: S.L., 1978, Confer, on Energy, p.240-249, 28 c.h.t., 14 réf., lang: anglais. Description d'un système de digestion anaerobie de biomasse, ana­lyse économique de deux installations, l'une produisant 730 C. Ft/jour, l'au­tre 50000000 C. Ft/jour de méthane. Etude comparative. 1089 ENERGY FROM METHANE, DOUGLASS P., Natn. Coll. Agrie. Engng. Silsoe, Bedford, UK Jrnl: Farm Buildings Assoc, 1978, n°22, 83/90, lang : En. 10 ref, 5 fig, 4 tab. The principles and some methods of biogas production are briefly described. In the UK biogas can only be expected to provide at most 0.3X of the total fuel requirements; the problems of running a plant to produce metha­ne, for fuel from farm waste in cool climates are considerable; methane should be considered as a useful by-product of a waste treatment method rather than a major energy source. Descriptors : energy biogas, methane, methane produc­tion. CAB ABS. 1090 METHANE GAS PRODUCTION FROM FARM WASTE, BRANDING A.E., PERSSON S., BRANDING A.E., Agency: SAES PEN, 01 FEB 74 to 31 DEC 78, Project PEN02132, Perf. Org: Agri Engineering, Loca: Pennsylvania State Univ., Univer. Park PA. Objectives: Determine the technical requirements and economic feasibility for methane production from farm waste. Approach: compile basic information on methane production from organic material. Design pilot plant for producing methane from farm waste; build and test the system. USDA CRIS. 1091 METANGAS, Seminarium vid JTI 1977, JTI-rapport 24 1978, Jordbrukstek Ni ska Institutet, Swedish Institute of Agricultural Engineering, Altuna-Uppsala. 1092 METHANE RESEARCH IN RELATION TO AGRICULTURE IN FINLAND, Energy sources, Metanforskning inom lantbruket i Finland VIITASALO I, Horsholm, Statens byg­geforskningsinstitut, 1978, Energiudvinding og energibesparende foranstaltnin­ger landbruget NJF-seminar 1977, redaktion Borge Mortensen Jan S. Strom, p.67/69, ill, lang: Sewdish, Loca: Finland, Document type : article. AGRICOLA. 1093 POTENTIAL BIOGAS PRODUCTION FROM LIVESTOCK EXCRETA AND SEWAGE IN INDIA, NEELAKANTAN S, Karnal, Indian Society of Agricultural Research Scientists, Current agriculture, V.2 (3/4), July/Dec 1978, p.65/71, ill, Lang: english 12 ref. AGRICOLA. 1094 GENETIC ENGINEERING AND THE ENERGY SYSTEM : HOW TO MAKE ENDS MEET, MARCHETTI C , aff. International Inst. Applied systems analysis, Laxenburg 2361, Autr. Interna. Inst. Appi. Syst. Anal, Res. Memor; Aíitr., 1978, Vol.78 n°62, p.1-11, 13 ref, Cote / 17032A, lang: anglais, - Aperçu sur la possibilité de production d'hydrogène ou de méthane par le mécanisme de parasitisme et de symbiose dans des arbres. PASCAL. 1095 BIOGAS PLANT IN AN INTEGRATED AGRO-INDUSTRIAL COMPLEX AT THE MAYA FARMS, MARAMBA, Felix D., Liberty Flour Mills, inc.. Agro-industrial Div. (Philip­pines) 19 leaves; 28cm, lang : english, document type : monograph. AGRICOLA.

Page 255: Farm and Forest Biomass

-161-

1096 BIOGAS PLANT DESIGN AND OPERATION, MARAMBA, Felix D., Philippines, 33 leaves 29cm; lang : english. Document t/pe : monograph AGRICOLA. 1097 BIOGAS : DANSK ENERGI/ af FLEMMING ALLESLEV, (et al.) 2. let aendrede udg, Nibe : Store Restrup Højskole, 1977, 124s. : ill, 30cm. Danemark. 1098 662.767 BIO, Biogas, Dansk energi. Af F. ALLESLEV o.a. 1977, 212s. 1099 BIOGAS - ALTERNATIV ENERGI ? En udredning af de ekonomiske sammenhaenge, der har betydning for gødningas anvendelse som alternativ energikilde i dansk landbrug, Af C.Bro o.a. 1977 83s. 1100 BIOGAS - ALTERNATIV ENERGI ? en udredning af de ekonomiske sammenhaenge ... en rapport/udarbejdet for teknologirådet af Carl Bro, (et al.), København, 1977, 83s., + 14 bilag, ill, 30cm. Bibliografiske henvisninger s.80/82. 1101 LANDBRUGETS ENERGIKILDE: BIOGAS, Ingeniøren 3 JUN 1977, n°22, s.22/23. 1102 BYG ET BIO-GASANLAG, NIELSEN STIG, Kébenhavn, Det grdnne forlag, 1977, 14p. ill, 30cm. 1103 GENERATEURS A GAZ METHANE, FRY John L., 1977, 35P., Librairie Alternative, 36 rue des Bourdonnais, 75001 Paris, T: 233.08.40. 1104 DE METHAANVORMING IN DE NATUUR, SWINGS J., Vakblad voor Biologen 57 (1977) 22 376/379, grfn, schema's 16 lit. opgn. PUDOC. 1105 METHANE GENERATION BY ANAEROBIC FERMENTATION : An annotated bibliography : a annotated bibliography, a critical review of the literature with particular reference to small-scale and rural applications/compiled by Christina Free­man, Leo Pyle, London, Intermediate Technology Publications, 1977, 64p. 26cm. 1106 BIOGAS AND SOLAR ENERGY COLLECTORS FOR DAIRY FARMS, HILLS D.J., PAINTER D.J., Proceedings of the ... Lincoln College Farmers, Conference 1977, (27th) p.201/215, ill, ISSN 0069-3839, lang: english, document type : article AGRICOLA. 1107 SOLAR ENERGY AND GAS OF THE FIELDS, BREMER Pi., Loca: Soc. Et. Environ. Vevey Switz., Jrnl : Sonnenenerg, 2 (Zwei) Jahre Prakt. Nutz, Vortr Tag., SSES Symp 4th, Pubi: 77, p.108/13, lang: Fr. Publisher : Gottleib Duttweiler Inst. Address: Rueschlikon Zurich, Switz., Identifiers : review methane manuf bio­mass. CHEMICAL ABSTRACTS. 1108 PRODUCTION AND USE OF METHANE GAS (Source of energy). Framställning och an­vändning av metangas, THYSELIUS L. Horscholm, Staten byggeforskningsinstitut, 1978, Energiudvinding og energibesparende foranstaltninger i landbruget NJF-seminar, 1977, redaktion Borge Mortensen, Jan S. Strom, p.56/59, ill, lang: Swedish, Document type : article AGRICOLA.

Page 256: Farm and Forest Biomass

­162­

1109 BIOGAS, EYSER Β., eine Studie über die Aktualität der Biogasgewinnung, 1976. 54s. 1110 LANDBRUGETS ENERGIPROBLEMER 1 : de tekniske­ékonomiske muligheder for produk­tion af gídningsgas af C. JENSEN­HOLM, (Kébenhavn) Danmarks Ingeniørakademi 1975, III 105S., ill, 20cm, (Intern­rapport: n°1974/2) 1111 SOME POST­WAR REFERENCES TO BIOGAS, London, ca.1968, 2 blz. Science library bibliographical series, n°794, B. Wageningen. PUDOC 1112 METANAGAS WR GÖDSEL, Framställning och användning, Jordbrukstekniska Institu­tet, Swedish Institute of Agricultural Engineering, JTI­rapport 18, 1976. 1113 METHANE GENERATION FROM LIVESTOCK WASTES IN NORTHERN GEORGIA, BOORAM C.V., G.L. NEWTON AND HALEY F. 1975, ASAE Paper n°75­454?, St Joseph MI USDA CRIS. 1114 MICROBIAL OXIDATION OF METHANE, NANSON R.S., Agency : CSRS WIS, 01 JUL 72 to 30 JUN 73, Project : WISO 1887, Perf. Org.: Bacteriology, Loca: Univ. of Wis­consin, Madison WIS, USA, Objectives : Isolate and characterize methane oxi­dizing bacteria, to study their ecology and physiology and develop fermenta­tion systems for the production of useful products from waste methane. Approach : Organisms capable of growth on methane as the sole carbon and ener­gy source will be isolated on a mineral salts medium with gas phases contai­ning methane. Their physiology including cytology (electron microscopy) meta­bolism (using enzymological techniques and isotopie tracer methods) will be studied. Pilot fermentors using farmlot wastes will be used to produce metha­ne which will be utilized in pure culture fermentations with wild type strains and mutants of methane oxidizing bacteria for the production of commercial­ly useful products. The ability of these organisms to synthesize and accumu­late methylmercury will be examined. Progress 73/01 73/12, Several new facul­tative methylobacteria have been isolated. The fine structure of the organisms has been studied and the pathways for carbon assimilation and sugar oxidation have been determined. The growth requirements of some pure cultures and sta­ble mixed cultures have been studied in order to determine the most suitable isolates for applied uses in single cell protein and amino acid biosynthesis Public : 73/01 73/12, No publications reported this period. USDA CRIS.

5.6 Fuels

1115 WAS TANKEN WIR MORGEN ?, BIEBER Η., in Die Zeit, ne38/1979, 1116 FUELS FROM BIOMASS, future automotive fuels, BERNHARD W., Volkswagenwerk AG Energy Research and New Technology Dept. D3180 Wolfsburg, 1, Germany, Session VII, VII/K1, International conference on energy from biomass Brighton 4­7 Nov. 1980, Commission of the European Communities, in co­operation with the Department of Energy, London. 1117 SUNFLOWER OIL AS DIESEL FUEL, BRUWER J.J., Dept of Agriculture & Fischeries South Africa, Session VII, International conference on energy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Communities, in co­opera­tion with the Department of Energy, London.

Page 257: Farm and Forest Biomass

­ι co­

rns PRODUCING BLACK LOCUST (Robinia pseudoacacia) biomass for fuel on southern Appalachian surface mines/ CARPENTER S.B., GRAVES D.H., EIGEL R.A., Ctry: US, Typl : J/AS/ Lang: En, Sube K10 P05/ Jrnl: Energy Communication (USA) Impr: 1979/ ISSN 0097­8159/ CUt: V.5 (2) p. 101­108, AGRIS. 1119 LIQUID FUEL PRODUCTION FROM BIONASS/ SANDERSON J.E., GARCIA MARTINEZ Diana V DILLON J.J./ GEORGE G.S., WISE D.L., Loca: Dynatech Res. and Dev. Co, Cam­bridge MA 02139/ USA/ Jrnl: Sun (2) Two, Proc. Int. Sol. Energy Soc. Silver Jubilee Congr. p.63/7, Publisher: Pergamon, Address: Elmsford N.Y., Avail: Boeer Karl W, Glenn Barbara H., Identifiers: fuel liq. biomass, hydrocarbon fuel biomass fermn. CHEMICAL ABSTRACTS. 1120 CONVERSION PROCESSES FOR LIQUID FUELS FROM BIOMASS, RAD0VICH John M, P0MER0Y Carl F., SOFER Sam S, SLIEPCEVICH CM., Loca: Sch. Chem. Eng. Mater. Sci. Univ. Oklahoma Norman, OK USA, Jrnl: Sun 2 (Two) Proc. Int.Sol. Energy Soc. Silver Jubilee Congr., p.58/62, Publisher Pergamon, Address: Elmsford N.Y., Avail: Boeer Karl;U, Glenn Barbara H, Identifiers : fuel liq. manuf biomass. CHEMICAL ABSTRACTS. 1121 PYR0LYTIC OILS FROM AGRICULTURAL AND FORESTRY RESIDUES AND MUNICIPAL SOLID WASTE, KNIGHT J.Α., Loca: eng. Exp. Stn. Georgia Inst. Technol. Atlanta GA, 30332 USA, Jrnl: USA Environ. Prot. Agency Off. Res. Dev. (Rep) EPA, Coden: XPARDG Pubi 79, Issue EPA­600/9­79­023b, Munie. Solid Waste, Resour. Recove­ry, p.126/9, Identifiers fuel oil manuf waste, agricultural waste pyrolysis fuel, biomass waste pyrolysis fuel, wood waste pyrolysis fuel, CHEMICAL ABSTRACTS. 1122 GROWING FUEL ON THE FARM, Rural Research (1979) Jun. 103:4­11, afb. Tabn, tekn. 5ref., De landbouw wordt door de sterk gestegen olieprijzen het zwaarst getroffen meer dan welke tak van industrie ook. Dit komt doordat, in de land­bouw energie een hoog percentage van de totale produkt i ekosten uitmaakt. In Australië wordt geopperd, om naast alternatieve energie (zonne­energie, windenergie, waterkracht) gebruik te gaan maken van energie uit alkohol met als grondstof planten. Brazilië is hiermee al ver gevonlerd (Doe). PUDOC. 1123 LIQUID FUELS FROM BIOMASS, GODDARD K., Aero Divi Sion Rolls­Royce Ltd, Derby UK; Chartered Mechanical Engineer 1979, 26.1, 33/35, Lang: engl., 4 ref, 1 pi., 2 fig., 1 tab., The possibility of deriving liquid fuels from li­ving and waste organic matter is considered. Suitable plant species for use as an energy source are suggested, methods under development for conversion of plant matter to liquid fuel include fermentation and hydrogénation. A pyrolysis process is being developed for the conversion of municipal wastes to oil but is not yet economically viable, as the oil requires further refi­ning to produce usable fuel. Descriptors: energy, waste utilization, bio­energy. CAB ABS. 1124 CAN IRRADIATION CONTRIBUE IN THE UPGRADING OF BIOMASS TO FUELS ? An introduc­tion. GR0NEMAN A.F., Loca: Euratom­ITAL, Wageningen 6700 AA Neth., Jrnl: Proc. Int. Conf. ESNA Work Group Waste Irradiât, Coden: PCEIDO, Pubi: 78, Series 3rd, Issue: Radiat; Contr. Environ. Pollut. p.127/31, Identifiers: fuel biomass irradn upgrading. CHEMICAL ABSTRACTS.

Page 258: Farm and Forest Biomass

­164­

1125 OPERATION OF THE BIOMÀSS LIQUEFACTION FACILITY, ALBANY OREGON, THIGPEN P.L., Loca: Rust. Eng. Co. Birmingham AL USA, Jrnl: Sol. Energy Res. Inst. (Tech. Rep) SERI/TP, Coden: SEISDJ, Pubi: 79, Issue SERI/TP 31 248, Reliab. Mater. Sol. Energy Workshop Proc, Vol. 2, Pt 2, 1978, p.507/18. Identifiers: wood liquefaction carbon monoxide hydrogen, liq. fuel manuf. wood, sodium carbonate catalyst liquefaction wood, anthracene oil solvent wood liquefac­tion. CHEMICAL ABSTRACTS. 1126 SECOND ANNUAL SYMPOSIUM ON FUELS FROM BIOMASS, STEINBECK K., Fuels from bio­mass, Conference at Rensselaer, New York State, June 1978, p.175/185. 1127 SECOND ANNUAL SYMPOSIUM ON FUELS FROM BIOMASS, MATSON J.Α., BRADLEY D.P., CARPENTER E.M., Rensselaer 1978. 1128 LIQUID FUELS FROM RENEWABLE RESOURCES : FEASIBILITY STUDY, Summary and Conclu­sions, erstellt im Auftrag der Regierung von Kanada, Interdepartmental Steering Committee on Canadian Renewable Liquid Fuels Program Options, Ottawa, durch Intergroup Consulting Economists Ltd 704/283 Portage Avenue Winnipeg, Manni­toba Mai 1978, zitiert bei 9 1129 CATALYTIC CONVERSION OF BIOMASS TO FUELS, GARTEN R.L., Loca: Catai. Assoc. Inc., Santa Clara CA 95051, USA, Jrnl: Proc. Annu. Fuels Biomass Symp. 2nd Pubi : 78, Series 1 p.353/363, Publisher: Rensselaer Polytech Inst. Address Troy N.Y. Avail: Shuster William W; Identifiers : review biomass catalytic conversion fuel. CHEMICAL ABSTRACTS. 1130 BIOMASS LIQUEFACTION PROGRAM. Experimental investigations at Albany Oregon. LINDEMUTH, Th.E., Loca: Bechtel Natl. Inc. San Francisco CA 94110 USA, Jrnl: Proc. Annu. Fuels Biomass Symp. 2nd, Coden: 41VZA3, Publ/78 Series 1 p.337/ 352, Publisher Rensselaer Polytech. Inst. Address: Troy N.Y.. Avail: Shuster William W. Identifiers: biomass liquefaction fuel liq. biomass. CHEMICAL ABSTRACTS. 1131 CALORIE EQUIVALENTS OF DIFFERENT KINDS OF WOOD (for use as fuel) KOPERIN I.F. G0L0VK0V S.I., Moskva, Lesnaia promyshlennost, Lesnala promyshlennost 1978, 11, p.20/21. ill. ISSN 0368­7619, Nal: 99.82.L56, Lang: russian, 4ref; Document type : article AGRICOLA. 1132 HOW TO COMPARE FUEL VALUES, AR0LA R;A., United States, North Central Forest Experiment Station Forest Service US Dept. St Paul, Minn. Dept of Agricul­ture 1975, mnu folder (7p) ill. Lang : engl. Subfile: USDA (US Dept. Agr) EL: 79/02/02, ss, 79/02/02, Government Source : Federal, Document type : monograph Descriptors Fuel­costs, biomass energy. AGRICOLA.

VI ECONOMICS, SOCIOLOGICAL POLITICAL ASPECTS

6.1. Political or sociological obstacles competition for land use

Page 259: Farm and Forest Biomass

­165­

1133 ENERGY SYSTEMS ANALYSIS, Proceedings of the International Conference held in Dublin 9/11 Oct. 1979, Ed. by Richard KAVANAGH, Natl Board for Sc. and Tech. Dublin, Ireland. 1980, XVI+678p. Cloth Dfl 90,­ USS47.50, ISBN 90­277­1111­9, The assessment of future energy supply and demand policies including investment decisions in new energy technologies is now a matter of vital con­cern to every government. Recurring oil crises and the resulting uncertain­ties of world energy supply have highlighted the urgency of energy related programmes. As energy systems analysis techniques are an integral part of the assessment process; the importance of work in this field has been underlined. D. Reidel, Publishing Company. 1134 BIOMASS AND HYDROGEN, an answer to the European Liquid Fuel Crisis in the 21st Century ?by MESSENGER M., Session VII, Paper VII/2, Staff Scientist, IIASA Energy Program, International conference on energy from biomass, Brighton, 4­7 Nov. 1980, Commission of the European Communities in co­operation with the Department of Energy, London. 1135 NEW AND RENEWABLE ENERGY IN AGRICULTURE, Food and Agriculture Organization of the United Nations, European Commission on Agriculture ECA, 22/80 (4a) Anne­xes, Apr 1980, Studie vorbereitet von G PELLIZZI für die 22 Tagung in Rom im Juni 1980. 1136 INTRODUCTION : QUELS ESPOIRS PLACER DANS L'ENERGIE A TIRER DE LA BIOMASSE VEGETALE EN FRANCE ?; BARLET J., CARILLON R., Minag­Perio, Etudes du CNEEMA (Fra). ηβ460, 1980/02, p.1/4, vue d'ensemble sur les possibilites d? produc­tion d'énergie à partir de la biomasse : estimation des disponibilités, for­mes de cette energie et spécificité de la demande de l'agriculture, politi­que d'attentisme ' RESEDA. 1137 THE FRENCH BIOENERGY PROGRAMME, DURAND H., International conference on ener­gy from biomass, Brighton 4­7 Nov. 1980, Session VII Paper VII/K2, Commis­sion of the European Communities in co­operation with the Department of Energy, London. 1138 LA LONGUE MARCHE DES ENERGIES NOUVELLES, DROUIN P., Dirigeant fév. 1980, n° 106, p.11/14. 1139 POSSIBILITIES AND LIMITS OF USING BIOMASS AS SUBSTITUTES FOR EXHAUSTIBLE RESOURCES, A systems­Analysis­Approach of Producing Fuels from Rape­Seed in the Federal Republic of Germany, BUHNER R.T., K0 9 L.H., Session VII Paper VII/1, International conference on energy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Communities in co­operation with the Department of Energy; LONDON. 1140 BIOMASSE ­ Bluff oder Chance ?, Chem. F. Lab. Betr. 31 1980, n°7, 296. 1141 POSSIBLE IMPACTS ON HUMAN FOOD SUPPLIES AS RESULT OF WORLDWIDE ALCOHOL PRO­DUCTION FROM SUGAR CROPS, NEMIR A.S., SUGAR J., 42 1980, n°12, Mai, 13. 1142 FOOD OR FUEL, New Competition for the World's Cropland, Worldwatch Paper 35 by L.R. Brown, March 1980. 1143 FOOD OR FUEL, New Competition for the World's Cropland, BROWN L.R., World­watch Paper 35, Worldwatch Institute, Washington D.C., 1980, 43p.

Page 260: Farm and Forest Biomass

­166­

1144 LA BIOLOGIE : RECHERCHE DE BASE EN BIOIOGIE, SES APPLICATIONS A LA MEDECINE; A L'AGRICULTURE ET A L'OCEANOGRAPHIE. GROS F., JACOB F., ROYER P., Sciences de la vie et société rapport au Président de La République, Présidence de la République, Paris, Fra., Tendances et évolution des technologies bio­logiques pour le vivant, des technologies par le vivant et des effets possi­bles de la biologie sur la société * Dans le domaine de l'agronomie, biolo­gie et recherche agronomique, biomasse et agriculture de demain * l'alimenta­tion et la nutrition : développement des protéines d'organismes unicellulai­res * le génie biologique et les grandes techniques d'amont en biologie. Situation en Europe et dans quelques pays témoins : avenir des biotechnologies françaises. 1979/11, 288p. RESEDA. 1145 MINISTERE DE L'AGRICULTURE Paris (Fra). Minag E79Z00018, Agriculture et éner­gie economies d'énergies en agriculture. Production d'énergie d'origine agri­cole. 1979 31p. Données sur la consommation d'énergie en agriculture. Situa­tion des économies d'énergie (lutte contre le gaspillage) l'agriculture pro­ductrice d'énergie. Les objectifs à atteindre et les actions à entreprendre. RESEDA. 1146 LA VOCATION DE L'AGRICULTURE FRANÇAISE EST LA PRODUCTION ET L'EXPORTATION D'ALIMENTS DE QUALITE ET NON LA PRODUCTION MASSIVE DE SIMPLES COMBUSTIBLES Estime l'EDF. LACOSTE J., Presse Environnement (Fra). n°37, 1979/10. P. en France 1­8, Energie, agriculture; Energie verte, possibilités de transfor­mation de l'agriculture française en producteur de matériaux énergétiques. Potentiel de production et d'exportations considérable qui permettrait d'ob­tenir les devises nécessaires pour nos achats à l'étranger des autres com­bustibles indispensables. RESEDA. 1147 DIE ENERGIEKRISE UND DIE STRATEGIEN DER ENERGIESICHERUNG, KEISER G., München Vahlen 1979. 1148 DAS ENERGIEPROBLEM AUS AGRARPOLITISCHER SICHT,ERTL J., in Berichte über Land­wirtschaft, Sonderheft, 195 1979, Agrarwirtschaft und Energie herausgegeben vom BML, 1149 ENERGY HASTE MAY MAKE POLITICAL ECOLIGICAL WASTE, DUERKSEN Chr., Conservation Foundation Letter, Oct 79 (8), Commentary : in a speech on July 15, 1979, President Jimmy Carter unveiled plans for an energy mobilization board. The board would have the power to speed development of nonuclear energy facili­ties by eliminating many legal impediments and bureaucratic delays.. The ef­fect of current environmental regulations on power projects, current efforts­by States to reduce permit delays­, and the legal ramifications of such a board for the decision­making powers of State and local Goverments are consi­dered, it is felt that a continued review of environmental laws, rather than the president's recommended fast­track approach, is needed to bring about real reform of the regulatory system.

1150 GROWING ENERGY­LAND FOR BIOMASS ENERGY, ZEIMETZ Ka. Α., USDA Agricultural economic report 425, Jun 79 (37) Special report : the production of chemical energy from biomass has been proposed by doe as one method of utilizing so­lar energy US land requirements and land availability for primary biomass production (energy farms) are examined» The economic feasibility of biomass

Page 261: Farm and Forest Biomass

-167-

production is considered. Several current investigations of biomass prodcu-tion are summarized. Most of the 760 million acres of rural land of suffic­ient quality to support biomass production would need considerable conserva­tion measures to overcome inherent development problems, furthermore alterna­tive sources of food and fiber production would need to be found (1 diagram, 2 maps, 38 references, 16 tables). ENVIROLINE. 1151 LES ENERGIES NOUVELLES ET LES UTILISATIONS NOUVELLES DE L'ENERGIE, MOYENS d'améliorer l'approvisionnement énergétique et de préserver l'environnement Avis adopté par le CES au cours de sa séance du Nov. 1977, Journal officiel 26 rue Desaix, 75732 Paris Cedex 15. 1152 COMPTE RENDU INTEGRAL DU COLLOQUE DE CASTES, 12/18 Juin 1978, rédigé par ARES Ed: SEPAIC 42 rue du Louvre 75001 Paris, Energies renouvelables : dégage les principaux problèmes techniques et les problèmes institutionnels liés à leur mise en oeuvre. Thèmes abordés : chauffe-eau et capteurs solaires, énergie et agriculture, énergie éolienne, économie d'énergie et énergies nouvelles de l'industrie, architecture bioclimatique, Energies nouvelles et collectivités locales. 1153 ASPECTS AGRONOMIQUES DE L'ENFOUISSEMENT DES PAILLES DE CEREALES, Juin 1977, 68p, INRA Paris-Grignon. 1154 PROTECTION DES SOLS EN REGIME D'EXPLOITATION MAXIMALE. ACTION CEE : Energie solaire, Biomasse. JUSTE C , Etude n°3, INRA Stations d'Agronomie de Bordeaux et de Laon, Sept 1977, 48p. 1155 GASGEVEN OF AFREMMEN ? HUPKES G., Intermediair 14 1978, 9:55, 57, schema, tabn, 2 scenario's voor het jaar 2000 incl. kosten aan energie, doden, enz. PUDOC. 1156 KAN EEN LIBERALE AAMPAK VAN HET ENERGIEPROBLEEM EFFECTIEF ZIJN ? LAMBERS J.H., Liberaal Reveil 19 1977, 1: 19-24. PUDOC. 1157 ATTITUDES OF FARMERS TOWARD USING CROP RESIDUES AS FUEL (Rice straw and pru-nings). BECKER CF., JENKINS B.M., Berkeley Division of Agricultural Sciences Univ. of California, California Agriculture V.32 (12). Dec 1978, p.8/10, ill ISSN 0008-0845, Lang: engl.. Subfile Exp. Stn (State exper. Stn) Document type : article AGRICOLA. 1158 ENERGIEBELEID MET MINDER RISIKO.POTMA T., Amsterdam, enz, Vereniging Milieu­defensie, 1977. 65 biz. Lit. opgn. PUDOC. 1159 RUIMTELIJKE ORDENING, MOBILITEIT EN ENERGIESCHAARSTE, ANDRIOLI F.D., Socia­lisme en Democratie 34 1977, 10 : 489/501, tabn, lit, opgn op blz. 501 PUDOC. 1160 BRACHE - URSACHEN, BEWERTUNG, MASSNAHMEN, MÖHLER G., Landwirtschaft, Ange­wandte Wissenchaft, Heft 181, 1975, herausgegeben vom BML in Zusammenarbeit mit dem AID

Page 262: Farm and Forest Biomass

-168-

6.2 E_C£nomjc_anaJLys^ of jprospecţs

1161 THE COMMERCIAL EXPLOITATION OF BY­PRODUCTS THROUGH BIOTECHNOLOGY, 13th Janua­ry 1981/ European study conferences Ltd., Kirby House, 31 high Street East, Uppingham, Rutland, Leicestershire LE 15 9PY. 1162 ENERGY FROM AGRICULTURAL BY­PRODUCTS MICROECONOMIC ASPECTS, Contractor DG XII CEC, SOURIE J.C, Programme 1979­1983, INRA Economy Grignon, Project E = Energy from biomass. France. 1163 KOSTEN UND WIRTSCHAFTLICHKEIT DES HEIZENS MIT BIOBRENNSTOFFEN, FISCHER H., in Solentec "Heizen mit HoLz", Tagungsbericht der Tagung "Heizen mit Holz", im Feb. 1980, in Göttingen, Herausgeber U. Bossel. 1164 ENERGIESZENARIUM 2000, SCHREIER, K., Zuckerinf 105 1980, n°7, 631. 1165 ECONOMIC IMPACTS OF ENERGY DEVELOPMENT AND USE ON AGRICULTURE AND NATURAL RESOURCES, WHETZEL V, Agency : ERS NRE, 01 ODT 78 to 30 SEPT 85, Project: NRE A3 309 54 01, Loca: West Virginia Univ. Morgantown WVA., Objectives : Analyze supply and demand factors that will influence the potential for fuel wood for home heating; analyze the economic feasibility of energy (biomass) crops, including land and water requirements, impacts on traditional crop production and environmental implications. Assess the economic implications of alternative coal and oil shale development and associated activities on environmental quality and the competition for resources in rural areas. Approach : Assess the economic resource use and environmental implications of public programs to encourage "energy farms". Develop regional reports on current land and water use, the economic implications for the future resour­ce use, resource competition and environmental quality resulting from alter­native levels of coal and oil shale development, and related activities. Develop an interregion linear program to evaluate conflicting reclamation budgets from available literature, cooperation with other agencies within and without USDA. And limited empirical studies. Budgeting techniques and linear programming will be used to estimate water demand for energy deve­lopment and to appraise the economic and environmental implications of al­ternative water supplies. USDA CRIS. 1166 AGRICULTURAL WATER USE AND RELATED ENERGY USE IN THE SOUTHERN SAN JOAQUIN VALLEY, VAUX H., RAWLINS S.L., Agency : ARS 5210, 19 JUN 79 to 30 JUN 80, Project : 5090 20731 010 A, Loca: Univ. of California, Davis CAL, Objectives: To assess the technoligcal and economic potentials for water and energy savings through the adoption of improved water management practices, inclu­ding the introduction of newly devised irrigation and waste water use tech­nologies. Approach : The project will consist of requiring a data base which can be used to describe current patterns of potential variations of water related energy use in the San Joaquin Valley. Somme of these data will be assembled from existing but unpublished records of indivduals and organiza­tions in the region. Others will be obtained from new experiments. These experiments will fill gaps in the existing data base as well as evaluated the energy and water efficiency of new alternative irrigation technologies. These data will be used in Phase II of the project which will develop econo­mic models of farm production decisions, focused specifically on water and energy as related to the inputs. Phase III involves aggregation of on­farm information in a way that yield valid conclusions from which regional mana­gement strategies can be developed. USDA CRIS.

Page 263: Farm and Forest Biomass

­1 OC­

HÓ? ETUDE DES COUTS DE DIVERSES SOURCES D'ENERGIE (Université Oklahoma) Cost of alternative energy system to break even cited. TREVIS, FeedstuffS/ 5 Mai 1980, p.15/17. 1168 ENERGY POLICY BIOMASS AND AGRICULTURE : AN ECONOMIC ANALYSIS, RASK Ν., IVES E., HITZHUSEN F, Agency : CSRS OHO, 08 MAR 79 to 07 MAR 83, Project : 0H000 650, Perf Org: Agri Economics 8 rural sociol, Loca: Ohio Agricultural E&D Center, Columbus OHO, Objectives : Determine the impact of present and evol­ving energy policies on agriculture, analyze the economics of selected crop biomass options, delineate the role of agriculture in future energy strate­gies. Approach : Partial equilibrium market analysis of specific policy is­sues with identification of non­market effects : production and conservation cost analysis of selected biomass energy options, domestically in major agri­cultural exporting countries and in selected Fourth World countries : and market analysis of international agricultural trade and domestic agricultu­ral resource allocation implications of energy production from biomass as world enery prices rise : identify (from original and:or existing research) mutai ly comparable measures of cost and important non­market implication (environment, public health and safety, national security) of energy sources including biomass, which may play significant roles in alternative energy futures, and use this information to identify the cost and non­market trade­offs among selected broad energy strategies which have reasonable likelihoods of being followed. USDA CRIS. 1169 PROCESSING OF AGRICULTURAL PRODUCTS, 0K0S M.R., Agency : CSRS IND, 01 OCT 76 to 30 SEP 81, Project : IND046036, Perf. Org: Agri Engineering, Loca: Purdue Univ. Lafayette IND, Objectives : Develop energy efficient processing opera­tions, develop processing operations that minimizewaste output,develop econo­mical processes for utilization and upgrading agricultural by­products and residues. Approach : In order to accomplish the above objectives it will be first necessary to monitor the energy use and wastes output of various food and grain processing operations. This information is important in identifying the significant variables causing high energy use and waste output. Modifi­

cation in present processing techniques can save energy and lower the waste load. Alternative processing techniques such as concentration of dairy and vegetable products using membrane processing can lower energy costs. Careful investigation into the fundamental mass transfer. Heat transfer and kinetic properties of foods will be investigated in order to design more efficient processes. Food processing by­products such as whey and underutilized foods such as corn and alfalfa will be enzymatically, chemically and mechanically treated to provide useful products for human consumption. Fermentation tech­niques will also be investigated to upgrade processing residues. Once the fundamental information is obtained. Computer models can be developed to aid in the selection of energy efficient, economical and waste free processes. USDA CRIS.

1170 ECONOMIC IMPACTS OF ENERGY DEVELOPMENT AND USE ON AGRICULTURE AND NATURAL RESOURCES, McMARTIN W, Agency : ERS NRE, 01 OCT 78 to 30 SEP 85, Project : NRE 43 309 38 01, Loca: North­Dakota State Univ., Fargo ND, Objectives : Analyze supply and demand factors that will influence, the potential for fuel wood and home heating, analyze the economic feasibility of energy (biomass) crops., Including land and water requirements, impacts on traditional crop production and environmental implications. Assess the economic implications of alternative coal and oil shale development and associated activities on environmental quality and the competition for resources in rural areas.

Page 264: Farm and Forest Biomass

-170-

Approach : Assess the economic resource use and environmental implications of public programs to encourage "energy farms", develop regional reports on current land and water use, the economic implications for future resource use. Resource competition and environmental quality resulting from alterna­tive levels of coal and oiL shale development, and related activities. Deve­lop an interregional linear program to evaluate conflicting reclamation bud­gets from available literature, cooperation with other agencies within and without USDA. and limited empirical studies. Budgeting techniques and linear programming will be used to estimate water demand for energy development and to appraise the economic and environmental implications of alternative water supplies. USDA CRIS. 1171 ECONOMIC IMPACTS OF ENERGY DEVELOPMENT AND USE ON AGRICULTURE AND NATURAL RESOURCES, GREEN J, Agency : ERS NRE, 01 OCT 78 to 30 SEPT 85, Project : NRE 43 309 08 01, Loca: Colorado State Univ, Fort Collins COL USA, Objectives : analyze supply and demand factors that will influence the potential for fuel wood and home heating, analyze the economic feasibility of energy (biomass) crops, including land and water requirements, impacts on traditional crop production and environmental implications. Assess the economic impications of alternative coal and oil shale development and associated activities on environmental quality and the competition for resources in rural areas. Ap­proach : Assess the economic resource use and environmental implications of public programs to encourage "energy farms". Develop regional reports on cur­rent land and water use, the economic implications for future resource use, resource competition and environmental quality resulting from alternative levels of coal and oil shale development, and related activities. Develop an interregional linear program to evaluate conflicting reclamation budgets from available literature cooperation with other agencies within and without USDA, and limited empirical studies. Budgeting techniques and linear pro­gramming will be used to estimate water demand for energy development and to appraise the economic and environmental implications of alternative water supplies USDA CRIS. 1172 ECONOMIC IMPACTS OF ENERGY DEVELOPMENT AND USE ON AGRICULTURE AND NATURAL RESOURCES, BAILEY M., WENDEROTH J; Agency : ERS NRE, 01 OCT 78 to 30 SEP 85, Project : NRE 43 309 42 06, Perf Org: Economic Development Div ERS, Loca: Univ of Pennsylvania Philadelphia PA., Objectives : analyze supply and de­mand factors that will influence the potential for fuel wood and home hea­ting, analyze the economic feasibility of energy (biomass) crops, including land and water requirements, impacts on traditional crop production and en­vironmental implications. Assess the economic implications of alternative coal and oil shale development and associated activities on environmental quality and the competition for resources in rural areas. Approach : Assess the economic resource use and environmental implication of public programs to encourage "energy farms" Develop regional reports on current land and water use, the economic implications for future resource use, resource com­petition and environmental quality resulting from alternative levels of coal and oil shale development, and related activities. Develop an interregional linear program to evaluate conflicting reclamation budgets from available literature cooperation with other agencies within and without USDA.and limi­ted empirical studies, budgeting techniques and linear programming will be used tò estimate water demand for energy development and to appraise the economic and environmental implications of alternative water supplies. USDA CRIS.

Page 265: Farm and Forest Biomass

­171­

1173 ECONOMIC IMPACTS OF ENERGY DEVELOPMENT AND USE ON AGRICULTURE AND NATURAL RESOURCES, BARSE J., ZEIMETZ Κ., Agency : ERS NRE, 01 OCT 78 to 30 SEP 85, Project NRE 43 309 11 00, Perf Org: Economic Development Div ERS, Loca: US Department of Agriculture Washington DC, Objectives : analyze supply and demand factors that will influence the potential for fuel wood and home hea­ting, analyze the economic feasibility of energy (biomass) crops, including land and water requirements, impacts on traditional crop production and environmental implications. Assess the economic implications of alternative coal and oil shale development and associated activities on environmental quality and the competition for resources in rural areas. Approach : Assess the economic resource use and environmental implications of public programs to encourage "energy farms". Develop regional reports on current land and water use, the economic implication for future resource use, the competition and environmental quality resulting from alternative levels of coal and oil shale development, and related activities. Develop an interregional linear program to evaluate conflicting reclamation budgets from available literature cooperation with other agencies within and without ØSDA and limited empiri­cal studies. Budgeting techniques and linear programming will be used to estimate water demand for energy development and to appraise the economic and environment implications of alternative water supplies. USDA CRIS. 1174 DOSSIER : ENERGIE, AGRICULTURE, ENERGIE VERTE, LACOSTE J., EDF ELECTRICITE DE FRANCE, Paris (FRA). 1979, 91p. Dossier de l'EDF sur l'énergie verte, énergie et agriculture. Point de vue de l'auteur sur le sujet. Réflexions sur la calorie en particulier, la calorie alimentaire, recueil d'articles sur le sujet alimentation, énergie, biomasse, déchets agricoles, methanol RESEDA. 1175 QUELQUES REMARQUES SUR LES ENERGIES NOUVELLES, A few considerations on new energy sources, NEEL L., Rev. Energ., Fra, 1979, Vol.30, n°317, p.637/648, Idem Eng., lang: fran.. Etude des possibilités de développement des éner­gies non­classiques en France, chaleur solaire pour le chauffage domestique géothermie en zone urbaine, centrales heliothermiques et centrales photoélec­triques, énergie éolienne, énergie de houle, biomasse. PASCAL 1176 PFLANZLICHE ROHSTOFFE ALS GRUNDLAGE FOR DIE HERSTELLUNG VON NICHT­NAHRUNGS MITTELN, DAMBR0TH M., Herausforderung an die Agrarwirtschaft, Agrarübersicht 7/1979. 1177 AN OPTIMAL SOLAR STRATEGY, NADIS S.J., Environment, USA, 1979, Vol.21, n°9, p.6/16, 32 ref, lang: anglais. Analyse d'une étude de l'union of Concerned Scientists évaluant les diverses options solaires pour les Etats­Unis, pré­sentation d'une stratégie permettant de couvrir entièrement les besoins pour trois scenari de demande en 2000 à partir de l'énergie solaire directe et dérivée (énergie éolienne, biomasse) présentation d'une transition à une production d'énergie uniquement à partir de sources renouvelables de 1980 à 2050 PASCAL. 1178 BIOMASS : THE SELF­REPLACING ENERGY SOURCE : BYLINSKY GENE, Fortune Sep 24, 79, V100, n°6, p78, (3). Feature article : biomass is available, plentiful, and convertible to methane or other fuel. By 2000 biomass could meet 15 %of US energy needs, problems with economically extracting energy from biomass are explored. Wood should receive high priority in biomass development, usfs believes that the current growth rate of US forests could be doubled, using forest management techniques to yield the equivalent of 6 Q/YR­0R 33% of

Page 266: Farm and Forest Biomass

-172-

annual oil imports, àutomatically-fed wood chip furnaces and boilers for domestic and industrial applications are being developed, wood also could provide a cheap raw material for producing methanol, oil extraction from eu­phorbia and methanol production from giant kelp and water hyacinths are dis­cussed. ENERGYLINE. 1179 COMPARATIVE ECONOMIC ANALYSIS OF CHEMICALS AND SYNTHETIC FUELS FROM BIOMASS A STUDY OF BIOMASS DERIVED FUELS AND CHEMICALS LIKELY TO ACHIEVE US MARKET PENETRATION IN THE YEARS 1985, 2000 AND 2020, SCHOOLEY F.A., DICKENSON R.L., KOHAN S.M., JONES J.L., Aff: S.R.I. International, Menlo Park CA 94025 USA. Amer. Chem. Soc. Div. Petroleum Chem., Prepr. 1979, Vol.24, n°2, p.550/503, 2 ref, lang : anglais. Analyse économique de divers procédés thermochimiques et biochimiques de conversion de la biomasse, prévision pour deux scenari de l'utilisation de ces procédés en 1985, 2000 et 2020 aux Etats-Unis. PASCAL. 1180 PROCESS DESIGNS AND COST ESTIMATES FOR A MEDIUM Btu gasification PLANT USING A WOOD FEEDSTOCK, DESROSIERS R.E., Solar Energy Research Institute Golden Colo Springfield VA, available from National Technical Information Service, 1979, Colorado, IV leaves 26 (42) p., ill, 28cm, lang: english, includes bibliogra­phical references, Government Source Federal, Document Type : monograph. 1181 PROJET ALTER, ESQUISSE D'UN REGIME A LONG TERME TOUT SOLAIRE, Groupe de Bel­levue, Ed. Syros, Paris, fév. 78, 65p. 1182 ASSESSMENT OF ENERGY CONSERVATION USING SOLAR ENERGY IN KANSAS, PYTLINSKI J.T. Aff: New Mexico State Univ., Las Cruces NM USA, J. Energy USA 1978, Vol.2, n°4, p.250/253, 7 ref, lang: anglais. Evaluation de l'énergie économisée au Kansas en 1976/77 et 1979/80, par l'utilisation de l'énergie solaire, de l'é­nergie éolienne et de la biomasse PASCAL. 1183 SOLAR ENERGY PROGRESS AND PROMISE. CS. EXECUTIVE OFFICE OF THE PRESIDENT COUN­CIL ON ENVIRONMENTAL QUALITY, WASHINGTON USA, Ed. S.I., US Government printing off, 1978, VII-52p, h.t., 102 réf., lang: anglais, type : TR, LM. Ce qu'on peut raisonnablement attendre de l'énergie solaire à partir du développement actuel de la technologie, thermique solaire, cellules solaires, biomasse, autres énergies renouvelables, problème du stockage de l'énergie, les mesu­res à prendre pour que l'énergie solaire aux USA couvre en l'an 2000 25% des besoins d'énergie, et à plus long terme pour une société fondée sur l'énergie solaire PASCAL. 1184 WIRTSCHAFTLICHE ASPEKTE DER BIOENERGIE, BIOMASSE, BIOTECHNOLOGIE, GWINNER E., Chemische Industrie, Schriftenreihe, Band 1, Verlag Handelsblatt Gmbh 1978. 1185 UN MODELE ECONOMIQUE DE FILIERES DE RECUPERATION DES PAILLES, COCHIN B., Sept. 1977. Hop + annexes. INRA, Laboratoire d'économie rurale de Grignon. 1186 EEN PROEFBEDRIJF IN WATERLAND VOORSTEL VOOR EEN BOERENBEDRIJF MET EEN ZO LAAG MOGELIJK VERBRUIK VAN ENERGIE. BOOM J., and van der SNOEK J., Broek in Waterland Vereniging tot behoud van Waterland. 1977, 54blz, krtn, tabn, lit, opgn, PUD0C.

Page 267: Farm and Forest Biomass

-173-

1187 ANIMAL WASTE MANAGEMENT SYSTEMS FOR THE 1980'S, DAY D.L., VANDERHOLM D.H., JENSEN A.H., Agency CSRS ILLU, 06 SEP 68 to 30 SEP 78, Project : ILLU-10-0375, Pert Org: Agri Engineering, Loca: Univ of Illinois, Urbana ILL USA, Objectives Conceptualize develop, analyze and optimize animal manure management systems with least cost and energy requirements for pollution control compatible with changing socio-politico-economic patterns. There are four specific objectives and the Illinois station can contribute to all of them with special emphasis on confinement livestock rearing in a region of high water tables and where rainfall exceeds evaporation. Approach : Feedlot pollution control and utili­zation of waste are major concerns. Practical methods of pollution control for economic, energetic and labor considerations will be developed and evaluated as well as methods of processing wastes for utilization in animal diets (re-feeding) USDA CRIS. 1188 ENERGY ALTERNATIVES FOR PUMPING IRRIGATION WATER, CLARK S.J., Agency: SAES KAN 12 APR 76 to 30 JUN 77, Project : KAN-05-488, Perf Org: Agri Engineering, Loca: Kansas State Univ., Manhattan Kan. Objectives: Conduct a feasibility study evaluating energy alternatives for pumping irrigation water. Alterna­tives considered will not use natural gas or petroleum products but will in­clude : solar, wind, biomass, conversion, coal, energy storage to facilita­te efficient utilization will be considered. Approach : Energy sources and storage systems will be compared considering operational and capital costs, efficiency, implementation time, environmental impacts, land use, water use, constraints due to geographic and siting problems, significant technical un­certainties, effect on foreign dependency and social impacts. Using existing data, computer simulation studies will relate design factors and weather da­ta to the cost and performance of energy-storage systems. Systems will be considered for individual farmers and groups of farms. Progress: 75/01 77/12, Feasibility studies have been performed to determine the most promising enei— gy alternative for pumping irrigation water, alternatives included solar, wind and biomass conversion utilizing an anaerobic digestor. Standardized conditions were assumed to provide a standard of comparison. The conditions were: pumping head, 300 feet, power required, 100 Kw, area irrigated, 160 acres, crop, corn, water required 18 inches, water use efficiency 55 and 70% pump efficiency 70%. Four wind systems were considered. The most promising included a wind turbine, transmission and water storage, it proveided water at a cost of S4.09 per acre inch, three residue handling methods were consi­dered for packaging and storing the biomass for the anaerobic digestor. The most promising system included a forage chopper and trench silo, energy cost was 89.11 per acre inch.Four solar systems were considered. All appeared to be too expensive for the near term (to 1985) and midterm period (1985-2000). Publications : 75/01 77/12, Schmidt G.: Energy use in irrigation in Kansas a computer simulation, M.S. THESIS, USDA CRIS.

1189 A REGIONAL MODEL TO ASSESS ALTERNATE SYSTEMS FOR CONVERSION OF CROP RESIDUES TO ENERGY, FINN-CARLSON D.W., STARR P.J., Aff: Honeywell Inc., Minneapolis MN 55413 USA, Simulation, modelling and decision in energy systems, interna­tional symposium/1978/Montreal, Usa, Anaheim ACTA Press, S.D., p.163/166, 12 réf., Présentation d'un modèle de programmation linéaire pour déterminer le coût et la praticabilité énergétique des différentes techniques de conver­sion de déchets agricoles en formes d'énergie utile. Application à un comte du Minnesota. Etude des procédés suivants: digestion anaerobie, combustion en centrales, pyrolyse, fermentation. PASCAL

Page 268: Farm and Forest Biomass

­174­

1190 COUTS ET BENEFICES ENERGETIQUES DE LA RECUPERATION DES PAILLES, Action CEE Energie solaire. Biomasse, HUTTER W., INRA Station d'Agronomie de Toulouse Etude n°4, Sept 1977, 32p + annexes, 15p. 1191 L'ENERGIE EN AGRICULTURE ET L'AGRICULTURE FACE A LA CRISE DE L'ENERGIE, Centre National d'Etudes et d'Expérimentation du Machinisme Agricole , Etudes du CNEEMA, Nov., Dec, 1976, 2 tomes, n°421/422, 88 et 70p. 1192 ENERGIEPROGNOSE NEDERLAND 1976/2000, Essobron 27 1977, okt., 6:10, efbn, grfn, tabn. PUDOC. 1193 SOLAR ENERGY UTILIZATION AND RESOURCE COVERY APPLICATION IN SPACE HEATING, KOKOROPOULOS P., BOLLINI R., Äff: South Illinois Univ., Edwardsville III, In: Annu. Conf. Energy. 3 Proc. Rolla, MO, 1976, North Hollywood Calif, Ed: Western periodicals, 1977, p.410/417, 17 réf., lang: anglais, Description d'un système hybride constitué par des capteurs solaires plans et un système de récupération, et propose pour le chauffage d'un immeuble de taille moyen­ne. Méthode de dimensionnement du système solaire. Utilisation du méthane à partir de l'installation de traitement d'eau usée de l'université pour la production d'un complément de chaleur et pour la réduction des déchets. Avan­tages économiques d'un tel système. PASCAL. 1194 ENERGY, GLOBAL PROSPECTS 1985­2000, WILSON CL., Report of the workshop on alternative energy strategies, New York enz., McGraw­hill, 1977, 291 blz, lit, opgn. ISBN 0­07­071878­4, Tech­77­2 PUDOC. 1195 ETUDE SOCIO­ECONOMIQUE DES PERSPECTIVES DE PRODUCTION ET DE CONSOMMATION DES ENERGIES RENOUVELABLES ISSUES DE LA BIOMASSE AGRICOLE. ­ Socio­economical study for outlook of production and consumption in renouable energy from agri­cultural biomass. SOURIE J.C, TROIZIER M., JAYET Α., Description, invento­ry and trends: food and table luxuries in general, fibre materials and wood products: other man­made resources, economy, socio­economic geography, demo­graphyn physics, general, chemistry, general, Institut national de la re­cherche agronomique services centraux (149, rue de Grenelle 75007 Paris) Institut national agronomique, Paris, Grignon 78850, Thiverval. AGREP 1196 DE NIET KONVENTIONELE ENERGIEBRONNEN, STUBBE E.J., Het Ingenieursblad 44(1975) 17/18, p.372/284, tekn, grfln,. Besproken worden de kernfusie, de zonne­energie, de geothermische energie, de energie uit de zee, de wind­energie en twee moderne energieconversiemethoden, nl. de magnetohydrodynamische genera­tor en de synthetische brandstoffen. Hiervan worden belicht de toepassings mogelijkheden, de huidige stand van het onderzoek, dé kostprijs, het probleem van de milieubescherming e.a. De perspectieven voor het gebruik van deze bron­nen (na 2000 er wordt niet te hard aan gewerkt, omdat onze energie nog te goedkoop is!) worden ook aangegevan (G) PUDOC. 1197 PRELIMINARY PROJECTIONS FOR CENTRALIZED USAGE OF SOLAR ENERGY SYSTEMS IN 1980, 1985, and 1990, BENNINGTON G.E., REBIB0 K.K., VITRAV R.P., McLEAN VA, Ed: Mitre Corp. 1976, 169p., 23 réf. langue: anglais. Etude par simulation sur ordinateur, de la penetration prévisible de systèmes centralisés de conver­sion d'énergie naturelle (solaire, éolienne, thermique des océans, biomasse)

Page 269: Farm and Forest Biomass

-175-

«tcins le système de production d'énergie des Etats-Unis, pour deux scenari de stimulation. PASCAL. 1198 SUGARCANE PRODUCTION RESIDUES, AND ASSESSMENT FOR CONVERSION TO UTILIZABLE ENERGY FORMS, NORDSTEDT R.A., CARNS H.R., Agency ARS 1109, 24 JUN 75 to 23 JUN 76, Project : 1090-16065-004-C, Loca: Univ of Florida, Gainesville FLA, Objectives : Obtain a technological and economic assessment of methods for the conversion of sugarcane production residues to utilizable energy forms. Approach : A library and field study will be performed to obtain data to eva­luate the full technologic and economic feasibility of converting sugarcane production residues into utilizable energy forms, quantities and spacing dis­tributions of residues will be evaluated. The technological and economic undertaken. Technologic gaps will be identified and environmental sociologi­cal ant operational problems will be evaluated. Progress 75/06 77/12. This reports examines the technologic and economic feasibility of converting sugar­cane production residues in South Florida to utilizable energy forms. Quanti­ty and location of the residues are given. Current uses of the residues are outlined and compared with other potential uses which are described in the literature. Technological problems in collection of the field residues are discussed. The resulting research and development needs are outlined. An in-depth economic comparison of anaerobic digestion, shaft pyrolysis, and waterwall incineration is presented. Economic feasibility of each of the three processes is presented as a function of plant size using current mar­ket prices for energy and the energy price increases which would be necessa­ry to make each of the processes economically feasible. Publications 75/06 77/12, No publications reported this period. USDA CRIS. 1199 POTENTIAL FOR ENERGY PRODUCTION ON A 320-ACRE IOWA FARM, SMITH R.J., CARNS H. R., Agency : ARS 1109, Project : 1090-16064-003-C, Loca: Iowa State Univ, Ames low., Objectives : Obtain a technological and economic assessment of the feasibility of making a 320-acre farm system - Iowa farm energy self-sufficient by generation of methane. Approch: The total 320-acre farm sys­tem will be examined to determine the potential of incorporating extensive recycling of residues through both plants and animals with a bioconversion system for the production of energy. The addition of the bioconversion system will be evaluated in terms of optimizing all farm management and production systems. Where new equipment items are needed they will be designed and construction drawings and specifications prepared. Progress: 75/01 77/12. This study concludes that under the assumptions of this analysis use of an on-the-farm-methane-digester system is questionable within a reasonable ran­ge of energy price rises. Energy-supply reductions or rationing would en­hance economic feasibility. No opportunity was envisaged for mobile use of produced energy. Use of a stationary internal combustion engine to drive an electrical generator should provide 76% of the farmstead demand for electri­city and hot water on an annual basis. Alternative uses of the effluent from the digester as a source of nitrogen for fetilizer or as an animal feed are discussed. Publications 75/01 77/12, No publications reported this period. USDA CRIS.

6.3 Ejwi£pnmenta_l_ 2."i£a£t£

1200 LES NUISANCES POTENTIELLES DES ENERGIES NOUVELLES, The potential harmful ef­fects of new energy forms, BAPSERES P., Rev. Gen. Nucl. Fran., 1979, n°1, p.30/40, 11 réf., Cote 17846, lang: fran., Possibilités d'utilisation et impact sur l'environnement des énergies nouvelles: énergie solaire, énergie géothermique, énergie éolienne, biomasse. PASCAL.

Page 270: Farm and Forest Biomass

-176-

1201 BIOGAS : COME ELIMINARE L'INQUINAMENTO PRODUCENDO ENERGIE, Un 'ipotesi inte­ressante da valutare con realismo. Zootecnica Suini-Bovini-Ovini, Sept 1980 p.24/25. 1202 SOIL CONSERVATION LIMITATIONS ON REMOVAL OF CROP RESIDUES FOR ENERGY PRODUC­TION, LINDSTROM M.J., SKIDMORE E.L., Madison Wis., American Society of Agrono­my 1979, p.533/537, ill, map. Journal of environmental quality, V.8, (4) Oct. Dec 1979. ISSN 0047-2425, Exportation de déchets, lang: anglais, 18 ref. AGRICOLA. 1203 SOCIAL ECONOMIC AND ENVIRONMENTAL IMPACTS OF A 25MW WOOD-FUELED POWER PLANT. ROSE DIETMAN W., OLSON KAREN, Univ of Minnesota. J env. management Sep.79, V9, p.131 (13). Research report : the rising cost of crude oil and increasing concern over environmental problems associated with fossil and nuclear fuels have led to the consideration of wood as an alternative fuel source. The so­cioeconomic and environmental impacts of the construction and operation of a 25MW wood-fueled power plant in northwestern Minnesota were assessed. Crite­ria used in site selection are outlined, environmental impacts were identi­fied as being mostly short-term and could be minimized with proper management procedures. Impacts on the regional economy and on regional forest resources suggested that it would be necessary for the state to consider tax incenti­ves and subsidies for utilities planning to operate wood-fueled power plants. (42 references). ENVIR0LINE. 1204 ENVIRONMENTAL EFFECT OF SYNTHETIC FUEL PRODUCTION, KLINZING G.E., CHIANG S.H. COBB J.T., Univ of Pittsburgh, Energy Communication, 1979, V5,n°5, p.279, (24) Technical report : described is a study conducted at the univ. of Pittsburgh to evaluate possible adverse environmental effects from the use of synthetic fuel technology. The environmental effects of operating six unit size syn­thetic fuel plants were compared with the environmental effects of operating a conventional 3000 MW coal-burning power plant. Feedstocks to the synthetic fuel plants were coal, oil shale, tar sands, biomass and municipal wastes, particulates sulfur, dioxide, and ni trogenoxides in air, and increased sali­nity and polycyclic aromatic hydrocarbons in water were measured, air and water pollution resulting from coal-fired power plant operation was much more sevei e than pollution from the synthetic fuel plant operations. The synthetic conversion processes for the production of liquid and gaseous fuels will not significantly degrade the quality of the environment. (13 referen­ces, 5 tables). ENVIR0LINE. 1205 RISK WITH ENERGY FROM CONVENTIONAL AND N0NC0NVENTI0NAL SOURCES. INHABER Her. Science Feb.23, 79, V203, p.4382, p718 (6), feature article : Risks to human health associated with five conventional and six nonconventional energy sys­tems were compared. The entire cycle for producing energy, from raw material and fuel production to waste disposal, was considered the most important con­clusion drawn was that the risks from nonconventional energy systems can be substantially higher than those of some conventional systems. Amounts of ma­terial and labor that are derived from the large backup and storage require­ments, conventional technology risks occur in gathering and handling of fuels transport and electricity production risk evaluation is a relatively new discipline but must be considered in any fully informed judgement (2 diagr., 5 graphs, 18 references). Descriptors : cost benef, analysis-energy, env cons­traints-energy, heaLth env; coal usage, oil usage, nuclear power plants, power plant emissions, radioactive waste management, reactor safety. ENVIR0LINE.

Page 271: Farm and Forest Biomass

­177­

1206 PRELIMINARY ENVIRONMENTAL ASSESSMENT OF BIOMASS CONVERSION TO SYNTHETIC FUELS DINOVO S.T., BALLANTYNE U.E., CURRAN L.W., BAYTOS U.C., DUKE Κ.H., Battette Columbus Labs, Ohio USA, NTIS Report PB 289 775 oct 78 (366). Special report: biomass production and conversion technologies and their related environmen­tal consequences are evaluated, five categories of biomass production are considered, thermochemical and biochemical conversion processes were examined regionalized scenarios were prepared using commercial scale plants processing appropriate regionalized feedstock, control requirements for emission and ef­fluents from processes using heterogeneous solid waste as a feedstock are discussed environmental and socioeconomic effects of locating large conversion plants in rural environments must be studied. ENVIROLINE. 1207 ENVIRONMENTAL PLAN (EDP) FUELS FROM BIOMAS, 1977, NTIS Report DOS.EDP 0005, Mar 78 (54), Special report : the present status and potential applications of bioconversion technology are surveyed, the potential environmental and socioeconomic impacts of bioconversion production and utilization are exami­ned, the large land and water requirements of terrestrial biomass plantations may restrict the development of competing uses of land and water for food and fiber production, potential air and water pollution impacts are also revie­wed. ENVIROLINE. 1208 ENERGY TECHNOLOGIES AND NATURAL ENVIRONMENTS : THE SEARCH FOR COMPATIBILITY, HARTE J., JASSBY Al., us Lawrence Berkeley Lab. Calif., Annual review of energy 1978, V3 p.101 (46)., survey report : the anticipated ecological risks and uncertainties associated with energy sources and all that is known about the human consequences of ecological degradation from energy activities are discussed, methods of ecosystem impact assessment are critiqued. Several proposals to restructure energy policy along untraditional lines are criti­cally analyzed, an attempt is made to identify the most benign technoloigical approach, hydroelectric power, new solar technologies biomass conversion, wind energy, ocean thermal energy, geothermal conversion, coal mining cooling requirements of electric generating plants, fossil fuels, the nuclear fuel cycle, oil shale and synthetic fuels are considered, stress diversity, sensi­tivity, patchness, data availability and other factors of environmental re­view are examined, guidelines for habitat protection are sorely needed, soft energy technologies have much to commend them, yet they vary tremendously with respect to ecological impacts (1 diagram, 123 references, 1 table). ENVIROLINE. 1209 POSSIBLE IMPACTS OF LARGE SOLAR ENERGY SYSTEMS ON LOCAL AND MES0SCALE WEATHER BHUMARALKAR CM., Aff: Stanford Res. Inst, Palo Alto Calif. USA, Intern. Inst. Appi. Syst., Anal., Conf Proc, Asutr., 1977, Vol.77, n°9, p.123/145, 4 ref; Clin. sol. Energy Convers. Workshop. Proc. Laxenburg, 1976, lang:anglais. Etude de l'impact potentiel sur le climat local et regional de quatre sys­tèmes de conversion d'énergie naturelle centrale thermique solaire, centrale de conversion d'énergie thermique des mers, centrale éolienne et conversion de biomasse. PASCAL. 1210 Nuovi aspetti dell'uniquinamento da liquami zootecnici, GANAPINI W., Génie rural, ηβ3 1977.

Page 272: Farm and Forest Biomass

­178­

1211 SECRETARIAT D'ETAT AUX UNIVERSITES, CIRED, CENTRE INTERNATIONAL DE RECHERCHE SUR L'ENVIRONNEMENT ET LE DEVELOPPEMENT, DREVOM J.J., THERY D., Paris (Fra) Ecodéveloppement et l'industrialisation, renouvelabilité et nouveaux usages de la biomasse, 1977, 11, 1977, S1, 126p. A quelles conditions l'industria­lisation est techniquement compatible avec une bonne gestion de l'environne­ment, la biomasse disponible pour l'industrie, diversité des procédés et des débouchés non conventionnels pour la biomasse, 4 etudes de cas et les appli­cations les plus immédiates. RESEDA.

6.4. Bjoroass and the d^evej^i^g^^ntries

1212 L'ENERGIE SOLAIRE AU SERVICE DU DEVELOPPEMENT, Rapport de la Conférence Inter, tenue à Varese, Italie, du 26 au 29 mars 1979, 256p., Mai 1980, Publié pour la Commission des Communautés Européennes par Technique et documentation, diffusion Librairies Lavoisier, 11 rue Lavoisier, 75384 Paris Cedex.08 1213 THE ECONOMICS OF RENEWABLE ENERGY SYSTEMS FOR DEVELOPING COUNTRIES FRENCH D, NAT Resources Forum, NLD, 1980, Vol.4, ηβ

1, p.19/42, Résumé: Fra/spa., 20 ref, lang: anglais. Type TP, LA, Présentation des techniques cout­utilité permet­tant d'évaluer des systèmes utilisant des sources d'énergie naturelle du point de vue d'acheteurs individuels (analyse financière) et de la société dans son ensemble (analyse économique). Application à deux cas particuliers, installation familiale de production de gaz par digestion anaerobie en inde et pompe d'irrigation de 5.5 KW, alimentée par cellules solaires sur les rives du lac Tchad. PASCAL. 1214 BIOGAS ­ A KENYAN CASE, KARIUKI P.N., Ministry of Energy, Nairobi, Session VI Paper VI/4, International conference on energy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Communities in co­operation with de Department of Energy, London. The paper discusses the potential to deve­lop Biogas in Kenya giving a survey of raw materials and strategies for ex­ploiting them. The potential is discussed against a gloomy energy situation both at global and national levels, the floating dome design, a corruption of the Indian design is used, the fertilizer value of the slurry is presen­ted. 1215 THE PRESENT USE AND POTENTIAL FOR ENERGY FROM BIOMASS IN TANZANIA, Session VI Paper VI/2, MAUER G., Lecturer Member of the Alternative Energy Research Group at the Faculty of Engineering, P0B 35 131, Dar es Salaam, Tanzania, International conference on energy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Communities in co­operation with the Department of Energy, London. 1216 RECENT MEETING DEALING WITH BIOGAS IN DEVELOPING COUNTRIES, SILVA F.J. DA, UNESCO, Paris, Session VI Paper VI/8, International conference on energy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Comnunities in co­operation with the Depatment of Energy, London. 1217 DEMONSTRATION OF ANAEROBIC BIOGAS DIGESTERS IN DEVELOPING COUNTRIES Part III The Philippines, SIMPSON M.H., MORALES Ev. C, Loca: Inst. Public Health, Univ Philippines System., Manila, Philippine, Jrnl: J. Environ. Sci., Pubi:80, Series 23, Issue 2, p.20/4, Identifiers: methane manuf swine manure, waste­water pig manure anaerobic digestion, anaerobic digestion manure methane, biogas generator methane prodn, algae growth water biogas generator, fish growth water biogas generator, plant growth water biogas generator, CHEMICAL ABSTRACTS.

Page 273: Farm and Forest Biomass

­179­

1218 PRAKTISCHE ERFAHRUNGEN BEIM BAU UND BETRIEB GROSSER ETHANOLANLAGEN IN BRASI­LIEN, SCHREIER K., Branntweinwirtschaft 120 1980, 82/83, Zusammenfassender Bericht über die Erfahrungen mit der Ethanolerzeugung aus Zuckerrohr in Bra­silien und der Beimischung von Ethanol zum Treibstoff, in Zuckerind. 105 1980, s.534. 1219 ENERGY CROPS, THE CASE OF BRASIL, TRINDADE S.C, Session I I/K2, Centro de Tecnologia Promon CTP, Rio de Janeiro, RJ Brasil, International conference on energy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Communities in co­operation with the Department of Energy, London. 1220 LE BI0GAZ EN INDE ­ Biogas in India ­ BAREISS, Die Landtechnische Zeitschrift Mai, 1980 p.732/733. 1221 AN INDIAN VILLAGE AGRICULTURAL ECOSYSTEM, CASE STUDY OF UNGRA VILLAGE PART I Main observations, Ravindranath N.H., Nagaraju S.M., Somashekar H.I., Channeswarappa Α., Balakrishna M;, Balachandran B.N., and Amulya Kumar N. Reddy, with the assitance of SRINATH,P.N., PRAKASH CS., RAMIAH C , and Kothandaramaiah P., Session VI Paper VI/K2, International conference on ener­gy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Communi­ties in co­operation with<the Department of Energy, London. 1222 COMMUNITY BIOGAS PLANTS, IMPLEMENTATION IN RURAL INDIA, ROY R., Alternative Technology Group, Faculty of Technology, the Open University, Milton Keynes MK7 6AA, England. Address: Walton Hall. UK, Telephone : Milton Keynes, 0908/74066, Direct line: Milton Keynes. Session VI Paper VI/5, International conference on energy from biomass, Brighton 4­7 Nov. 1980, Commission of the European Communities in co­operation with the Department of Energy London. 1223 A STRATEGY FOR RURAL DEVELOPMENT IN THE THIRD WORLD VIA BIOMASS RESOURCE, Utilisation, SLESSER M., LEWIS C.W., H0UNAM I, University of Strathclyde Scotland. Session Vi Paper VI/1, International conference on energy from bio­mas, Brighton 4­7 Nov. 1980, Commission of the European Communities in co­operation with the Department of Energy, London. 1224 BIOMASS AN ENERGY NATURAL, STANLEY B., Intern. Development Res. Cent <B0X 8500, Ottawa, Canada, The IDRC Reports, 1979, 8.2., 3.5, Lang: enl., 2 fig. The value of renewable energy sources and techniques for their use in deve­loping countries are discussed. CAB ABS. 1225 ENERGIE SOLAIRE: UN NOUVEAU CHAMP DE LA COOPERATION ACP CEE, 1979, Europe Information, Commission des Communautés Européennes, Groupe du Porte parole et direction générale de l'information 200 rue de la Loi, 1049 Bruxelles. 1226 WORKSHOP ON FERMENTATION ALCOHOL FOR USE AS FUEL AND CHEMICAL FEEDSTOCK IN DEVELOPING COUNTRIES, Wien, United Nations Industrial Development Organisa­tion (UNIDO) März 1979. 1227 BRESIL : L'ALCOOL AU SECOURS DU PETROLE, Brazil : alcohol going to oil help, Indus. Trav. Outre Mer, Fra, 1979, Vol.27, n°309, p491/493. Marché énergé­tique brésilien, dépendance du Brésil vis­à­vis du pétrole importé qui at­teignait 52.3 millions M** (3) en 1978, 47.3 en 1977) perspectives d'utilisa­tion de l'alcool comme combustible et comme matière première dans l'insdus­trie chimique (BDM 11805A) PASCAL.

Page 274: Farm and Forest Biomass

­180­

1228 THERMAL CONVERSION OF BIOMASS TO FUEL IN DEVELOPING COUNTRIES, ADER G., Ader Assoc. West Wickham, Kent UK., Pubi. West Wickham 1979, 21p., Lang: Engl. Fig., Equipment currently available for biomass gasification, carbonisation and pyrolysis is described, and manufacturers names and addresses are given. CAB ABS. 1229 COOKING UP BIOGAS (renewable energy source) for tea in Sri Lanka, GOSLING D., London, IPC Magazines, New Scientist V.84 (1176), Oct 11 1979, p.95/96, ill, ISSN 0028­6664, Lang: english, Loca: Sri Lanka. AGRICOLA. 1230 BIOGAS TECHNOLOGY AS THE SOURCE OF ENERGY AND VILLAGE EXPANSION, NOEGROHO H Hadi, Loca: Malay, Jrnl: Lembaran Pubi. Lemigas, Pubi: 1979, Series 13, Issue 4 p.41/9, Lang: Indonesian, Identifiers : review biogas technol energy. CHEMICAL ABSTRACTS. BIO MASS­A SOURCE FOR ENERGY, AWASTHI S.K., SRIVASTAVA S.N., SINGH S., PANDEY G.N., Loca: India, Jrnl: Urja, Pubi: 79 Series 6 Issue 9 p.231/5, 237, Identifiers: review biogas energy CHEMICAL ABSTRACTS. 1232 STUDIES IN BIOGAS TECHNOLOGY, PART I Performance of a conventional biogas plant, RAJABAPAIAH P., RAMANAYYA K.,MOHAN S.R., REDDY, AMULYA KUMAR N., Loca: Dept. Inorg. Phys. Chem. Indian Inst. Sci. Bangalore, 560 012 India, Jrnl: Proc. Indian Acad. Sci. (Sect.) C Pubi: 79 Series 2, Issue 3, p.357/63, Identifiers: biogas plant performance India, fuel gas waste app India, CHEMICAL ABSTRACTS. 1233 RENEWABLE ENERGY RESOURCES AND RURAL, applications in the developing world, Ed. by B.N.L. BROWN, Boulder, Westview Press, 1978, 168 biz, lit. opgn AAAS Selected symposium n°6, American association for the advancement of science. ISBN 0 89158 433 1 Wageningen T 23, PUDOC 1234 LES BOIS TROPICAUX, SOURCE POTENTIELLE D'ENERGIE, Tropical woods, a potential source of energy, DOAT J., Bois Forets Trop. FRA, 1978, ηβ181, p.41/56, Résumé eng/esp. 28 ref, lang: fran., revue des sources traditionnelles et nouvelles d'énergie et de leurs possibilités, description succincte des mé­thodes d'otention d'énergie à partir du bois, combustion, carbonisation, ga­zéification, hydrolyse, et fermentation, methanation ­ PASCAL. 1235 CHANCE FUEL EXCTEN, REGENERIERBARE ENERGIEQUELLEN, Une chance pour les pays exotiques, les sources d'énergie renouvelables, A chance for exotic countries the renewable energy sources, KAIER U., Äff: Krafttanlagen AG, Heidelberg Deu, Energie, Deu, 1978, Vol.30, n°7, p.219/223, lang: allem. Evaluation du prix de revient actuel de l'énergie tirée des sources regénérables, houille blanche, géothermie, énergie solaire, production directe de courant chauf­fage par collecteurs ou pompes de chaleur, bioénergie, énergie éolienne, possibilités d'accumulation. PASCAL. 1236 ENERGY BALANCES AS A MEANS FOR THE EVALUATION 0F SOLAR ENERGY IN DEVELOPING COUNTRIES, CAUARD D., CRIQUI P., IEJE Grenoble, Fra., Sun, Mankind's Future source of energy, international solar energy society congress/1978­01­00: New Delhi, USA: Ed. New York Pergamon Press, 1978, Vol.1, p214/218, 3 ref;.

Page 275: Farm and Forest Biomass

­181­

lang: anglais. Etude de l'utilisation des bilans énergie pour la construc­tion de systèmes énergétiques basés sur les ressources locales et renouvela­bles d'énergie dans les pays en voie de développement. PASCAL. 1237 DUURZAME ENERGIEBRONNEN VOOR DE DERDE WERELD, Technische Hogeschool Eindhoven 1978, 38p, Fgn, refs, p.33/38, verslag van een conferentie te Eindhoven op 30 nov. 1978, waar onder meer ter sprake kwamen, windenergie, zonne­energie, kleine waterkrachtcentrales, methaangisting, vergassing van landbouwafval (vB) PUDOC. 1238 RURAL ELECTRIFICATION AN ALTERNATIVE FOR THE THIRD WORLD, USMANI I.H., Nat. Resources Forum, Netherl., 1978, Vol 2, n°3, p.271/277, 8 ref, langue: angl., Conception d'un centre rural de production d'énergie électrique pour un vil­lage de cinq cents personnes basé sur l'utilisation de l'énergie solaire, de l'énergie éolienne et des déchets agricoles, réfutation des critiques adressées à cette conception, problème de financement du programme de démons­tration établi par l'UNEP (United Nations Environment Programma). PASCAL. 1239 ENERGY FROM THE BIOMASS, Energie aus Biomass, KRAUSE R., ORTH H.W, Entwick­lung und Zusammenarbeit, 1978, 4, 12/12, lang: De., The paper discusses the need for re­cycling animal, human and plant waste products particularly in tropical countries, and examines the competing uses for these waste materials to improve soil structure, as fertilizers, as sources of heat and power. The technologies involved are briefly reviewed. The neeid to educate farmers on the importance of maintaining the humus balance of the soil is stressed. The overall cost of utilizing waste and by­products must always be considered, the danger of water eutriphication and other environmental damage from excess use of organic fertilizers must also be considered, energy saving is more likely to be achieved by smaller use of manufactured fertilizers, higher yields, etc, though direct energy production may make a small contribution to the energy balance. 1240 SOLAR ENERGY FOR VILLAGE DEVELOPMENT, BROWN N.L., HOWE J.W., Aff: Overseas dev. Counc. Washington D.C. 20036, Science USA, 1978, Vol.199, n°4329, o.651/657, 13 ref, lang: angl., étude des coûts de la fourniture et énergie dans des villages de Tanzanie en utilisant les techniques suivantes : mini­centrales hydroélectriques, énergie éolienne, production de méthane à partir de déchets organiques, cellules solaires,collecteurs solaires plans, compa­raison avec les coûts de l'électricité produite par groupes électrogènes ou fournie par le réseau national, compétitive des techniques étudiées avec les groupes électrogènes. PASCAL. 1241 BRAZIL PROMOTES PROALCOOL FOR PETROLEUM INDEPENDENCE, Agricultural Enginee­ring, Vol.59, 1978, n°4, p.30/33+38. 1242 POSSIBILIDADE DO USO DE OLEO ESSENCIAL DO MARMELEIRO COMO FONTE NAO CONVEN­CIONAL DE ENERGIA, Possibilité d'utilisation de l'huile essentielle de cognas­sier comme source non conventionnelle d'énergie ­ Possibility of using the essential oil of marmeleiro as a source of non­conventional energy; CRAVEIRO A.A., DE ALENCAR JW., MATOS F.J .Α. , ANDRADE C. Η.S., IRACEMA M., MACHADO L., Aff: Univ. CEARA Dep. Quim. Inorgan. Ceara BRA., CI, E Cult Bra, 1978, Vol 30, n°8, p.994/996, Résumé eng., 11 ref, lang: portugais. Principe d'une méthode d'utilisation complète du caognassier noir (croton sonderiunus muell. arg.) nature monoterpenic de l'huile essentielle. Comparaison de quel­ques constants physiques de cette huile essentielle avec celles du gaz oïl. PASCAL.

Page 276: Farm and Forest Biomass

-182-

1243 SEMINAR ON ALTERNATIVES FOR DEVELOPMENT : SOLAR ENERGY, ANHEMBI, NOV. 1975 CS: Governo do Estado de Sao Paulo Secretaria de Economia e Planejamento, Bra-Governo do Estado de Sao Paulo Secretaria da Cultura Ciencia E Technologi·» ca, Bra. Seminar on alternatives for development : solar energy/1975-11-00: Anhembi, Bra. Ed: Sao Paulo Imprensa official do Estado-imesp : date 1978, 199p., ill.h.t. 30 CMh.t. Governo do Estado de Sao Paulo Secretaria de Eco­nomia E planejamento serie documentos 12: Textes des Communications présen­tées et comptes rendus des discussions. PASCAL 1244 COMPOST, FERTILIZER AND BIOGAS PRODUCTION FROM HUMAN AND FARM WASTES IN THE PEOPLE'S REPUBLIC OF CHINA, McGARRY, M.G. STAINFORTH J., (Editor) Publication International Development Research Centre 1978, N°TS8e 94p, ISBN 0889361401, Lang : english, 63 fig., 25 tab. In the People's Republic of China, human and animal wastes are looked upon as out-of-place resources and valued as low-cost sources of energy to be treated and recycled into the production process. This collection of papers describes the design, construction, main­tenance and operation of Chinese technologies that enable the Chinese to treat waste products to produce liquid fertilizer, compost and methane gas. Various methods of hygenic waste disposal are discussed together with composting, para­site elimination, building materials and construction techniques for village sanitation eauipment and fuel-producing biogas plants. Descriptors energy: waste utilization: China Identifiers: China. CAB ABS 1245 CHINA. AZOLLA PROPAGATION AND SMALL-SCALE BIOGAS TECHNOLOGY, report on an FAO/UNDP study tour to the People's Republic of China, May-June 1978, FAO soils bulletin, n°41. ROME, 1978. 81p. ISBN 92 5 100721. FA0 (NN 12894, 41) PUDOC. 1246 A NATIONAL PROGRAMME FOR SOLAR ENERGY DEVELOPMENT IN THE PHILIPPINES TERRADO (E.N.) Sun, Mankind's future source of energy, international solar energy so­ciety congress/1978-01-00/New Delhi: USA Ed. New York Pergamon Press, 1978, Vol. 1, p101-105, lang: anglais. Aperçu sur le potentiel énergétique de l'énergie solaire, de la biomasse, de l'énergie éolienne et de l'énergie géothermique aux philippines. Programme de R et D en cours, budget prévu pour l'année 1977/78. PASCAL 1247 WOOD WASTE AS AN ENERGY SOURCE IN GHANA, Renewable energy resources and rural applications in the developing world. POWELL J.W. Pubi. Boulder, Colorado USA, Westview Press for the American Association for the Advancement of Science. 1978, 115/128, ISBN 0-89158-433-1, lang : eng. 7 ref, 1 tab, 1fig, AAAS Selected Symposium 6. The wood waste available to provide energy as firewood and charcoal represents a very large resource in Ghana, the quanti­ty of wood involved could well total some 8.7 million m3. The potential power output of these wood wastes is well in excess of the total national power con­sumption, and· about seven times the domestic electricity consumption. Some attempts to increase the utilization of wood waste are described: these inclu­de a domestic stove that burns sawdust, a fish smoking oven and a soap boiling tank with firewood heating. Attempts have also been made to improve the effi­ciency of traditional methods of making charcoal, but innovations have gene­rally been resisted. IT is suggested that more industries using wood as fuel be introduced. CAB ABS

Page 277: Farm and Forest Biomass

­183­

1248 SURVEY, CONSERVATION AND UTILIZATION OF RESOURCES FOR AGRICULTURAL PRODUCTION PILLAI Κ.G., VAMADEVAN V.K., SEETHARAMAN R., Financing Agriculture 1978, 9.4, 16­20, lang: engl. The possibilities of utilization of rural wastes and re­newable resources of inputs and energy in increasing agricultural productivi­ty in India are discussed. The review of the ancient and modern means of survey collection, conservation, utilization and recycling of crop residues, human and animal excreta, industrial wastes and land and water resources in­dicates the need for optimal and conservative use of natural resources with minimum use of fossil fuel deposits and high cost energy resources, giving due attention to minimizing environmental pollution problems. Descriptors; surveys methodology : material resources : utilization India waste utiliza­tion, farm inputs, energy. Identifiers: India. CAB ABS. 1249 HARVESTING LAGOON BIOMASS, MITRA G.C, SINGH V.P., EBY H.J., Nat. Bot. Gardens Lucknow India, Agricultural Research USA, 1978, 26.8 11, lang: eng., The biomass of slurry lagoons has potential as a new source of feed, fertilizer and fuel. When properly managed, lagoons work on a beneficial cycle of oxy­gen and carbon dioxide. Bacteria break down the sewage into nutrients which algae consume along with carbon dioxide. The algae in turn produce oxygen for the bacteria. If further research through chemical analysis and feeding tri­als bears out the potential of biomass harvest for soil amendment and live­stock feed, the results will be of considerable value to agriculture. The la­goon biomass might also be used for methane gas production, adding another source of fuel. Descriptors: lagoons, methane production, treatment, dispo­sal slurry, energy, bio­energy, waste utilization, feed fertilizer. Identi­fiers : India. CAB ABS 1250 MINISTERE DE LA COOPERATION, Paris (fra). Evaluation des énergies nouvelles pour le développement des Etats africains satisfaction des besoins énergéti­ques des agroindustries et des industries du bois par valorisation déchets, 4/1977 11/41977 S1, p.78/113, Valorisation des déchet de l'arachide, cacao, café et canne à sucre et du coprah et des produits du palmier à l'huile en Afrique, les déchets de l'industrie du bois, fabrication du charbon de bois, Minag­C. 6081. RESEDA 1251 MINISTERE DE LA COOPERATION, PARIS (fra), Sema, Paris, Evaluation des énergies nouvelles pour le développement des états africains. 4/1977 11.4/1977 S1, 175+161. Description et évaluation des technologies pour l'exploitation des différentes énergies nouvelles en Afrique. Contribution possible des énergies nouvelles a la satisfaction des différents besoins énergétiques en Afrique. Disponibilités de l'énergie solaire, moyens de captation, application, les pompes solaires, générateurs solaires, photovoltalques, énergie éolienne, énergie hydraulique, géothermique, photosynthèse, fermentation méthanique, pyrolyse, gazéification, satisfaction des besoins énergétiques domestiques, cuisine, transport des produits en milieu rural, éclairage et séchage. Minag ­C­6080, C­6081 RESEDA 1252 Zonne boerderijen in een bloeiende Sahara, Polytechnisch Tijdschrift Elektro­techniek Elektronica 32 (1977) 6 : 346 afb PUDOC

Page 278: Farm and Forest Biomass

-184-

BIOGAS PLANT : design with specifications, SINGH Ram Bux, 2 Edition, INDIA, 1977, 85s., ill, 22 (27) cm. 1254 PRESENT STATUS OF RICE BY-PRODUCT UTILISATION, OJHA T.P., MAHESWARI R.C., SHUKLA B.D., Indian Institute of Technology, Kharagpur, West Bengal, India. Productivity, 1977, 18.2, 249/259, Lang: english. 2 fig., ref. An attempt is made to discuss the various applications of rice by-products in different parts of the world, rice husk obtained from the huller mills is preferred for use as animal and poultry feed. The combustion of organic matter of the husk releases over 3000 k cal/kg of heat energy, at present, India produces about 13 million tonnes of rice husk as a by-product of rice. Rice bran is a potential source of edible oil. Promising uses of rice husk as a source of fuel and energy are discussed. Descriptors: waste utilisation: rice energy, fuel, India - Identifiers: India. CAB ABS. 1255 ANNUAL REPORT 1977-1978, MacDONALD Coll., McGill Univ. Ste Anne de Bellevue, Quebec, Canada, McGill Univ., Faculty of Engineering, Brace Research Insti­tute, Pubi : Quebec Canada, Brace Research Institute, 1978, n°M37, 53p., lang: engl., 10 ref, many fig. The primary interests of the Institute are in the areas of saline water conversion for community and agricultural use, utili­zation of solar, wind and biomass energies, and appropriate technology. Work described includes the design of a rural energy centre for Senegal, advice on and promotion of renewable energy systems in a number of developing coun­tries, the testing and development of a solar heated greenhouse, solar stills, and windmills, and cooperation with a number of national and international organisations. A large collection of reference material on the Institute's subjects is available and the inquiry service has attempted to satisfy an increasing demand for information. CAB ABS 1256 THE NEEDS OF THE HUMAN POPULATION AND THE DEMANDS OF ANIMAL PRODUCTION, Les besoins de la population humaine et les exigences de la production animale, CORDIEZ E., Industries de l'Alimentation Animale, 1977, 7/8, 43/53, Sec Jnl Source, INRA Cards Dec. 1977. Lang: fran., tab. This article argues the case for a New International Economie Order to aid equality of food distri­bution. The problems of indirect consumption of cereals are discussed; toge­ther with the possibilities of reducing the competition between man and ani­mals in the field of energy and protein. Finally, non-conventional foodstuffs recycling animal wastes and using straw are described. CAB ABS 1257 IMPROVEMENTS IN GOBAR GAS OR A BIOGAS PLANT, BHATTACHARYYA, BIMAL CHANDRA, India, Jrnl Indian, Pubi: 770625, p.n° pp given, 1977, Identifiers: biogas manur plant. CHEMICAL ABSTRACTS. 1258 WORLD ENERGY RCSOURCFS 1985-2020 (UNCONVENTIONAL ENERGY RESOURCES). AUER P.L. UOS P.B., ROBERTS V.W., GOUGH W.C., Cornell Univ. presented at world energy 10th Conf., Instanbul, Sep 77, p.135 (41). Survey report : the impact of solar energy biomass, wind, waves, tides, ocean thermal gradients, geothermal energy and fusion on the world's energy economy to the year 2020 is estimated The rate of technological advance in cases where the current state of the art is less than mature and the rate of market penetration by mature technologies are assessed. The attempt is to place some realistic limits on how and to what extent each of the sources may contribute simple applications of solar

Page 279: Farm and Forest Biomass

­185­

energy to water heating and space conditioning are unlikely to displace more than 2­5 * of the world's primary energy requirements, and it is unlikely they will reach this range by the year 2020. The potential contributions of fusion are great, by far, the largest source,source for potential growth in energy demand lies with the developing nations, and certain unconventional resources may play a significant role sooner in these nations than in deve­loped countries, (2 graphs, 10 tables). Descriptors: solar energy, fusion, wind energy, bioconversion, geothermal energy, thermal sea power, wave ener­gy, tidal energy, solar water heating, solar space heating, developing nations solar power plants Conf. Paper. ENERGYLINE.

VII PERIODICALS

1259 BIOMASS, An international Journal, edited by J. COOMBS and 0 HALL, Applied Science Publishers Ltd, Ripple Road, Barking Essex, England. 1260 BIOMASS Digest, Vol. 2, n°5, A monthly report on energy and chemicals from renewable sources, Technical Insights, Inc. Fort Lee, USA, 1980, 10p. 1261 BIOMASSE, lettre d'actualité française et internationale ou les systèmes de conversion bio­énergétique, n°1 le 5 janv. 1981, Biomasse, 11 rue du Marché Saint Honoré, 75001 Paris, 1262 BULLETIN SIGNALITIQUE 381, Sciences Agronomiques productions végétale, CNRS INRA PARIS, 1263 CURRENT AWARENESS BULLETIN, from IEA Biomass Information Service, Institute for Insdustrial Research and Standards Dublin, Shelbourne House, Shelbourne Road, Dublin 4, Ireland. 1264 ENERGIE SOLAIRE ACTUALITES, E.S.A., 254 rue de Vaugirard, 75740 Paris, Cedex 15 Tel: 532.27.19 1265 ENZYME AND MICROBIAL TECHNOLOGY, an international journal of original research and reviews into biotechnology and bioaffini ty, IPC Science and Technology Press Ltd, ΡΟΒ 63, Westbury House, Bury Street, Guildford GU2 5BH, Surrey England 1266 ETHANOL ACTUALITES, trimestriel publié par SFECI Société Française D'expansion commerciale et industrielle. 1267 G.V. OLSEN ASSOCIATES, Agribusiness Intelligence, 170 Broadway New York NY 10038, USA, Every day new information is published on agro­industry and biomass energy. We can keep you up­to­date with all important new develop­ments on a world­wide basis. Every month we will send you references and summarises or abstracts (if available) of the most significant articles, studies, legislation, government regulations, new technology and plants, etc. 1268 LETTRE DU COMES (LA), COMES, Paris,

Page 280: Farm and Forest Biomass

-186-

1269 NATURE ET PROGRES, Association Européenne d'Agriculture et d'hygiène biologi­ques, Chateau de Chamarande, 91 730 Chamarande. 1270 RE News : an occasional newsletter compiled by the Energy Technology Support Unit (ETSU) in its role of formulating and managing the UK Department of Energy's renewable energy programme. The views expressed however are not neccessari ty those of the Department . RE News is available free of charge to anyone interested in renewable energy R&D. Further information about the publication is available from the Editor: RE News Energy Technology Support Unit, Building 156 AERE Harwell, Didcot, Oxon, 0X11 ORA, Tel: Abingdon (0235) 834621. 1271 SOLAR EUROPE, Newsletter of the Solar Energy Programme of the European Commu­nities, issued by the Directorate General XII, for Research Science an Edu­cation, Square de Meeus 1040 Bruxelles. 1272 SOLAIRE 1 MAGAZINE, 57 rue Escudier, 92100, Boulogne, France.

Page 281: Farm and Forest Biomass

- 187 -

INDEX OF AUTHORS

AARDEMA, J.W. 406* AARONSON, S. 592. ABDALLAH, M. 197. 198. ABE, R.K. 238. ABRIL, D. 193. ADER, G. 917. 1228. AHN, Y.Κ. 947. ALBAGNAC, G. 685. ALBRECHT, W.J. 673. ALEXANDER, A.G. 523. ALFANI, F. 770. ALFONSO, L. 273. ALLEN, A. 208 ALMEIDA, H. de 994. ALPERT, J.E. 694. 861. ΑΝΑΝΤΗ, K.P. 172. ANDERSON, R.E. 763. ANDERSEN, H.E.C. 941. ANDERSEN, C E . 1070. ANDREOLI, P. ANDREONI, P. 769. ANDRIOLI, F.D. 1159. ANELLI, G. 693. ANISIMOV, O.L. 633. ANGLO PILAR, G. 330. ANTAL, M.J. 871. ANTOINE, R. 893. ANTONY, P.J. 112. ANTONY, R.G. 191. ARGUE, R. 377. ARNOLD, B.L. 249. ARNOLD, J.E.M. 413. ARNOLD, L.E. 900. ARNOUX, M. 581. ARNOUX, D. 230. AROLA, R.A. 337. 1132. ASHARE, E. 281. 285. 1076. ASPLUND, D. 171. ATHEY, R. 208. AUBART, C. 266. 745. 746. AUCLAIR, D. 394. AUER, P.L. 1258. AUGENSTEIN, D.C. 607. 608. AUQUIER, C. 1064. AVELINE, M.F. 26. AVELLA, R. 769. AWASTHI, S.K. 1231.

BAADER, W. 675. 753. 814. 1082. BACKER, L.F. 189. BADGER, D.M. 1079. BAHADORI, M.N. 647. 709. BAILEY, E.C. 738. BAILEY, M. 1172. BAILIE, R.C. 743.

BAKER, J.B. 418. 717. BALDWIN, V.C. 434. BALLANTYNE, W.E. 1206. BALLOU, S.W. 728. BANDYOPADHYAY, K.K. 776. BAPSERES, P. 1200. BAREISS, 1220. BARFOED, H.C. 1024. BARLET, J. 1136. BARLETT, H.D. 318. BARNES, J. 766 BARNETT, S.M. 736. 741. BARRICHELO, L.E.G. 390. BARRY, M. 754. BARSE, J. 1173. BARTH, C L . 251. BARTLETT, H.D. 303. 798. BARTHOLOMEW, D.P. 200. BARTON, A.F.M. 655. BATSTONE, D.B. 495. BATHER, D.M. 155. 480. BATTY, J.C. 680. BAUDIN, P. 986. BAUER, H. 73. 982. BAUER, K. 184. BAUER, U. BECHTOLD, K. 884 BECKER, C F . 1157. BEHRENS, D. 95. BEINSTEIN, J. 684. BELLAMY, W.D. 1017. BENEMANN, J.R. 158. 628. 629. BENGTSON, H.H. 816. BENNETT, M. 968. BENNINGTON, G.E. 1197. BENSON, W. 208. BENT, E van den 651. BENTE, P.F. JR 118. 733. BERDYKULOV, Κ.Α. 625. BERGMAN, Κ.G. 485. BERGVALL, J.Α. 338. BERKLOFF, 594. BERNER, T. 592. BERNARD, D. 649. BERNHARDT, W. 928. 969. 1116. BERNHARDT, V.W. 989. BERRY, D.R. 262. BERTHELSEN, L. 830. BETHEL, J.S. 421. BHATNAGAR, G.P. 632. BHATTACHARYYA, B.C. 1257. BHUMRALKAR, CM. 1209. BIEBER, H. 1115. BIEHNER, 692. BILLEMONT, J. 1049. BINDER, H. 843.

Page 282: Farm and Forest Biomass

- 188 -

BINOT, R. 1064. BIOLLEY, R. 1058. BIONDI, 1046. BISSONETTE, G.Κ. 748. BJORK, S. 202. 582. BLANKENHORN, P.R. 372. 373. 400. 401,

436. BLANCKE, P. 1029. BLANQUY, 953. BLASY, J.A. 143. BLONDIN, G. 806. BLOTKAMP, P.J. 1015. BOARDMAN, Ν.K. 14. BOBLETER, 0. 843. BODOY, Α. 622. BODRIA, L. 306. BOERSMA, L. 326. BOGUE, M.J. 1079. BOISVERT, R.N. 976. BOLAN, M.P. 827. 829. BOLLINI, R. 1193. BONETTI, M. 786. BOND, F.L. 435. BONFIG, R. 323. 1043. 1059. BONHOMME, R. 491. BONNESEN, H. 42. BONZON, M. 891. BONNIER, C. 11. BONTENOT, J.P. 247. BOODT, M. de 665. BOOM, J. 1186. BOON, J.H. 641. BOORAM, C.V. 1113. BOOTH, Α. 754. BORIES, Α. 687. BOS, P.B. 1258. BOTHAST, R.J. 775. 779. BOURGUET, S.M. 1039. BOURNAS, L. 113. 783. 832. 942. BOURREAU, Α. 943. BOUSQUET, D. 919. BOUVAREL, P. 393. BOVEN, Β. van 568. BOWERSOX, T.W. 401, 436. BOYD, W.D. 808. BOYELDIEU, S. 10. BRAMHALL, G. 880. 885. BRANDING, Α.E. 1090. BREGA, L. 664. BREMER, P. 1107. BRENNDORFER, M. 279. 814. BRIDGWATER, A.V. 917. BRINK, D.L. 870. 873. 874. 897. BRITTO, J.O. 390. 8R0, K. 940. BROADHEAD, D.M. 497. BROGAN, J.C. 293. BROOKS, R.E. 1017.

BROOMAN, E.W. 646. BROUZES, H. 804. BROWN, J. 339. BROWN, J.C. 612. 620. BROWN, M.W. 643. BROWN, N.L. 1233. 1240. BROWN, L.R. 1142. 1143. BRUER, G.G. 477. BRUNE, D.E. 328. BRUNETTI, Ν. 786. BRUWER, J.J. 1117. BRYANT, B. 652. BUCHELE, W.F. 879. BUDY, J.D. 437. BUHNER, T. 1139. BUBENZER, G.D. 261. BUKIN, V.D. 476. BULL, T.A. 495. BUONAVENTURA, P. 638. BURDICK, D. 673. BURGESS, R.L. 371. BURNELL, D.G. 434. BURWELL, C.C. 170. BUSBY, M. 815. BUSCHER, H. 235. BUTLER, J.L. 923. BUTTERS, J.W. 117. BYLINSKY, G. 1178.

CABANETTES, A. 394 . CALLAGHAN, 107. CALVIN, M. 60.78.344.488.494.549.958. CALVIN, G.J. 60. CAMPDELL, D.W. 385. CARILLON, R. 19. 1136. CARNS, H.R. 242. 743. 1198. 1199. CARPENTER, S.O. 1118. CARRASSE, M. 832. CARTER, A.W. 700. CASADEVALL, E. 594. 595. 596. CASSELL, E.A. 314. CASTAGNE, M. 448. 683. CASTELLI, G. 306. CATHONNET, M. 868. CATINOT, R. 391. CAUARD, D. 1236. CAUGHEY, R.A. 364. 416. CAUBET, S. 865. CAYRE, H. 987. CERVINKA, V. 174. 1016. CHAMBERS, R.S. 1036. CHANCO, M.P. 405. CHARTIER,P. 9.20.88.90.111.147.149.176.

232.491.551.663.752. CHAPMAN, R.C. 434. CHASE, T. 974. CHASSANY - DE CASABIANCA, M.L. 593.

Page 283: Farm and Forest Biomass

- 189 -

CHASSIN, P. 181. CHEREMISINOFF, Ν.P. 1034. CHIANG, S.H. 1204. CHILDS, R.E. 309. CHIRANSIVI, C. 819. CHOONG, Ε.T. 65. 446. CHOW, P. 565. CHRYSOSTOME, G. 889. CIRANNA, M. 637. CLARK, S.J. 1188. CLAUSEN, E.C. 489. CLEVELAND, J.H. 922. COBB, J.T. 1204. COCHIN, B. 1185. COCHRAN, B.J. 65. 507. 801. COE, W.B. 821. COFFMAN, J.A. 915. COILLARD, 783. COJULUN, V. 1007. COLARDEAU, J. 712. COLLERAN, E. 754. 1048. COLLINS, P. Q. 35. COLZANI, G. 280. COMPERE, A.L. 1030. CONCIN, R. 843. CONNOLLY, J.S. 139. CONSTANTIN, Β. 1078. CONTE, L. 280. CONVERSE, J.C. 261. COOLEY, T.N. 588. COOMBS, J. 37. 538. 697. 773.966.967. CORDER, S.E. 383. CORDIEZ, E. 1256. CORTE, P. 865. COULD, W. 339. COX, J.L. 912. CRACCO, E. 682. CRAENS, J. 640. CRAIG, R.A. 646. CRAVERI, R. 742. CRAVEIRO, A.A. 1242. CRAWFORD, D.L. 727. CRIQUI, P. 1236. CROATTO, U. 600. CROWTER, R.E. 559. CRUTZEN, P.J. 881. CULLEY, D.D. 310. CURRAN, L.M. 1206. CURRIER, R. 433. CZASCHKE, H.W. 1022.

DALAKER, 0. 81. DAMBROTH, M. 972. 1176. DANIELSEN, P.G. 475. DANLEY, D. 349. DAVIS, H.R. 823. DAVIS, R.D. 852.

DAVIS. R.J. 890. DAY, D.L. 320. DAY, J.W. 978. 1187. DEGLISE, X. 866. DEICKE, R. 525. DELMON, B. 893. DEMEESTER, J. 621. DENNETIERRE, A. 910 DEROANNE, 698. DESROSIERS, R.E. 1180. DETROY, R.W. 775.779. DEVER, D.A. 146. DEVIN, Β. 126. DEWALLE, D.R. 360. DICKENSON, R.L. 1179. DIEBOLD, J.P. 859. DIETRICHS, M. 835. DIF, D. 596. DINOVO, S.T. 739. 1206. DIRNEGAY, Ε.T. 247. DIVREY, A. 831. DOAT, J. 392. 867. 1234. DOBIE, J.B. 237. 689. DODSON, C E . 482. DOELLING, N. 613. DOHNE, E. 814. 1044. 1045.1080.1081, DOLZ, J. 231. DONDERO, N.C. 718. DOUB, R.L. 421. DOUGLASS, P. 1089. DOUVILLE, J.L. 623. DOWNER, R.N. 314. DREVON, J.J. 1211. DROUIN, P. 1138. DUBIN, F.S. 374. DUCROS, S.M. 1039. DUERKSEN, C. 1149. DUBINSKY, Z. 592. DUBOIS, P. 888. DUJARDIN, E. 635. DULPHY, J.P. 231. DUMON, R. 341. 342. 367. DUNICAN, L.K. 678. 805. 1048. DURAND, H. 110. 1137. DUTROW, G.F. 578.

EBY, H.J. 1249. ECCHER, A. 553. ECKMULLNER, 343. EGGERS-LURA, A. 82. EHRINGER, H. 2. ELDER, J.T. 862. 863. ELIAS, S. 1035. ELLEFSON, P.V. 411. ELLIS, E.R. 347. ELWOOD, J.P. 346. EMANUEL, B. 377.

Page 284: Farm and Forest Biomass

- 190 -

ENGLISH, M.J. 136. ENGLISH, M 962. ENSIGN, J.C. 286. EPSTEIN, E. 694. 861. ERGUN, S. 909. ERTL, J. 1148. ESPINOSA, R. 1007. RTHIRAJAN, A.S. 534. ETTALA, J. 171. EVANS, R.S. 412. 579. EVELEIGH, O.E. 974. EYSER, B. 1109.

FAASSEN, H.G. van 299. FAHIM, C. 865. FAHRNBERGER, A. 13. FAIX, 0. 744. FAIX, J.J. 424. FALLOWFIELD, H.J. 602. FAN, L.T. 100. 869. FANG, C S . 548. FARNHAM, R.S. 484. FATHI-AFSHAR, S. 979. 980. FAZELI, A. 542. FEGE, A.S. 120. 348. 571. FELBECK, G.T. 929. FELGENTRAEGER, W. 116. FIECHTER, A. 661. FIELDS, C.L. 238. FIGUEROA, C. 909. FILIPCZAK, J. 886. FILIPPOVSKIJ, Y.W. 633. FINN-CARLSON, D.W. 674. 1189. FIORELLI, V.E. 66. FIORENTINI, R. 693. FISCHER, F. 729. FISCHER, H. 1163. FISCHER, J.R. 255.325.327.800.818. FLORIOT, J.L. 683. FOO, A.S. 618. FOO, E.L. 618. 959. FORMISANO, F. 99. FORNHAMMAR, U. 906. FORTIN, H. 427. FOUSSARD, J.N. 192. FRAMONDINO, U. 786. FRANCOIS, J. 586. FRANK, J.R. 802. FREEMAN, K.C. 497. 1105. FRENCH, 0. 1213. FREUD, A.W. 539. FROSTELL, B. 807. FRUHWALD, A. 450. FRY, L.J. 782. 1103. FRYE, J.B. 310. FUKAZAWA, Y. 389. FUKUMOTO, M. 490.

FULHAGE, C D . 325.

GAC, A. 179. GADDY, J.L. 489. 1011. 1088. GALOPPINI, C 693. GALZY, P. 686. GANAPINI, U. 77. 291. 333. 1210. GERBER, J.D. 548. GARCIA, R. 985. GARCIA-MARTINEZ, D.V. 1119. GARRETT, M.K. 602. GARRETT, D.E. 914. GARTEN, R.L. 1129. GARTSIDE, G. 163. GASCHE, N. 467. GASCHO, G.J. 526.543.544.546. GASPER, E. 326. GASSER, J.K.R. 185. 263. GAUTIER, F. 683. GAVINELLI, C 1062. GENZMER, W. 1060. GEORGE, J.P. 631. GERGELY, S. 944. 990-GEYER, U.A. 566. 575. GHOSE, T.K. 774. 776. 777. GIAACCIO, 0. 553. GIANFREDA, L. 660. 770. GIESELER, C 407. 449. GIFFORD, R.M. 163. GIORGI, F. 516. GIORGIO, G. di 769. GLASER, P.E. 159. GLOGER, M. 755. GOCHNARG, I. 991. GODDARD, Κ. 936. 1123. GOLDEN, C O . 908. GOLOVKOV, S.I. 1131. GOMA, G. 961. GONZALEZ-MOLINA, C. 523. GOODMAN, Ν. 46. GOPALAKRISHNAN, L.V. 590. GOSLING, D. 1229. GOSS, J.R. 911. GOUGH, U.C. GRANATSTEIN, D.L. 860. GRANELI, W. 202. 582. GRANTHAM, J.B. 381. GRASSI, G. 96. GRAY, P. 262. GRECO, G. 660. GREEN, J. 1171. GREGOR, H.P. 759. 1001. GRENON, M. 926 GRIFFITH, U.L. 1030. GROENEVELD, M.J. 907. GRONEMAN, A.F. 1124. GROS, F. 1144. GROUT, H.J. 962.

Page 285: Farm and Forest Biomass

- 191

GRUNEWALD, H. 165. GUHA, Β. 474. GUIRAUD, 0. 211. GULBINAS, E. 1003. GUNKEL, U.U. 823. GUZMAN, M.R. 331. GUINNER, E. 1184.

HABERGGER, L.J. 728. HAGA, K. 275. 330. HAGEN, K.G. 460. HAJNY, G.J. 717. HAKKILA, P. 441. HALL, D.0.17.36.37.38.61.97.492.740.

765. HALLAND, I.I. 565. HALLENBECK, P.C. HALMANN, M. 952. HAMMOND, E.G. 44. 254. HAMMOND, R.F. HAN, Y.U. 69. HANISAK, M.D. 587. HANLEY, D. 345. 858. HANSELMANN, E. 883. HANSEN, R.U. 145. 258. HANSEN, E. 567. HARDY, R.U.F. 493. HARPER, J.P. 145. HARPER, J.M. 295. 311. 312. HARPER, J.H. 308. 728. HARRIS, G.S. 719. HARTE, J. 1208. HASSAN, A. 825. HATT, B. 917. HATTON, U.D. 117. HAURIE, M. 1050. HAVE, H. 840. HAUKES, D.L. 792. HAYES, D. 31. 79. 557. HEALY, J. 8. 157. 560. HEDEN, CG. 606. 959. HEER, J.E. 713. HEGG, R.O. 251. HEGGEN, P. 81. HEIDT, L.E. 881. HEIGENHAUSER, B. 456. HEITLAND, H. 1022. HEMPHILL, B.U. 757. HEREDEEN, R.A. 1036. HERLING, D. 737. HERMAN, A.I. 779. HERUIG, L.O. 144. HEYLAND, K.U. 194. HILLS, R.C. 307. 857. 882. HILLS, D.T. 250. HILLS, D.J. 186. 207. 315. 689. 1106. HIRA, A. 736.

HIRSCH, R.L. 143. HIRSCHORN, P. 667. HISER, M.L. 378. HITZHUSEN, A.J. 197. 198. 1168. HJORTSHOJ NIELSEN, A. 12. 63. HOFMAN, M. 670. HOGNAS, T. 426. HOKANSON, Α.E. 376. HOLT, R.F. 121. HOOKS, R.U. 928. HOOP, D.U. de 568. HOOVERMAN, R.H. 905. HOPKINSON, C S . 978. HORSFIELD, B. 242. 904. HOUBEN, H. 502. HOUNAM, I. 1223. HOUARD, J.O. 359. HOUE, J.U. 1240. HOUELL, D. 1071. HOULETT, C T . 471. HUBBARD, D.E. 1072. HUFF, E. 735. HUGHES, U.L. 872. HUGUES, D.E. 787. 788. HUMBERT, R.P. 529. HUPKES, G. 1155. HURAND, A. 56. HUTTER, U. 187. 1190. HYDE, U.F. 419. IANNOTTI, E.L. 255. 327. ICHIMURA, S. 627. INCROPERA, F.P. 611. INDEN, P. 732. 1021. INHABER, H. 1205. INMAN, R.E. 571. ISMAN, M. 319. IVANCHIKOV, Α.K. 477. IVES, E. 1168. IVINS, J.D. 837. JACOB, F. 1144. JAIN, A.K. 1005. JAYET, P.A. 22. 129. 182. 216. 731.

1040. 1195. JANSHEKA, H. 661. JAWETZ, P. 921. 977. JEFFERS, J.N.R. 107. JEFFRIES, T.U. 759. 1001. JENKINS, B.M. 1157. JENKINS, D.M. 975. JENSEN, A.H. 321. 1187. JENSEN-HOLM, C 1086. 1110. JEUELL, U.J. 137.658.718.809.817.823. JOHNSON, B. 423. JOHNSON, L.R. 142. 160. JOHNSON, R. 189. JOHNSTON, P.J. 971. JOHNSTON, D.R. 554. JONES, U.H. 47.

Page 286: Farm and Forest Biomass

- 192 -

JONES, J.L. 653. JONES, J.M. 603. JOSEPH, S. 878. JOYCE, J.J. 1036. JUSTE, C. 659.

KAISER, R.B. 701. KAIER, U. 1235. KALISH, J. 572. KALLIO, E. 452. KALLIO-MANNILA, R. 222. KALTER, R.J. 976. KAMPF, H. 527. 1006. KARIUKl, P.N. 1214. KARSKY, T.J. 854. 855. 856. KATZEN, R. 376. KAUSHAL, K. 812. 1005. KAVANAGH, R. 1133. KEENAN, J.D. 726. KEISER, G. 1147. KELLY, F.H.C. 521. KEMPF, W. 501. 511. KENNEDY, M.V. 249. KERR, S.N. 360. KETTUNEN, P. 222. KHAN, R. 773. KIDDER, G. 526. KIM, H.U. 288. KING, G.H. 98. KING, T.G. 251. KITTO, W.D. 352. KLASS, D.L. 48.49.67.654.853. KLAUSEN, K.G. 241. KLEIN, E.L. 351. K.LEINHANB, W. 269. KLINZING, G.E. 1204. KLOSTERMAN, H.J. 1025. KLUENDER, R.A. 462. KLUMB, D.L. 702. KNIGHT, J.A. 1121. KNOL, W. 205. KOBYLINSKY, E.A. 1088. KOCH, P. 402. KOENIG, A. 989. KOGL, H. 1139. KOHAN, S.M. 1179. KOKOROPOULOS, P. 816. 1193. KOLSTER, H.W. 398. KONDRATEVA, E.N. 634. KOOPMAN, B.L. 628. 629. KOPERIN, I.F. 1131. KOSSTRIN, H.M. 852. 861. KRAPFENBAUER, A. 204. 408. KRAUSE, R. 1239. KREPIS, I.B. 276. 648. KREUTZER, K. 410.

KREUZBERG, K. 597. KROTH, W. 396. KU, T.T. 418. KUEHTREIBER, F. 229. KUESTER, E. 696. KUJALA, P. 1004. KUNCHITHAPATHAM, 672. KUNG, F.H. 387. KWON, I.K. 288.

LACAZE, J.F. 552. LACEWELL, R.D. 210. LACO, G. 272. LACOSTE, J. 1146. 1174. LADISCH, M.R. 781. 902.984. LAFON, P. 267. 268. LAGRANGE, B. 749. LAING, F.M. 473. 564. LALLEMAND, M. 943. LALK, T.R. 191. LAMBERS, J.H. 1156. LAMM, W.D. 247. LANCEL, L. 1039. LANE, A.G. 810. 1073. LANG, J.L. 999. LANG, A. 1068. LANG, F. 1068. LANG, R.C. 666. LĂRGEAU, C. 594. 596. LARSEN, J. 83. LAVAGNO, E. 785. LAVERGNE, D. 587. LAWSON, 107. LE COCHEC, F. 499. LE GALL, J. 1051. LEMAIRE, W.H. 199. LEPORI, U.A. 191. 209. LESTER, R.B. LETTINGA, G. 796. 797. LEVELTON, B.H. 472. LEVITIN, D. 703. LEWIS, J.O. 130. LEWIS, C.W. 151. 725. 927. 1223. LIEN, S. 624. LIKUMS, E. 536. LIM, J.H. 277. LIME, B.J. 504. LIN, S.C. 875. LINDAUER, G. 784. 896. LINDEMUTH, Τ.E. 1130. LINDLEY, J.A. 189. LINDSTROM, M.J. 121. 1202. LIPINSKY, E.S.506.512.537.550.973.1028. LIPPER, R.I. 298. LIU, C.H. 212. LLOYD, O.H. 138. LOEHR, R.C. 695. 811.

Page 287: Farm and Forest Biomass

- 193 -

LONG, T.Α. 318. LONGYEAR, A.B. 274. LOPEZ, G. 530. LOPOPOLO, M. LORA, J.H. 1003. LOW, J.B. 150. LOUWES, H.J. 518. LOWTHER, J.D. 876. LUBET, 659. LUCAS, J. 7. 104. 231. 233. LUMBERS, J. 39. LUQUET, 1041. LUTHI, J.E. 708. LYONS, G.J. 80.479.562.569.

McBEE, G.G. 496. MacBRAYNE, C. 397. McCANN, D.J. 981. McDONNEL, P. 293. MCELROY, G. 557. McGARRY, M.G. 1244. McGEE, L.B. 417. McGINNIES, W.G. 583. McGOVERN, J.N. 461. McGRATH, D. 296. McGREU, W. 67. McGUIRE,J.R. 350. McKIEL, C. 339. McMARTIN, W. 1170. MACHADO, M.C. 617. MAGAGNI, Α. 699. MAGNAN, R. 23. MAHESWARI, R.C. 1254. MAIJGREN, B. 906. MAISEL, D.S. 70. MAKHAN, D.S. 278. MALLARINI, F. 639. MARAMBA, F.D. 1095. 1096. MARCHAIM, U. 668. MARCHETTI, C. 1094. MARIANI, E.O. 388. MARROQUIN, F. 1007. MARSHALL, J.E. 946. MARSHALL, J.F. 161. MARTIN, D.F. 588. MARTIN, S.R. 482. MARVIN, H.H. 140. 143. MARZOLA, D.L. 200. MASSON, C. 943. MATER, J. 445. 447. MATHUR, V.K. 364. 416. MATHUR, K.N. 133. MATSON, J.A. 1127. MATTHEWS, J.D. 397. 558. MATTHEWS, J.C. 555. 869. MAUER, G. 1215. MAUGARD, A. 23.

MAUGENET, J. 687. MEARS, L.G. 1020. MECSERY, J.J. 547. MENTA, P.K. 213. MEIDEN, H.A. van der 398. MEIER, W. 707. MEINHOLD, Κ. 32. 58. MELLOTTEE, Η. 833. MENEZES, T.S.B, de 510. 540. MENRAD, Η. 969. 989. MERCIER, J.R. 55. MERIAUX, S. 9. 224. 225. 663. MESSENGER, M. 1134. MEYERS, S.G. 1010. 1027. MEYNELL, P.J. 790. 820. MIDDAUGH, P.R. 188. MILLER, E.L. 437. MILLER, G.E. 689. MILLER, S.F. 970. HILNE, T.A. 139. MILTON, F.T. 415. MIKKELSEN, J.P. 246. MINIER, M. 961. MISRA, M.C. 616. MISSELBORN, K. 771. MITCHELL, C P . 397. 558. MITRA, G.C. 1249. MITSUI, A. 614. MIYAMOTO, K. 54. MOE, P.G. 748. MOHAN, S.R. 1232. MOHLER, G. 1160. MOHR, B.J. 1038. MOLLE, J.F. 104. 834. 887. MONSEUR, X. 670. MONTENECOURT, B.S. 974. MONTORSI, M. 332. MONTECALVO, J. 741. MORALES, E.C. 1217. MORFAUX, J.N. 685. MORGAN, S. 414. MORIN, M. 832. MORLEY, J.G. 603. MORRISSON, S.M. 258. MOST, M.M. 205. MOULIN, G. 686. MUCK, R.E. 252. 253. MUDGE, L.K. 899. 903. 912. MUDRIK, V.A. 486. MULLER, R.L. 525. MUNRO, CG. 76. MURATA, D. 998. MURPHEY, W.K. MURPHY, V.G. 145. MURTHY, B.S. 590. MUTHUVEERAPPAN, 672. MYERS, C.A. 56.

Page 288: Farm and Forest Biomass

­ 194 ­

NACHISHEIM, C.J. 674. NADIS, S.J. 1177. NAFUS, D. 166. NAGARAJU, S.M. 1221. NANSON, R.S. 1114. NATHAN, R.A. 509. NAUTIYAL, J.C. 428. NAVAROTTO, P.L. 292. NAVEAU, H.P. 671. NAYLOR, E. 601. NEEL, L. 1175. NEELAKANTAN, S. 1093. NEENAN, M. 80. 444. 561. 562. NELSON, M.J. 1032. NELSON, D.E. 382. NEMETHY, E.K. 584 NEMIR, A.S. 1141. NESSE, Ν. 312. 822. NEUWIRTH, O. 960. NEWELL, P.J. 678. NEWTON, G.L. 248. 259. NICHOLSON, T. 402. NIELSEN, S. 1102. NIESE, G. 696. NIESSEN, W.R. 644. NIESWAND, G.H. 827. 829. NIGRO, E.F. 703. NILSSON, S. 851. NISHIMURA, H. 389. NITSCHKE, E. 945. NOACK, D. 450. NOEGROHOHADI, H.S. 1230. NORDSTEDT, R.A. 1198. NORMAN, R. 815. NORTON, J.H.R. 930. NURIEVA, D. 625. NYE, J.C. 260. NYNS, E.J. 605. 609.

OFOLI, R.Y. 976. O'FLAERTY, T. 444. O'GRADY, M.J. 357. OJHA, T.P. 1254. OKOS, M.R. 1169. OLBRICH, S.E. 824. OLSON, Κ. 354. 1203. OPPENLANDER, J.C. 314. ORAVA, R. 221. ORLANDI, F. 1063. ORTH, H.W. 239.243.753.1239. O'SHEA, J. 293. OSTER, H.J.C. 384. OTVOS, J.W. 584. OURSBOURN,C.D. 209. 210. OVEREND, R. 162. OZA, G.M. 386.

PAIN, J. 826. PAINTER, D.J. 1106. PALMER, R.D. 117. PALZ, W. 88. PANKHURST, E.S. 789. PARE, C. 448. PARK, N.J. 277. PARK, Y.D. 277. PARKER, B.F. 898. PARCEVAUX, M.S. de 585. PARDE, J. 395. PASSARO, F. 99.

570.577 PATEL, A.R. 316. PATOUT, W.S. 520. PATZAK, W. 409. 468. PAVONI, J. 713. PEARCE, M.L. 556. PEARSON, D.E. 922. PEART, R.M. 902. PEDERSEN, T.T. 236. 839. PEET, 322. PELLIZZI, G. 306. 1135. PENCZYNSKI, P. 164. PERCIVAL, R.H. 531. 532. PERHAM, C. 356. PERNKOPF, J. 918. PERSSON, S.P. 1090. PETROFF, G. 867. PFULG, F. 756. PHELINE, J. PHILLIPS, CR. 860. PHILLIPS, J.M. 589. PICKEN, D.J. 1047. PILLAI, K.G. 1248. PILLARD, J.C. 193. PILLET, J.P. 916 bis. PILNIK, W. 772. PIMENTEL, D. 46. 166. 169. PINTO, Ν. 1022. PIRON­FRAIPONT, C. 635. PIRT, S.J. 604. PISCHEL, H. 955. PISCHINGER, F. 955. PITT, Ν. 213. PLANTE­CUNY, M.R. 622. PLASKETT, L.P. 150. PLAYNE, M.J. 541. POELMA, H.R. 1069. POLENTA, B. 516. POLY, J. 109. 141. POMEROY, C F . 1120. PORCELLI, S. 59. POTMA, T. 1158. POTRÓN, A. 23. POWELL, J.W. 1247. PREBLUDA, H.J« 997. PREGERMAIN, J. 313.

Page 289: Farm and Forest Biomass

­ 195 ­

PRESTON, T.R. 522. PROTT, 514. PULS, J. 336. 835. PURUSHOTHAMAN, A. 632. PYLE, L. 1105. PYTLINSKI, J.T. 1182.

RADOVICH, J.M. 1120. RAHMER, B.A. 723. RAIBAUD, P. 1052. RAILLARD, D. 211. RAJABAPAIAH, P. 1232. RÁJALA, P.S. 426. RAMAKUMAR, R. 872. RAMANAYYA, K.V. 1232. RAMSEY, D.S. 249. RASK, N. 1168. RAPS, H. 196. RASTOGI, R.P. 812. RAVETTO, P. 785. RAVINDRANATH, N.H. 1221. RAWLINS, S.L. 1166. RAYNAUD, P. 580. RAYNAUD, R. 104. REBIBO, Κ.Κ. 1197. REDFIELD, D. 50. REED, T.B. 652.842.849.850. REGLITZKY, A.A. 928. REHM, H.J. 95. REHRL, K. 229. REILLY, J.W. 1013. REINEFELD, E. 515. REMEDIOS, E. 808. RENARD, J.G. 831. RENZO, D.J. de 650. 768. REXEN, F. 84. 177. RHODES, R.A. 821. RIAUX, C. 623. RICAUD, R. 507. RICH, V. 366. RICHARD, J.R. 833. 868. RICHARD, C. 866. RIGHELATO, R.C. 715. 773. RIJKENS, B.A. 794, 795. RILEY, J. 438. 735. 882. RISGARD, J. 85. RISHEL, L.E. 400. ROBERTS, D.W. 186. ROBERTSON, E.E. ROBERTUS, R.J. ROBINSON, S. 374. ROCKMAN, J. 645. RODOT, M. 127. 871. ROLFE, G.L. 353. 355. 565. 900. ROLIN, A. 866. ROLLINS, E.S. 1016. ROLZ, C. 519. 985.

ROMAGOUX RONDEAT, ROSE, D. ROUSSEAU ROUSSEAU ROUSTAN, ROUE, R. ROY, R. ROYER, Ρ ROYERE, RUDD, D. RUGGERI, RYTHER,

, J «C· 626· J. 988. 354. 1203. , I. 668. , P. 682. J.L. 1053. J. 825. 1222. 1144.

C. 871. F. 979. B. 785. J.H. 587.

SAEMAN, J.F. 780. SALMON, J.J. 684. SALMON­LEGAGNEUR, E. 1053. SALO, D.J. SAMPSON, G.R. 463. SAMS, T. 228. SAMWAYS, M. 996. SANAI, M. 40. SANDERSON, J.E. 607. SANSUSKY, J. 630. SANTON, J.P. SARLES, R.L. 420. SARMAN, J. 365. SAUBOIN, M. 682. SAUCIER, J.R. 453. 578. SAUZE, F. 610. SAWYER, J.S. 922. SCARAMUZZI, G. 553. SCHELLER, W.A. 1038. SCHLEGEL, H.G. 766. SCHMIDT, Α. 73. 982. SCHEIBER, E. SCHREIER, Κ. 1164. 1218.

SCHWEERS, W. 744. SCHWEICKART, V.L. 1016. SCHWERZEL, R.E. 646. SCHOOLEY, F.A. 1179. SCHULZ, H. 468. SCHUTZE, M.L. 617. SCOTT, W.E. 932. 995. SCOTT, C.C. 758. SEALOCK, L.J. 899. SEEGER, K. 455. SEETHARMAN, R. 1248. SEIBERT, M. 139. SEIDL, R.J. 363. SESHADRI, C.V. 616. SEVRIN­REYSSAC, J. 617. SEYBOLD, W.H. 362. SHANAHAN, Y. 878. SHEN­MILLER, R.J. 167. SHEPPARD, A.P. 923.

Page 290: Farm and Forest Biomass

- 196 -

SHELEF, G, 619. 668. SHIEH, C.H. 736. SHIH, S.F. 526. 544. 545. 546. SHIN, K.C. 657. SHIRLEY, A.R. 361. SHANKER, G. 1005. SHELDEN, R.A. SHUKLA, B.D. 1254. SIEVERS, D.M. 255. 327. 328. SILVA, F.J. da 1216. SILVA, E.J. da. 762. SILVA, CF. da 934. SILVERMAN, E.F. 458. SIMPSON, M.H. 1217. SINCLAIR, S.A. 404. SINGH, H.J. 812. SINGH, R. 317. SINGH, R.B. 1253. SINGH, S. 1231. SINGH, U.P. 1249. SINGLEY, M.E. 827. 829. SITTON, O.C. 489. 1011. 1088. SKIDMORE, E.L. 1202. SKLAR, S. 1000. SLESSER, M. 151. 1223. SMIL, V. 440. SMITH, 8.A. 504. SMITH, C D . 859. SMITH, E.L. 838. SMITH, R.J. 254. 1199. SMITH, N. 438. 735. 882. SMITH, R. 403. SMITH, S.K. 69. SNOEK, J. van der 1186. SOBEL, A.T. 252. SOEST, P.J. van 718. SOFER, S.S. 1120. SOLTES, E.J. 168. 454. 862. 863. SOMASHEKAR, H.I. 1221. SOMMER, W. 220. SONG, K.Y. 148. SOPPER, W.E. 360. SOSENSKII, A.I. 476. SOURIE, J.C.22.180.183.216.218.219.

223.721.1040.1057.1162.1195. SOUTY, 265. 304. SPEAR, M. 722. SPEDDING, CR.U. 481. SPINGER, E.L. 717. SRIVASTAVA, S.N. 1231. STAFFORD, D.A. 787. 788. STANLEY, B. 1224. STARR, P.J. 674. 1189. STEINBECK, K. 563. 570. 1126. STEINBERG, M.P. 320.

STEVEN, K.W.H. 601. STEVENS, M. STEPHYE, P. STEWART, G.A. 163. 533. STEWART, W.E.J.R. 884. STOT, K.G. 557. STOUT, B.A. 56. 976. STREHLER, A. 194.214.215.234.240. STRUB, A.S. 2. STRUMINSKI, J. 886. STUBBE, E.J. 1196. STUTZER, D. 245. SU, T.M. 1012. SUYS, I. 1064. SVENTITSKY, I.I. 486. SWAAIJ, W.P.M. van 894.895.907. SWEETEN, J.M. SWINGS, J. 1104. SWISS, M. 933. SZEMKUS, H. 289.

TALAYRACH, B. 192. TANAKA, H. 330. TARKPEA, P. 848. TARSIA, N. 430. TASSOT, J. 24. TAYLOR, R.E. 846. 847. TENGERDY, R.P. 308. 311. 312. TERADA, T. 627. TERRADO, E.N. 1246. TERRY, N. 483. THERY, D. 1211. THIER, E. 33. 513. THI6PEN, P.L. 1125. THOMAS, J.W. 256. THOMAS, C.H. 801. THOMAS, L.F. 425. THOMAS, J.F. 611. THOUROUDE, D. 6. THRING, M.W. 217. THULJRAMRAO, J. 534. TAYSELIUS, L. 1108. TILLMAN, D.A. 375. TIREL, J.C 25. 103. 128. TOMKINS, R. 35. TREVIS, 1167. TRIBUTSCH, H. 154. TRINDADE, S.C. 992. 993. 1219. TSAO, U. 1013. TSAO, G.T. 781. TSUTSUMOTO, T. 478. TROIZIER, N. 219. 223. 1195. TUNA, J. 466. TUNNEY, H. 296. TURK, M. 302. TWITCHELL, M. 369. TYAGI, R.D. 777.

Page 291: Farm and Forest Biomass

­ 197 ­

USMANI, I.H. 1238.

VALE, Β. 26. VALE, R. 26. VAMADEVAN, V.K. 1248. VARLET GRANCHER, C. 491. VASIEVICH, Ü.M. 569. VAUGE, C. 720. VAUX, H. 1166. VECCHIA, A. 99. VELSEM, A.F.Ii. van 334. VENABLES, C. 231. VERDONCK, 0. 665. VERGARA, U. 166. 169. VERONESI, G. 282. VETTER, R.L. 254. VIITASALO, I. 1092. VIJAILAKSHMI, G.S. 632. VITOUX, J. 27. VITRAV, R.P. 1197. VLEESCHOUUER, D. 665. VLITOS, A.J. 505. 538.

WILHELMSEN, G. 442. WILLIAMS, D.W. 53. WILLIAMS, R. 997. WILLIAMS, R.O. 666. 911. WILLIAMS, L.A. 190. 618. WILLIAMS, R.A. 418. WILSON, D.C. 642. WILSON, C.L. 1194. WILSON, H.T. 838. WILSON, L.L. 318. WISE, D.L. 607. 608. 1076. WOLFSHOHL, K. 423. WURCH, 1042.

YANG, V. 992. YANG, P.Y. 206.329.615.799.993. HAROSH, M.M. 47. YELLOTT, J.L. 124. YOKOYAMA, M.T. 257. YORIFUJI, T. 983. YOUNG, H.E. 422. YU, J. 970.

WAART, J. de 205. 679. WAGENER, K. 598. 599. 1021, WAGNER, F. 515. WAID, D.E. 901. WALAWENDER, W.P. 869. WALKER, D.C. 465. WALKER, L. 976. WALKUP, P.C. 912. WALTER, B. 196. WALTER, R.H. 864. WALTER, J.F. 57. WAN, E. 956. WANG, H.H. 212. WARD, J.C. 258. WAYMAN, M. 1003. WEBER, S.L. 899. WEHRUNG, F. 226. WEISS, D.E. 931. WEISSMAN, J.C. 628. 629. WEISZ, P.B. 161. WELLINGER, A. 1077. WELLS, F.J. 419. WENDEROTH, J. 1172. WENTWORTH, R.L. 285. 1076. WHEATLEY„B.I. 787. WHEATLEY, M.A. 860. WHETZEL, V. 1165. WHITE, J.W. 67. 939. WHITE, L.P. 150. WHITE, T.A. 353. 355. 424. WHITEHEAD, W.K. 309. WIERTSEMA, P. 793. WILDE, P. 630.

ZAVITKOVSKI, J. 573. 574. ZEDET, E. 379. ZEIMETZ, K. 1173. ZEIKUS, J.G. 286. ZEIMETZ, K. 1150. ZELITCH, I. 101. ZELTER, S.Z. 803. 1053. ZERBE, J.T. 358. 439. 464. ZERBIN, H. 469. ZERBIN, W.O. 892. ZIBERNA, F. 451. ZIMMERMAN, R. 900. ZUMMO, N. 497.

Page 292: Farm and Forest Biomass
Page 293: Farm and Forest Biomass

- 1 9 9 -

SUBJECT INDEX

Aerobic t rea tment , 4 , 3 2 1 , 454, 794, 826, 827, 828, 829, 1244

A g r i c u l t u r a l waste, 39, 46 , 53, 163, 175, 178, 190, 198, 212, 233, 358, 379, 464, 533, 648, 649, 660, 6 6 1 , 662, 663, 665, 666, 668, 669, 670, 671 . 672, 674, 675, 676, 677, 678, 679, 708, 770, 799, 813, 818, 825, 852, 864, 879, 9 1 1 , 922, 9 3 1 , 1016, 1035, 1048, 1076, 1079, 1090, 1096, 1121, 1123, 1169, 1171, 1172, 1178, 1189, 1199.

Agro-a l imentary waste, 6 8 1 , 682, 683, 684, 685, 686, 687, 688, 689, 690, 6 9 1 , 692, 693, 694, 695, 696, 698, 757, 810, 932, 1095, 1250.

A l c o h o l , 39 , 188, 379, 510, 520, 778, 686, 743, 779, 923, 927, 938, 976, 977, 978, 982, 984, 986, 987, 988, 9 9 1 , 994, 1005, 1018, 1019, 1023, 1024, 1026, 1034, 1036, 1070, 1241.

A lcoho l i c f e rmen ta t i on , 496, 524, 539, 686, 769, 773, 772, 7 7 1 , 774, 775, 776, 777, 778, 779, 780, 7 8 1 , 974, 1003.

Algae, 250, 259, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 622, 625, 632,825, 1021, 1178, 1249.

Anaerobic digestion, 133, 176, 249, 250, 254, 255, 258, 286, 302, 310, 322, 328, 334, 588, 605, 609, 610, 613, 656, 697, 704, 721, 743, 782, 783, 787, 789, 793, 794, 795, 796, 797, 798, 799, 800, 802, 806, 809, 812, 813, 815, 817, 818, 821, 822, 823, 824, 825, 826, 932, 1005, 1057, 1063, 1088, 1105, 1114, 1189, 1217.

Animal waste, 39, 53, 177, 181, 252, 253, 255, 258, 264, 265, 267, 269, 274, 275, 276, 277, 278, 279, 281, 282, 285, 294, 295, 296, 298, 308, 311, 315, 316, 602, 689, 718, 721, 743, 783, 788, 798, 803, 806, 816, 819, 821, 824, 830, 831, 869, 1039, 1053, 1069, 1210, 1215, 1244.

Assessment of the effect of residue harvesting on the soil system, 121, 1153, 1154, 1202.

Bagasse, 192, 541, 547, 934. Beet (see sugar beet) 211. Biochemical conversion, 30, 49, 53, 59, 119, 169, 178, 184, 190, 205, 208,

325, 360, 487, 498, 509, 576, 610, 613, 614, 649, 656, 714, 715, 717, 721, 722, 723, 725, 729, 730, 731, 733, 745, 746, 747, 751, 752, 753, 756, 757, 760, 761, 762, 764, 765, 767, 768, 772, 802, 806, 812, 814, 996, 1010, 1012, 1027, 1037, 1049, 1079, 1123, 1179, 1206, 1208, 1224, 1228, 1234, 1258.

Bibliography, 61, 64, 69, 105, 122, 123, 125, 317, 338, 376, 370, 431, 436, 515, 577, 591, 653, 717, 727, 765, 1034, 1075, 1105, 1111.

Biogas (see methane) Bovine, 259, 260, 270, 284, 287, 317, 808. Carburant, 354, 364, 370, 378, 420, 447, 628, 629, 737, 859, 875, 885, 890,

893, 916, 917, 924, 928, 936, 939, 954, 977, 982, 988, 1117, 1118, 1119, 1120, 1124, 1125, 1126, 1128, 1129, 1130, 1132.

Cassava, 200, 495, 510, 937, 981, 993, 997, 1021, 1022. Catch crop, 480, 481.

Page 294: Farm and Forest Biomass

- 200 -

Cereal and grain products, 87 / 188, 500, 506, 511, 775, 975, 997, 1008, 1025, 1028.

Chemistry-Related fields, 33, 368, 376, 400, 401, 467, 964, 980. Climate, 158, 545, 1089, 1209, 1252. Collection, handling and storage, 184, 189, 209, 211, 230, 234, 245, 255,

337, 345, 346, 373, 380, 399, 402, 426, 433, 454, 479, 507, 558, 563, 564, 566, 719, 735, 801, 886, 976, 1188.

Colloquium - congress, 1, 2, 3, 16, 17, 21, 29, 30, 34, 37, 48, 50, 52, 53, 62, 65, 67, 68, 70, 71, 86, 89, 119, 135, 136, 139, 165, 173, 264, 317, 346, 351, 360, 378, 381, 382, 383, 384, 407, 431, 435, 439, 445, 446, 449, 460, 471, 474, 535, 547, 548, 628, 646, 653, 661, 669, 672, 675, 677, 703, 733, 794, 758, 761, 819, 857, 863, 884, 901, 912, 913, 914, 915, 919, 928, 939, 956, 1000, 1016, 1106, 1119, 1120, 1127, 1130, 1133, 1152, 1161, 1243.

Combustion, 189, 193, 234, 236, 239, 369, 383, 425, 462, 464, 487, 735, 743, 833, 839, 842, 844, 848, 850, 853, 857, 876, 877, 878, 879, 881, 882, 883, 884, 885, 1247.

Coppice, 553, 554, 556, 557, 564, 575. Cotton, 191, 207, 208, 911. Cultivation technics, 51, 55, 187, 507, 523, 544, 563, 1202. Dairy, 249, 253, 259, 286, 303, 306, 310, 686, 798, 1068, 1069, 1106. Demonstration projects, 255, 270, 278, 314, 316, 325, 326, 438, 455, 590,

602, 616, 645, 647, 652, 656, 668, 674, 701, 703, 704, 716, 718, 736, 737, 747, 755, 782, 784, 790, 799, 808, 809, 815, 816, 818, 821, 830, 882, 896, 923, 940, 942, 948, 989, 993, 998, 1003, 1007, 1010, 1011, 1030, 1038, 1039, 1044, 1058, 1059, 1061, 1077, 1080, 1085, 1088, 803, 1090, 1095, 1096, 1102, 1114, 1131, 1180, 1186, 1193, 1203, 1206, 1222, 1238, 1253r 1057, 1067, 1105, 803.

Depollution (see environmental impact) 243, 248, 249, 254, 256, 258, 259, 284, 309, 334, 689, 823, 1187, 1201, 1210

Developing countries, 133, 316, 391, 392, 491, 522, 583, 590, 632, 647, 682, 684, 756, 811, 812, 878, 907, 949, 991, 1005, 1022, 1093, 1168, 1213, 1214, 1216, 1217, 1219, 1221, 1222, 1223, 1224, 1225, 1226, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1238, 1240, 1249, 1250, 1251, 1254, 1255, 1257, 1258/ 709, 819.

Digestor, 322, 749, 785, 790, 791, 792, 805, 809, 818, 820, 825, 1078, 1087. Domestic waste, 49, 142, 291, 379, 548, 588, 644, 648, 649, 657, 699, 700,

703, 705, 707, 708, 709, 710, 711, 712, 713, 799, 829, 1035, 1121, 1244.

Economic aspects, 37, 142, 159, 160, 163, 180, 188, 189, 202, 208, 209, 215, 216, 219, 227, 249, 269, 271, 274, 281, 314, 338, 347, 348, 349, 362, 404, 419, 433, 438, 452, 482, 488, 509, 520, 521, 523, 531, 532, 540, 564, 568, 565, 575, 576, 577, 642, 645, 652, 704, 714, 721, 727, 731, 743, 759, 789, 790, 801, 803, 808, 815, 823, 828, 860, 917, 919, 921, 926, 931, 937, 947, 949, 967, 968, 973, 976, 993, 996, 997, 998, 1002, 1012, 1014, 1016, 1018, 1032, 1037, 1038, 1057, 1064, 1100, 1109, 1132, 1162, 1163, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1180, 1182, 1184, 1185, 1188, 1189, 1190, 1191, 1193, 1195, 1198, 1205, 1213, 1215, 1219, 1222, 1239.

Page 295: Farm and Forest Biomass

- 201 -

Energy balance, 187, 188, 194, 261, 373, 401, 406, 430, 438, 499, 502, 567, 575, 778, 900, 967, 973, 975, 976, 978, 983, 984, 989, 1003, 1029, 1036, 1037, 1131, 1169, 1236.

Engine, 910, 937, 955, 969, 989, 1032, 1038, 1047, 1116. Environmental impact, 142, 172, 256, 259, 336, 470, 577, 627, 655, 656, 701,

718, 739, 798, 873, 881, 939, 989, 1004, 1165, 1168, 1170, 1171, 1173, 1188, 1198, 1200, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1211, 1219, 1239, 1248.

Energy crop, 49, 163, 174, 176, 208, 484, 485, 486, 487, 490, 493, 504, 537, 568, 572, 574, 613, 788, 900, 931, 1016, 1037, 1048, 1219.

Ethano l , (see a l c o h o l ) , 30 , 176, 498, 502, 503, 509, 514, 515, 5 2 1 , 525, 531 , 532, 550, 618, 649, 699, 715, 7 2 1 , 759, 760, 769, 7 7 1 , 773, 774, 777, 919, 9 2 1 , 925, 930, 9 3 1 , 932, 933, 937, 938, 940, 948, 9 6 1 , 962, 963, 964, 965, 967, 968, 969, 970, 9 7 1 , 972, 974, 975, 980, 983, 985, 989, 990, 993, 995, 997, 998, 999, 1000, 1002, 1003, 1004, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1020, 1022, 1027, 1028, 1029, 1030, 1035, 1198, 1218.

Eucalyptus, 388, 389, 390, 949. Euphorbia, 344, 494, 583, 584, 958, 1178. Exploitation of the energy of waste material, 4, 67, 179, 183, 658. Feedlot, 136, 258, 302, 310, 311, 1187. Fertilizer, 185, 251, 259, 261, 321, 629. Forest industry by-products, 448, 449, 450, 451, 452, 454, 455, 457, 460,

461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 880, 884, 889, 896, 897, 975, 997.

Forest management, 652, 663, 708, 717, 737, 831, 845, 846, 847, 851, 854, 855, 856, 858, 876, 911, 919, 946, 947, 1003, 1121.

Fruit and vegetable (see agro-alimentary waste and vegetable waste), 205. Gasohol, 201, 536, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038. Gasification processes, 53, 174, 189, 401, 464, 614, 697, 831, 842, 844,

848, 849, 850, 852, 870, 887, 888, 889, 891, 892, 894, 895, 896, 897, 898, 899, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 1193, 1228.

Genetics, 400, 434. Granulates, 220, 832. Housing, 26, 23 Jerusalem artichoke, 499. Land use, 51, 411, 482, 495, 564, 576, 900, 1141, 1142, 1143, 1150, 1160,

1171, 1172, 1173, 1188, 1207. Lignin, 477, 727, 736, 740, 741, 744, 775, 1017. Maîze, 209, 211, 225. Manure, 180, 249, 266, 268, 304, 305, 313, 314, 317, 783, 803, 809, 812,

917, 1050, 1053. Maple tree, 473.

Page 296: Farm and Forest Biomass

-202 -

Methane or biogas, 39, 43, 145, 178, 186, 246, 260, 268, 273, 275, 276, 277, 278, 286, 287, 293, 294, 295, 296, 300, 301, 302,303, 307, 313, 315, 316, 317, 319, 322, 323, 324, 379, 489, 600, 608, 609, 615, 638, 640, 667, 675, 679, 699, 700, 708, 715, 716, 721, 743, 747, 749, 782, 784, 789, 794, 798, 800, 803, 805, 808, 811, 814, 821, 825, 917, 919, 923, 927, 933, 940, 953, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1055, 1056, 1058, 1059, 1060, 1061, 1063, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1074, 1075, 1077, 1078, 1079, 1080, 1081, 1082, 1084, 1085, 1086, 1087, 1193, 1088, 1089, 1090, 1091, 1092, 1094, 1097, 1098, 1099, 1101, 1102, 1103, 1107, 1104, 1105, 1106, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1198, 1199, 1214, 1215, 1217, 1220, 1222, 1229, 1232, 1234, 1237, 1245, 1249, 1253, 1257

Methanol, 30, 509, 649, 721, 888, 892, 903, 917, 930, 931, 932, 937, 938, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 959, 960, 1008, 1034, 1083, 1093, 1178, 1199, 1215.

Micro-algae, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 633, 634. Models, 136, 281, 347, 434, 611, 656, 827, 1169, 1185, 1189, 1197, 1223. Molasses, 542, 661, 930, 998, 1020. Peat, 44, 45, 366, 484. Periodical, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268,

1269, 1270, 1271, 1272. Photosynthesis, 10, 14, 27, 36, 37, 40, 54, 59, 78, 87, 100, 406, 483, 606,

633. Pigs, 185, 248, 260, 270, 284, 287, 292, 320, 322, 325, 326, 327, 328, 329,

330, 331, 333, 334, 335. Poplar, 398 Potato, 201, 500, 501, 511. Potential, 8, 22, 88, 107, 111, 142, 147, 149, 150, 151, 152, 153, 154, 155,

156, 157, 158, 160, 161, 162, 163, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 178, 182, 189, 208, 210, 234, 271, 275, 338, 339, 341, 365, 367, 371, 372, 381, 419, 434, 437, 440, 454, 463, 484, 485, 558, 560, 610, 641, 648, 649, 663, 668, 676, 680, 694, 708, 727, 735, 739, 788, 803, 804, 806, 860, 861, 976, 1020, 1136, 1150, 1194, 1246.

Poultry excrement, 250, 257, 283, 284, 287, 288, 297, 300, 301Ψ 251, 261, 798. Prospective, 159, 163, 164, 727, 933, 993, 1134, 1155, 1175, 1177, 1178,

1179, 1183, 1192, 1194, 1195, 1258. Pyrolysis, 49, 192, 236, 351, 401, 425, 454, 653, 721, 729, 743, 831, 833,

842, 844, 852, 853, 859, 861, 862, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 897, 902, 907, 1228.

Reeds, 202, 580, 581, 582 Region, 271. Research and Development, 90, 91, 94, 95, 96, 97, 98, 99, 100, 101, 102,

103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 143, 144, 145, 146, 162, 168, 183, 186, 187, 189, 211, 214, 223, 237, 238, 241, 247, 253, 254, 280, 287, 293, 299, 309, 311, 318, 320, 321, 332, 337, 353, 365, 403, 444, 453, 497, 504, 510, 517, 526, 527, 546, 553, 555, 559, 561, 564, 566, 580, 599, 600, 621, 626, 636, 639, 662, 673, 679, 693, 714, 733, 739,

Page 297: Farm and Forest Biomass

_ 203 -

742, 743, 763, 770, 772, 775, 793, 796, 799, 800, 801, 807, 810, 817, 819, 821, 824, 832, 853, 862, 864, 870, 873, 874, 875, 890, 891, 893, 898, 900, 923, 929, 988, 995, 996, 1001, 1051, 1052, 1053, 1064, 1076, 1113, 1134, 1137, 1162, 1169, 1172, 1187, 1198, 1199, 1246.

Residual water, 153, 592, 612, 697, 705, 1166.

tosutç of waste mater ia ls , 247, 261, 262, 280, 293, 312, 319, 320, 332, 619, 659, 879, 1256.

Rice, 209. 242. Sacchariferous culture, 201, 502, 759, 989. Scenario, 208, 1155, 1164, 1177, 1179, 1181. Self sufficient on the land, 26, 57, 70, 76, 85, 189, 209, 252, 255, 286,

306, 319, 348, 362, 413, 415, 426, 436, 602, 743, 747, 800, 801, 815, 818, 1045, 1067, 1071, 1081, 1090, 1122, 1165, 1170, 1186, 1188, 1221.

Short rotation forestry, 346, 351, 360, 458, 551, 552, 555, 558, 559, 560, 561, 562, 563, 565, 567, 568, 569, 570, 573, 574, 576, 577, 578, 579, 735.

Slurry, 4, 266, 303, 323, 324, 783, 803, 1053. Social reaction to biomass, 418, 458, 976, 1054, 1140, 1144, 1145, 1146, 1147

1148, 1149, 1151, 1157, 1158, 1159, 1176, 1203, 1205, 1206. Solid waste, 4. Sorghum, 209, 496, 497, 504, 507, 508, 509, 512. Starch, 188, 498, 501, 511, 773, 925, 974. Straw, 153, 176, 177, 180, 181, 195, 214, 215, 216, 217, 218, 219, 220, 221,

222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 236, 237, 233, 239, 240, 241, 242, 243, 244, 245,246, 803, 836, 837, 839, 947, 1185, 1190.

Sugar, 495, 503, 505, 518, 966. Sugar beet, 500, 508, 509, 512, 513, 514, 515, 517, 528, 981, 987. Sugar cane, 200, 491, 494, 504, 506, 507, 508, 509, 512, 519, 520, 521, 522,

523, 525, 526, 529, 530, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 544, 545, 546, 548, 549, 550, 580, 581, 582, 773, 973, 975, 978, 981, 985, 993, 996, 1006, 1008, 1018, 1021, 1022, 1028, 1141, 1198.

Tea, 199. Thermochemical conversion, 30, 49, 119, 169, 176, 178, 182, 184, 189, 231,

358, 383, 565, 576, 649, 714, 717, 721, 722, 723, 725, 729, 730, 731, 733, 832, 834, 836, 837, 838, 839, 841, 842, 845, 846, 847, 851, 853, 854, 855, 856, 858, 860, 861, 864, 1029, 1123, 1206, 1234, 1247.

Tropical wood, 388, 391, 392, 867, 958, 1234, 1250. Waste, 153, 162, 228, 635,638, 642, 643, 645, 650, 652, 654, 655, 697, 737, 768,

789, 926, 939, 1030, 1072, 1074, 1231, 1239. Water hyacinth, 153, 585, 586, 587, 588, 589, 590, 591, 853, 1158. Vegetable waste, 180, 189, 193, 196, 197, 202, 203, 208, 210, 689, 1032,

1076, 1112, 1248, 1254. vine-growing, 190, 196.

Page 298: Farm and Forest Biomass
Page 299: Farm and Forest Biomass

- 205 -

GEOGRAPHICAL INDEX

AUSTRALIA, 14, 97, 117, 163, 495, 531, 532, 533, 541, 810, 931, 932, 981, 995, 1008.

AUSTRIA, 13, 72, 73, 229, 631, 843, 918, 925, 982. BELGIUM, 11, 131, 270, 517, 586, 605, 609, 635, 640, 665, 669, 670, 671, 698,

828, 893, 1049, 1064, 1065, 1066, 1067. 3RAZIL, 97, 169, 201, 390, 510, 529, 540, 549, 572, 617, 934, 937, 949, 991,

992, 993, 994, 995, 996, 1019, 1020, 1021, 1022, 1212, 1218, 1219, 1226, 1227, 1241, 1242, 1243.

CANADA, 97, 118, 134, 146, 162, 377, 427, 428, 440, 472, 473, 579, 656, 860, 880, 946, 1003, 1023, 1026.

CHINA, 97, 212, 387, 478, 1062, 1212, 1244, 1245. COSTA RICA, 125. CZECHOSLOVAKIA, 365, 466. DENMARK, 12, 42, 43, 63, 81, 82, 83, 84, 85, 106, 177, 228, 236, 241, 245,

246, 755, 830, 839, 840, 841, 940, 941, 957, 960, 1019, 1024, 1070, 1085, 1086, 1097, 1098, 1099, 1100, 1101, 1102, 1109.

EUROPE, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 149, 150, 177, 264, 650, 682, 683, 714, 916, 924, 986, 1134, 1135, 1225.

FEDERAL REPUBLIC OF GERMANY, 1044, 1045, 1058, 1059, 1060, 1061, 1080, 1081, 1082, 1115, 1116, 1139, 1140, 1147, 1148, 1160, 1163, 1164, 1176, 1184, 1239.

FINLAND, 171, 221, 222, 366, 441, 1092. FRANCE, 4, 6, 7, 9, 10, 19, 20, 22, 24, 25, 27, 57, 75, 76, 102, 103, 104, 105,

108, 109, 110, 111, 112, 113, 114, 126, 127, 128, 129, 141, 147, 152, 153, 178, 179, 180, 181, 182, 183, 187, 192, 193, 203, 216, 223, 224, 225, 226, 231, 232, 265, 268, 271, 304, 305, 324, 341, 342, 367, 393, 394, 395, 399, 448, 449, 487, 499, 551, 580, 581, 585, 593, 595, 596, 621, 622, 623, 626, 649, 662, 663, 685, 687, 688, 690, 711, 712, 714, 720, 721, 730, 731, 745, 746, 747, 749, 752, 782, 783, 803, 804, 813, 831, 832, 833, 834, 844, 865, 866, 877, 891, 942, 943, 961, 987, 988, 1039, 1040, 1041, 1050, 1051, 1052, 1053, 1057, 1136, 1137, 1138, 1144, 1145, 1146, 1151, 1162, 1174, 1175, 1181, 1191, 1195, 1200, 1250, 610, 721, 230, 233, 266, 267, 691, 751

GERMAN DEMOCRATIC REPUBLIC, 729. GHANA, 1247. GUATEMALA, 985. INDIA, 97, 169, 278, 297, 316, 317, 386, 534, 590, 632, 704, 812, 1005, 1093,

1220, 1221, 1222, 1223, 1231, 1232, 1248, 1249, 1253, 1254. IRAN, 542, 647. IRELAND, 8, 44, 45, 130, 157, 293, 296, 444, 560, 561, 562, 678, 805, 1048. ISRAEL, 668, 667. ITALY, 59, 66, 77, 272, 273, 280, 282, 291, 292, 306, 332, 333, 430, 451, 516,

553, 599, 600, 637, 638, 639, 660, 664, 693, 699, 742, 769, 770, 785, 786, 1046, 1062, 1063, 1201, 1210.

JAPAN, 54, 275, 490, 983. INDONESIA, 1230.

Page 300: Farm and Forest Biomass

- 206 -

KENYA, 1214. MEXICO, 522. NETHERLANDS (THE), 41, 205, 299, 300, 334, 398, 406, 568, 641, 642, 651, 679,

772, 793, 794, 795, 796, 797, 894, 895, 1069, 1084, 1124, 1155, 1158, 1159, 1186, 1192, 1196, 1238.

NEW GUINEA, 1212. NEW ZEALAND, 97, 173, 719, 1079. NORWAY, 442, 443, 475. PAKISTAN, 1212. PHILIPPINES (THE), 97, 132, 330, 1095, 1096, 1246. PORTO RICO, 523. RUMANIA, 1078. SUDAN, 169. SRI-LANKA, 1229. SWEDEN, 169, 485, 572, 582, 807, 906, 933, 1004, 1091, 1108, 11*2. SWITZERLAND, 661, 708, 716, 806, 1077, 1107. TAIWAN, 331. TANZANIA, 1215, 1240. SOUTH AFRICA, 535, 1117. SOUTH KOREA, 148, 277, 288. UNITED KINGDOM, 35, 39, 107, 155, 217, 322, 335, 397, 480, 481, 482, 492,

538, 554, 555, 556, 557, 558, 559, 601, 602, 603, 604, 697, 715, 156, 723, 725, 754, 765, 787, 788, 790, 791, 792, 836, 837, 838, 890, 917, 927, 952, 962, 966, 967, 1047r 722, 789.

U.S.A., 52, 53, 65, 70, 101, 118, 120, 122, 123, 134, 135, 137, 138, 139, 140, 143, 144, 158, 159, 160, 161, 166, 167, 169, 170, 172, 186, 198, 199, 207, 237, 238, 247, 253, 256, 309, 312, 314, 315, 328, 339, 345, 346, 348, 349, 350, 351, 353, 354, 355, 356, 363, 371, 378, 381, 383, 384, 401, 402, 411, 412, 413, 416, 419, 420, 421, 423, 432, 435, 438, 439, 446, 462, 463, 464, 470, 471, 483, 488, 493, 497, 508, 526, 536, 537, 545, 546, 547, 548, 550, 563, 583, 584, 587, 607, 608, 624, 281, 643, 646, 650, 652, 653, 654, 655, 673, 677, 727, 733, 734, 736, 737, 739, 740, 741, 757, 758, 759, 760, 763, 775, 778, 780, 781, 808, 816, 817, 821, 842, 845, 846, 847, 849, 850, 851, 853, 854, 855, 856, 858, 859, 862, 863, 873, 874, 875, 882, 884, 899, 901, 904, 908, 912, 913, 914, 929, 939, 947, 977, 980, 997, 999, 1000, 1001, 1010, 1012, 1013, 1014, 1015, 1017, 1027, 1035, 1073, 1076, 1118, 1129, 1132, 1143, 1149, 1150, 1157, 1177, 1179, 1183, 1188, 1194, 1197, 1198, 1199, 1202, 284, 285.

U.S.A. ALABAMA, 250. U.S.A. ARIZONA, 124, 589. U.S.A. ARKANSAS, 418. U.S.A. CALIFORNIA, 174, 190, 242, 612, 628, 689, 897, 909, 1016, 1166. U.S.A. COLORADO, 145, 258, 295, 308, 311, 1171, 1180. U.S.A. CONNECTICUT, 302. U.S.A. DAKOTA, 188, 189, 1170. U.S.A. FLORIDA, 47, 48, 431, 543, 544, 588. U.S.A. GEORGIA, 248, 259, 453, 923, 1113.

Page 301: Farm and Forest Biomass

- 207 -

U.S.A. HAWAI, 206, 329, 615, 799, 824. U.S.A. IDAHO, 142, 274. U.S.A. ILLINOIS, 320, 321, 424, 565, 738, 779, 802, 900, 1187, 1193. U.S.A. INDIANA, 260, 984. U.S.A. IOWA, 254, 879. U.S.A. KANSAS, 100, 298, 566, 575, 869, 1182. U.S.A. KENTUCKY, 898. U.S.A. LOUISIANA, 310, 801. U.S.A. MAINE, 347, 507, 735, 825. U.S.A. MASSACHUSETTS, 1119. U.S.A. MICHIGHAN, 256, 257, 337, 976. U.S.A. MINNESOTA, 121, 404, 452, 484, 674, 1189. U.S.A. MISSISSIPI, 249. U.S.A. MISSOURI, 255, 327, 800, 818, 1011, 1088. U.S.A. NEBRASKA, 1038. U.S.A. NEVADA, 437. U.S.A. NEW BRUNSWICK, 827, 974. U.S.A. NEW ENGLAND, 414, 422. U.S.A. NEW JERSEY, 829, 871. U.S.A. NEW YORK, 252, 718, 809, 823, 864, 905, 915, 976, 1072. U.S.A. NORTH CAROLINA, 287, 357, 417. U*S.A. OHIO, 197, 506, 1168. U.S.A. OKLAHOMA, 872, 1120, 1167. U.S.A. OREGON, 136, 326, 359, 433, 1125, 1130. U.S.A. PENNSYLVANIA, 303, 318, 400, 436, 727, 1090, 1173. U.S.A. SOUTH.CAROLINA, 251. U.S.A. TENNESSEE, 815. U.S.A. TEXAS, 168, 191, 209, 210, 454, 496, 504. U.S.A. VERMONT, 564, 919. U.S.A. VIRGINIA, 743, 748, 1165. U.S.A. WASHINGTON, 338, 403, 434. U.S.A. WISCONSIN, 261, 286, 362, 461, 498, 571, 717, 979, 1114. U.S.S.R., 87, 276, 476, 477, 486, 625, 634, 648. WORLD, 151.

Page 302: Farm and Forest Biomass
Page 303: Farm and Forest Biomass
Page 304: Farm and Forest Biomass