F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶ , S. Klytaksaya ‡ and M. Ruben ‡

9
F. Branzoli , P. Carretta , M. Filibian , S. Klytaksaya and M. Ruben Department of Physics "A.Volta", University of Pavia-CNISM, Via Bassi 6, I-27100, Pavia (Italy) Institute of Nanotechnology, Forschungszentrum, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany) Low energy excitations Low energy excitations in the neutral [LnPc in the neutral [LnPc 2 2 ] ] 0 0 single molecule single molecule magnets from magnets from μ μ SR and SR and NMR NMR

description

Low energy excitations in the neutral [LnPc 2 ] 0 single molecule magnets from μ SR and NMR. F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶ , S. Klytaksaya ‡ and M. Ruben ‡. ¶ Department of Physics "A.Volta", University of Pavia-CNISM, Via Bassi 6, I-27100, Pavia (Italy) - PowerPoint PPT Presentation

Transcript of F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶ , S. Klytaksaya ‡ and M. Ruben ‡

Page 1: F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶  , S. Klytaksaya ‡  and  M. Ruben ‡

F. Branzoli¶, P. Carretta¶, M. Filibian¶ , S. Klytaksaya‡ and M. Ruben‡

¶Department of Physics "A.Volta", University of Pavia-CNISM, Via Bassi 6, I-27100, Pavia (Italy)

‡Institute of Nanotechnology, Forschungszentrum, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

Low energy Low energy excitations in the excitations in the neutral [LnPcneutral [LnPc22]]00 single molecule single molecule

magnets from magnets from μμSR SR and and NMRNMR

Page 2: F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶  , S. Klytaksaya ‡  and  M. Ruben ‡

• New class of Single Molecule MagnetsSingle Molecule Magnets (SMM) [1];

• Highest magnetic anisotropymagnetic anisotropy ever achieved in a molecular magnet [2];

• Slow relaxationSlow relaxation and quantum tunnelingquantum tunneling of magnetization;

• Energy separation ∆Energy separation ∆ between the double degenerate ground state and the first excited levels of several hundreds of kelvin;

• Correlation timeCorrelation time ((ττcc)) for the spin fluctuations reaching several µs at liquid nitrogen temperatures ;

• Applications:Applications: - molecular spintronic devices [3]- logic units in quantum computers [4]- contrast agents [5].

Fig. 1: Schematic rapresentation of the TbPc2 molecule. On the left, the energy level succession of Tb3+ ion ground multiplet.

[LnPc[LnPc22 ] ]0 0 SMM:SMM:

Page 3: F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶  , S. Klytaksaya ‡  and  M. Ruben ‡

• The time decay of the muon polarization Pmuon polarization Pµµ(t)(t) shows a different behaviour for temperatures above and below T* ≈ 90 K for [TbPc2]0 and T* ≈ 60 K for [DyPc2]0 :

− T > T* T > T* →→ high frequency regime high frequency regime::

with β ≈ 0.5 and A ≈ 20 %.

− T < T* T < T* → → onset of very low-frequency fluctuations:onset of very low-frequency fluctuations: only the long tail of a static Kubo-Toyabe function can be detected due to the too fast initial decay of Pµ(t):

with α(H) the field dependent initial asymmetry.

0 3 60.0

0.2

0.4

0.6

0.8

1.0

[TbPc2]0

H = 1 kGauss

2 K

60 K70 K

80 K

52 K

Pt

P

t (s)

300 K

Fig 2: Time evolution of the muon polarization in [TbPc2]0 sample normalized to its value for t 0 at six selected temperatures.

))(exp()( tAtP

Muon polarizations PMuon polarizations Pμμ(t)(t)

))(exp()()( tAHtP )2(

)1(

Page 4: F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶  , S. Klytaksaya ‡  and  M. Ruben ‡

0 60 120 180 240 300

1

10

100

1000

10000

1H NMR

1/

T1 (

s-1

)

T (K)

[TbPc2]0

[DyPc2]0

[YPc2]- TBA+

• [TbPc[TbPc22]]00 and [DyPc and [DyPc22]]0 0 NMR relaxation rates: NMR relaxation rates:

− The linewidth at half intensity increases from about 37 kHz at 202 K to a few MHz at 19 K evidence of the slowing down of the spin dynamics;

− T > 130 KT > 130 K → 1/T1 progressively increases on cooling;

− T < 40 KT < 40 K → 1/T1 slowly decreases on cooling.

− 140 K ≥ T ≥ 40 K140 K ≥ T ≥ 40 K → the observation of the signal is prevented by the too short relaxation time.

• The small peak in 1/T1 for [YPc2]-TBA+ sample should be ascribed to the TBA+ molecular motions. In fact, the Y3+ ion is non magnetic and no high intensity peak is expected.

Fig. 3: T dipendence of 1H NMR 1/T1 in [TbPc2]0

(black diamond), [DyPc2]0 (green squares) and [YPc2]-

TBA+ (blue circles) for H = 1 T.

Spin-lattice relaxation rates 1/TSpin-lattice relaxation rates 1/T11 from from 11H H NMR NMR [6][6]

Page 5: F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶  , S. Klytaksaya ‡  and  M. Ruben ‡

0 100 200 300

0.01

0.1

1

10

[TbPc2]0

[DyPc2]0

H = 1000 Gauss

s

-1

T (K)

SR• [TbPc[TbPc22]]00 and [DyPc and [DyPc22]]00 μμSSR relaxation rates:R relaxation rates:

− Peak at Tm ≈ 90 K for [TbPc2]0 and Tm ≈ 60 K for [DyPc2]0 , in agreement with NMR findings.

− The intensity of the peak is observed to scale with the inverse of the field intensity the frequency of the fluctuations is close to Larmor frequency ωL at T = Tm.

Fig. 4: T dependence of the muon longitudinal relaxation rate in [TbPc2]0 and [DyPc2]0 for H = 1000 Gauss (black and green circles) and for H = 6000 Gauss (blue squares).

Spin-lattice relaxation rates Spin-lattice relaxation rates λλ from from μμSRSR [6] [6]

Page 6: F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶  , S. Klytaksaya ‡  and  M. Ruben ‡

• Owing to spin-phonon scattering processes each CF level is characterized by a finite life-time τm which yields a lorentian broadening

with <∆h2┴> the mean-square amplitude of the hyperfine

field fluctuations and Em the eigenvalues of the CF levels.

)3(

• The life-time τm can be expressed in terms of the transition probabilities between m, m ± 1 levels:

with C the spin-phonon coupling constant.

• If ∆ >> T over all the the explored T range, Eq. (3) can be simplified in the form:

with )./exp(

13

TCc

)4(

)5(

The µSR (1H NMR ) spin-lattice relaxation rate λ (or 1/T1) can be written as [7]:

)6(

Estimating the correlation time of [LnPcEstimating the correlation time of [LnPc2 2 ]]00 SMM SMM

, /1 1,1, mmmmm pp

Page 7: F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶  , S. Klytaksaya ‡  and  M. Ruben ‡

• [TyPc[TyPc22]]00 correlation time: correlation time:

− T > 50 K → high T activated regimeT > 50 K → high T activated regime:: it describes spin fluctuations among m = ± 6 and m = ± 5 levels.

− T < 50 K → low T regime:T < 50 K → low T regime: the constant correlation time signals tunneling processes among m = +6 and m = -6 levels.

The sum of the fluctuation rates associated with each process gives:

tunnc

T

tunncactcc

eC

1111 /3

• [[DyPcDyPc22]]0 0 correlation time:correlation time:

− T > 40 K T > 40 K high T activated regime: high T activated regime:

∆ ≈ ∆ ≈ 610 K610 K and C ≈ 1780 Hz/KC ≈ 1780 Hz/K33 .

Energy barrier: ∆ ≈ 880 K∆ ≈ 880 K

Spin-phonon coupling constant: C ≈ 3000 Hz/KC ≈ 3000 Hz/K33

Tunneling rate: (1/(1/ττcc))tunntunn≈ 11 ms≈ 11 ms-1-1

)7(

0 50 100 150 200 250 300

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

TbPc2

DyPc2

c (

s)

T (K)

Fig. 5: T dependence of the correlation time for the spin fluctuations in [TbPc2]0 and [DyPc2]0 (for T > T*), derived from λ data reported in Fig. 4 on the basis of Eq. (5). The solid lines are the best fits according to Eq. (7).

− T < 40 K T < 40 K Eq. (3) should be resorted: the two lowest doublets are separated by an energy barrier in the tens of K range. The high energy barrier extimated corresponds to the one between the first and the second excited doublets.

Estimating the correlation time of [LnPcEstimating the correlation time of [LnPc2 2 ]]00 SMM SMM

Page 8: F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶  , S. Klytaksaya ‡  and  M. Ruben ‡

0 50 100 150 200 250 300

10

12

14

measured calculated

T (

emu*

K/m

ol)

T (K)

[DyPc2]0

Fig.6: T dependence of χT in [DyPc2]0 for H = 1000 gauss (open circles) and calculated curve (line).

• The analysis of the static uniform spin susceptibility allows to determine the low energy level structure of the Dy3+ ion spin multiplet J = 15/2.• The lowest energy splittings which allow to better reproduce the experimental data for χT are:

- ∆- ∆1 1 = 115 K;= 115 K;

- ∆- ∆22 = 547 K; = 547 K;

- ∆- ∆33 = 57 K. = 57 K.

These values are larger than the ones deduced for [DyPc2]- on the basis of crystal field calculations [8].

• The muon relaxation rate behaviour can be correctly modelled with Eq. (3) by considering the first four CF levels and by using three different spin-phonon constants CC1 1 0 Hz/K 0 Hz/K33, CC2 2 ≈ 2400 Hz/K≈ 2400 Hz/K33 and CC3 3 ≈ 3100 Hz/K≈ 3100 Hz/K33,

associated with the four lowest transitions.

Spin susceptibility Spin susceptibility

Page 9: F. Branzoli ¶ , P. Carretta ¶ , M. Filibian ¶  , S. Klytaksaya ‡  and  M. Ruben ‡

References:References:[[1]1] Ishikawa N., Sugita M., Ishikawa T., Koshihara S. and Kaizu Y.,Ishikawa N., Sugita M., Ishikawa T., Koshihara S. and Kaizu Y., J. Phys. Chem. BJ. Phys. Chem. B, , 108108, , 11265 (2004)11265 (2004)..[2] [2] Branzoli F., Carretta P., Filibian M., Zoppellaro G., Graf M. J., Galan-Mascaros J. R., Fhur O., Brink S. and Ruben M.,Branzoli F., Carretta P., Filibian M., Zoppellaro G., Graf M. J., Galan-Mascaros J. R., Fhur O., Brink S. and Ruben M., J. Am. Chem. Soc.,J. Am. Chem. Soc., 131131, , 4387 (2009)4387 (2009)..[3][3] Bogani L. and Wernsdorfer W.Bogani L. and Wernsdorfer W. ,, Nat. Mater.Nat. Mater., , 77, , 179 (2008)179 (2008)..[4][4] Leuenberg M. and Loss D.Leuenberg M. and Loss D. ,, NatureNature, , 410410, , 789 (2001)789 (2001)..[5][5] Cage B., Russek S. E., Shoemaker R., Barker A. J., Stoldt C., Ramachandaran V. and Dalan N.,Cage B., Russek S. E., Shoemaker R., Barker A. J., Stoldt C., Ramachandaran V. and Dalan N., PolyhedronPolyhedron, , 2626, , 2413 2413 (2007)(2007)..[6][6] Branzoli F., Carretta P. and Filibian M.,Branzoli F., Carretta P. and Filibian M., Phys. Rev. B,Phys. Rev. B, 7979, , 220404(R) (2009)220404(R) (2009)..[7][7] Lascialfari A., Jang Z. H., Borsa F., Carretta P. and Gatteschi D., Phys. Rev. Lett., 81, 3773 (1998). [[8]8] Ishikawa N., Tomochika I. and Kaizu Y.,Ishikawa N., Tomochika I. and Kaizu Y., J. Phys. Chem. AJ. Phys. Chem. A, , 106106, , 9543 (2002)9543 (2002)..