Failure Strain Studies of Silicate Glass Fibers · 2020. 7. 24. · Failure Strength (MPa) 1 10 100...

30
Failure Strain Studies of Failure Strain Studies of Silicate Glass Fibers Silicate Glass Fibers Nathan P. Lower and Richard K. Brow University of Missouri-Rolla Ceramic Engineering Department Rolla, MO 65409 American Ceramic Society Meeting April 20, 2004

Transcript of Failure Strain Studies of Silicate Glass Fibers · 2020. 7. 24. · Failure Strength (MPa) 1 10 100...

  • Failure Strain Studies ofFailure Strain Studies ofSilicate Glass FibersSilicate Glass Fibers

    Nathan P. Lower and Richard K. BrowUniversity of Missouri-Rolla

    Ceramic Engineering DepartmentRolla, MO 65409

    American Ceramic Society MeetingApril 20, 2004

  • Mechanical Properties Depend on Glass Structure

    Baikova, et al. Glass Phys. Chem., 21[2] (1995) 115.

    E

    Hv

    σLN

    σRT

    K/Al-metaphosphate glasses

    Bulk properties are often studied.

  • Flaw Size (m)1e-9 1e-8 1e-7 1e-6 1e-5 1e-4

    Failu

    re S

    treng

    th (M

    Pa)

    1

    10

    100

    1000

    10000

    InherentFlaws

    StructuralFlaws

    Fabri-cation

    µ-scopicDamage

    VisibleDamage

    Pristine, As-Drawn

    Pristine, Annealed

    Formed Glass

    Used Glass

    DamagedGlass

    StaticFatigue

    Effect

    Instantaneous StrengthEndurance Limit

    Intrinsic Strength is Difficult to Measure

    Mould, R.E. (1967)

    Theoretical Strength

  • Fiber Puller Used to Produce Pristine Fibers

    Box FurnaceBox Furnace

    Drawing CageDrawing Cage

    • Glass is thermally conditioned then transferred to a box furnace.

    • Cooling coil controls surface viscosity.• Pulling speed controls fiber diameter.• “Pristine” 10 cm length fibers produced.• Fiber diameters ~125 µm.• Fibers can be tested immediately.TNL Tool and Technology, LLC – www.TNLTool.com

  • Failure Strains are Measured Using a Two-Point Bender

    • Face plate velocities: 1 – 10,000 µm/sec• Liquid nitrogen, room temp/variable humidity.• Small test volume (25-100µm gauge length).• E~Young’s modulus; acoustic pulse.

    EdD

    d

    ff

    f

    ×=

    ⎟⎠⎞

    ⎜⎝⎛

    −⋅

    =

    εσ

    ε 198.1

    *M.J. Matthewson, C.R. Kurkjian, S.T. Gulati, J. Am. Cer. Soc., 69, 815 (1986).

    TNL Tool and Technology, LLC – www.TNLTool.com

  • Elastic Modulus Changes with Applied Strain

    Bruckner, Strength of Inorg. Glass 1986

  • Glasses Studied

    E-Glass.Commercial TV Panel Glass.XNa2O * (100-X)SiO2

    X = 0, 7, 10, 15, 20, 25, 30, 35

    25Na2O * XAl2O3 * (75-X)SiO2X = 0, 5, 10, 15, 20, 25, 30, 32.5

    XK2O * (100-X)SiO2X = 0, 4.5, 7, 10, 15, 20, 25

  • Failure Distributions Depend on Processing History

    Failure Strain (%)5 6 7 8 9 10 11 12 13 15 17 19 21 23 25

    Cum

    ulat

    ive

    Failu

    re P

    roba

    bilit

    y (%

    )

    1

    3

    5

    10

    20

    40

    60

    80

    90

    99

    Optimized Processingm = 237, εAvg = 20.85%

    LN2 Strains25Na2O * 75SiO2

    Increasing Melt Time

    Each set representsa new batch ~35g

    Failure Strain (%)5 6 7 8 9 10 11 12 13 14 15 16

    Cum

    ulat

    ive

    Failu

    re P

    roba

    bilit

    y (%

    )

    1

    3

    5

    10

    20

    40

    60

    8090

    99

    1550oC (short melt time)m = 5, εAvg = 10.63%

    1550oC for 0:45m = 8, εAvg = 11.93%

    LN2 Strains20Ca-17.5Al2O3-2.5B2O3-60SiO2

    1550oC (short melt time)m = 36, εAvg = 10.36%

    1550oC for 8:35m = 192, εAvg = 13.9%

  • Commercial Glasses

    Failure Strain (%)5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

    Cum

    ulat

    ive

    Failu

    re P

    roba

    bilit

    y (%

    )

    1

    3

    5

    10

    20

    40

    60

    8090

    99

    1400oC 6 hrs (crushed)m = 218, εAvg = 17.34%

    1350oC for 0:30m = 8, εAvg = 11.93%

    LN2 Strains

    1350oC (30 min)m = 6.5, εAvg = 13.89%

    1550oC for 4:00m = 141, εAvg = 12.99%

    E-Glass TV Glass

    Longer melting times and better mixing significantly improves the failure distributions.

  • What Causes These Thermal History Effects?

    There are no apparent surface heterogeneities.If Griffith flaws are responsible for low strengths, they will be in the range of 2-7 nm, depending on the flaw (stress concentrator) geometry.

    Does melt / glass homogeneityplay a role?

    02468

    10121416

    0 5 10 15

    Griffith Flaw Size (nm)

    Failu

    re S

    treng

    th (G

    Pa)

    13GPa -> 1.4 nm flaw

    6GPa -> 6.7 nm flaw

    Two Na-borosilicate melts withdifferent colorants. One melt was quenchedthen added to the second. Combined glasswas melted for 2 hrs at 1100oC and poured.

    21

    2⎟⎠⎞

    ⎜⎝⎛=

    cE

    f πγσ

  • How Can We Characterize Homogeniety?

    Light Scattering?

    1.435

    1.44

    1.445

    1.45

    1.455

    1.46

    1.465

    1.47

    1.475

    0 25 50 75 100Temperature (C)

    Ref

    ract

    ive

    Inde

    x (n

    )

    RI Oil (Cargille)Silica

    V. I. Shelyubskii, 1987

    Differentproductionrates

  • How Can We Characterize Homogeniety?

    V. I. Shelyubskii, 1987Failure Strain (%)

    5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

    Cum

    ulat

    ive

    Failu

    re P

    roba

    bilit

    y (%

    )

    1

    3

    5

    10

    20

    40

    60

    8090

    99

    1400oC 6 hrs (crushed)m = 218, εAvg = 17.34%

    1350oC for 0:30m = 8, εAvg = 11.93%

    LN2 Strains

    1350oC (30 min)m = 6.5, εAvg = 13.89%

    1550oC for 4:00m = 141, εAvg = 12.99%

    E-Glass TV Glass

    TV Panel Glass

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    10.0 30.0 50.0 70.0 90.0Temperature (C)

    % M

    ax T

    rans

    mis

    sion

    Narrow Failure StrainsBroad Failure Strains

    nG nO

    nG = nO

  • Failure Strain (%)14 15 16 17 18 19 20 21 22 23 24 25

    Cum

    ulat

    ive

    Failu

    re P

    roba

    bilit

    y (%

    )

    1

    35

    10

    20

    40608090

    99

    15-85NaSi

    0-100NaSi

    20-80NaSi

    25-75NaSi

    30-70NaSi

    35-75NaSi10-90

    NaSi

    7-93NaSi

    Na-Silicate Inert Failure Strains

    Avg m ~ 259 XNa2O * (100-X)SiO2

  • 55.0

    60.0

    65.0

    70.0

    75.0

    0.00 0.10 0.20 0.30 0.40Mole Fraction Na2O

    Ela

    stic

    Mod

    ulus

    (GP

    a)

    UMRBokinTakahashi K.KarapetyanLivshits

    Sodium Silicate Properties

    15.0

    17.0

    19.0

    21.0

    23.0

    25.0

    0.00 0.10 0.20 0.30 0.40

    Mole Fraction Na2O

    Failu

    re S

    train

    (%)

    LN4000

    Increasing NBO’s

    XNa2O * (1-X)SiO2

  • Failure Strain (%)15 16 17 18 19 20

    Cum

    ulat

    ive

    Failu

    re P

    roba

    bilit

    y (%

    )

    1

    35

    10

    20

    4060809099

    15-85KSi

    7-93KSi 10-90

    KSi

    4-96KSi

    20-80KSi

    25-75KSi

    0-100KSi

    K-Silicate Inert Failure Strains

    Avg m ~ 267 XK2O * (100-X)SiO2

  • 15.0

    16.0

    17.0

    18.0

    19.0

    20.0

    21.0

    0.00 0.10 0.20 0.30

    Mole Fraction K2O

    Failu

    re S

    train

    (%)

    Potassium Silicate PropertiesLN4000

    35.0

    40.0

    45.0

    50.0

    55.0

    60.0

    65.0

    70.0

    75.0

    80.0

    0.00 0.10 0.20 0.30 0.40

    Mole Fraction K2O

    Ela

    stic

    Mod

    ulus

    (GP

    a)

    UMRFuxiGamberg

    XK2O * (1-X)SiO2

  • Failure Strain (%)12 13 14 15 16 17 18 19 20 21 22

    Cum

    ulat

    ive

    Failu

    re P

    roba

    bilit

    y (%

    )

    1

    3

    5

    10

    20

    40

    60

    8090

    99

    25-5-70NaAlSi

    25-10-65NaAlSi

    25-75Na-Si

    25-25-50NaAlSi

    25-15-60NaAlSi

    25-20-55NaAlSi

    25-30-45NaAlSi

    25-32.5-42.5NaAlSi

    Na-Al-Silicate Inert Failure Strains

    25Na2O * (X)Al2O3 * (75-X) SiO2

  • 55.0

    60.0

    65.0

    70.0

    75.0

    80.0

    85.0

    0.00 0.10 0.20 0.30 0.40Mole Fraction Al2O3

    Ela

    stic

    Mod

    ulus

    (GP

    a)

    UMRLivshitsYoshida

    13.0

    14.0

    15.0

    16.0

    17.0

    18.0

    19.0

    20.0

    21.0

    0.00 0.10 0.20 0.30Mole Fraction Al2O3

    Failu

    re S

    train

    (%)

    Na-Al-Silicate Properties

    Greater cross-linking:“stiffer” structure

    Fullycross-linked

    0.25Na2O * (X)Al2O3 * (0.75-X) SiO2

  • What is Responsible for the Change in the Inert Failure Strains?

    13.0

    15.0

    17.0

    19.0

    21.0

    23.0

    -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20Non-bridging oxygens/network former

    LN2 F

    ailu

    re S

    train

    , %

    Na-silicatesNa-aluminosilicatesK-SilicatesSilica

    Fully cross-linked:25-30-45 NaAlSi25-32.5-42.5 NaAlSi

  • 0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0Elastic Modulus (Gpa)

    Iner

    t Fai

    lure

    Stra

    in (%

    )

    Sodium SilicatesSodium AluminosilicatesSodium BoratesSilicaE-Type GlassesPotassium SilicatesTV Panel Glass20-10-70 SLS

    What is the Dependence of Elastic Modulus on Failure Strain?

    Increase Eo → Decrease εf

  • -2.0

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    -5.0 5.0 15.0 25.0 35.0Mole Fraction Na2O

    100∗((ε f

    (50 µm

    /s) -ε f

    (400

    0 µm

    /s)/ ε

    f(50µm

    /s))

    IDFE - Inert Delayed Failure Effect

    Failure Strain (%)13 14 15 16 17 18 19 20 21 22 23 24 25 26

    Cum

    ulat

    ive

    Failu

    re P

    roba

    bilit

    y (%

    )

    1

    3

    5

    10

    20

    40

    60

    8090

    99

    25-75NaSi

    15-85NaSi

    30-70Na-Si

    7-93NaSi

    XNa2O * (100-X)SiO2

    Testing at different speeds produces different failure strains.

  • -2.5

    -1.5

    -0.5

    0.5

    1.5

    2.5

    3.5

    4.5

    5.5

    -0.05 0.05 0.15 0.25 0.35

    Mole Fraction Al2O3

    100∗((ε f

    (50 µm

    /s) -ε f

    (400

    0 µm

    /s)/ ε

    f(50µm

    /s))

    IDFE - Inert Delayed Failure Effect

    Failure Strain (%)13 14 15 16 17 18 19 20 21 22 23

    Cum

    ulat

    ive

    Failu

    re P

    roba

    bilit

    y (%

    )

    1

    3

    5

    10

    20

    40

    60

    8090

    99

    25-5-70NaAlSi

    25-10-65NaAlSi

    25-75Na-Si

    25-25-50NaAlSi

    25-32.5-42.5NaAlSi

    0.25Na2O * XAl2O3 * (0.75-X)SiO2

    Fully cross-linked

  • What is Responsible for the Inert Delayed Failure Effect?

    -0.02

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20Non-bridging oxygens/network former

    Iner

    t Del

    ayed

    Fai

    lure

    Eff

    ect,

    ( ε50

    - ε40

    00)/ ε

    50

    Na-silicatesNa-aluminosilicatesK-SilicatesSilica

  • Unanswered Questions

    What do the failure properties tell us about glass structure?

    Why do NaSi failure strains increase when the glass network should be “weakening”?

    Internal friction studies – structural relaxation?

    Are the decreases in NaAlSi failure strains with the addition of Al2O3 related to nano-indentation studies?

  • Is the IDFE Effect Related to Internal Friction?

    Day & Rindone, 1962

    NBO relaxation?

    Na hopping

  • Unanswered Questions

    What do the failure properties tell us about glass structure?

    Why do NaSi failure strains increase when the glass network should be “weakening”?

    Internal friction studies – structural relaxation?

    Are the decreases in NaAlSi failure strains with the addition of Al2O3 related to nano-indentation studies?

  • Are the Failure Strains Related to Crack Initiation?

    13

    14

    15

    16

    17

    18

    19

    20

    21

    -0.10 0.00 0.10 0.20 0.30 0.40Mole Fraction Al2O3

    Failu

    re S

    train

    (%)

    0.2

    0.5

    0.7

    1.0

    1.2

    1.5

    1.7

    2.0

    -0.10 0.00 0.10 0.20 0.30 0.40Mole Fraction Al2O3

    Cra

    ck in

    itiat

    ion

    load

    (N)

    Satoshi Yoshida, 2003

    0.25Na2O * (X)Al2O3 * (0.75-X) SiO2

  • How are High εf and IDFE Related to “Less Brittle” Glasses?

    Setsuro Ito, 2002

    Do large failure strains, or a large IDFE suggest a more responsive,“less brittle” structure?

  • ConclusionsInert failure strains are sensitive to the composition/structureof glass fibers.

    εf increases when NBO’s replace BO’sAlkali silicate and sodium aluminosilicate series.

    Inert failure strains are dependent on the applied stressing rates (Vfp).

    Structure with non-bridging oxygens fail at larger strains with slower Vfp.‘Framework’ structures do not exhibit this ‘anomalous inert delayed failure effect’.Is the IDFE effect due to relaxation of NBO’s?

    Thermal history effects appear to be related to melt homogeneity.

    The length scale has yet to be determined.

  • Acknowledgements

    We would like to thank the NSF/Industry/University Center for Glass Research for support in the development of the fiber preparation and testing equipment at UMR.

    Lucas and Trent Lower (Tool & Die specialists –TNL Tool and Technology, LLC) for their assistance in producing the fiber drawing and testing equipment.