Extended QCD phase diagram from the lattice...Outline 1 QCD phase diagram ta real and imaginary 2...

56

Transcript of Extended QCD phase diagram from the lattice...Outline 1 QCD phase diagram ta real and imaginary 2...

  • Extended QCD phase diagramfrom the lattice

    F. Cuteri, C. Czaban, O. Philipsen, C. Pinke, A. Sciarra

    Goethe University - Frankfurt am Main

    University of Giessen - February 1, 2017

    [10.1103/PhysRevD.93.054507, 10.1103/PhysRevD.93.114507]

    10.1103/PhysRevD.93.05450710.1103/PhysRevD.93.114507

  • Monte Carlo methods & cutoff effects

    Z =∫DU

    ∏Nf

    detD(µf ,mf ;U)e−SG (β;U), β =

    2Ncg2

    http://www.jicfus.jp

    Importance sampling ↔ positive Boltzmann weightSign problem for real µ 6= 0↔ detD ∈ CThermodynamical studies with T = 1

    a(β)Nτ

    Thermodynamic and continuum limit at �xed T byNτ ,Nσ →∞, a→ 0

    Slat = Scont + c1a + c2a2 + . . .

    Non-unique discretization: di�erent lattice actions ↔ di�erent cuto� e�ectsWilson: LO O(a)

    I local, doublers-free, correct CLI no chiral symmetry

    Staggered: LO O(a2)I theoretically not fully understood (rooting)I remnants of chiral symmetry

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 2 / 33

    http://www.jicfus.jp

  • The sign problem in lattice QCD

    -2 -1 1 2x

    -1.0

    -0.5

    0.5

    1.0

    ã-x2+ä Μ x

    Μ=40

    Μ=0

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 3 / 33

  • Outline

    1 QCD phase diagram at real and imaginary µ

    2 Extended QCD Columbia plot (µ2 6= 0)

    3 The order of the thermal phase transition

    4 Extrapolation from imaginary chemicalpotentialNature of the Roberge-Weiss endpoint at Nf = 2

    Z2 line in mπ −(µT

    )2at Nf = 2

    5 Extrapolation from non-integer Nf at µ = 0Z2 line in mZ2 − (Nf )

    6 Outlook

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 4 / 33

  • Outline

    1 QCD phase diagram at real and imaginary µ

    2 Extended QCD Columbia plot (µ2 6= 0)

    3 The order of the thermal phase transition

    4 Extrapolation from imaginary chemicalpotentialNature of the Roberge-Weiss endpoint at Nf = 2

    Z2 line in mπ −(µT

    )2at Nf = 2

    5 Extrapolation from non-integer Nf at µ = 0Z2 line in mZ2 − (Nf )

    6 Outlook

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 5 / 33

  • The QCD phase diagram at real µ

    http://nica.jinr.ru/

    PQCD

    Models Tµ � 1Lattice QCD Tµ � 1heavy-ion collisions

    I RHIC-BESI NICAI Nuclotron-MI LHCI FAIR

    Location and order of thermal phase transitions as a function of µ?

    Existence of a critical endpoint (CEP) at µ 6= 0?

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 6 / 33

    http://nica.jinr.ru/

  • The QCD phase diagram at µ = iµithe Roberge-Weiss symmetry

    End or meeting points

    First order lines

    Roberge and Weiss (1986),10.1016/0550-3213(86)90582-1

    Z (µ) = Z (−µ)

    Z( µT

    )= Z

    T+ i

    2πN

    Nc

    )µci = (2k + 1)

    πT

    Nc, k ∈ Z

    |L(n)|e−iϕ = 13TrC

    [Nτ−1∏n0=0

    U0(n0,n)

    ]

    〈ϕ〉 = 2nπ3

    with n ∈ {0, 1, 2}

    0 < µi <π

    3

    RW endpoint: true phase transition

    Meeting of RW and chiral/decon�nement phase transitions continued to µ

    Rich phase structure depending on Nf and mq

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 7 / 33

    10.1016/0550-3213(86)90582-1

  • T −(µT

    )2 −mu,d phase diagram

    Z(2)1st triple

    1st triple

    1st

    1st

    Crossover

    Tricritical points

    1st order

    Roberge-Weiss plane

    de Forcrand and Philipsen (2002), 10.1016/S0550-3213(02)00626-0,D'Elia, Lombardo (2003), 10.1103/PhysRevD.67.014505

    Coarse lattices

    All β critical at µci1st order regionsextend till µ = 0

    I mu,d → 0I mu,d → ∞

    2nd order criticalmasses mc1,m

    c2 at

    µ = 0

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 8 / 33

    10.1016/S0550-3213(02)00626-0 10.1103/PhysRevD.67.014505

  • Outline

    1 QCD phase diagram at real and imaginary µ

    2 Extended QCD Columbia plot (µ2 6= 0)

    3 The order of the thermal phase transition

    4 Extrapolation from imaginary chemicalpotentialNature of the Roberge-Weiss endpoint at Nf = 2

    Z2 line in mπ −(µT

    )2at Nf = 2

    5 Extrapolation from non-integer Nf at µ = 0Z2 line in mZ2 − (Nf )

    6 Outlook

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 9 / 33

  • 2D Columbia plot ms −mu,d at µ = 0Dependence of the order of the thermal phase transition on mq

    Breaking of global Z (3) for mu,d ,ms →∞Restoration of global SUL(Nf )× SUR(Nf ) for mu,d ,ms → 0

    ?Current knowledge (no CL)

    Order parameters

    Polyakov loop for mu,d ,ms →∞P = Tr e i

    ∫Atdt

    Chiral condensate for mu,d ,ms → 0ψ̄ψ = ∂ logZ/∂mu,d

    Svetitsky, Ya�e (1982), 10.1016/0550-3213(82)90172-9Pisarski, Wilczek (1984), 10.1103/PhysRevD.29.338

    Aoki et al. (2006), 10.1038/nature05120de Forcrand and Philipsen (2007), 10.1088/1126-6708/2007/01/077

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 10 / 33

    10.1016/0550-3213(82)90172-910.1103/PhysRevD.29.338 10.1038/nature05120 10.1088/1126-6708/2007/01/077

  • 2D Columbia plot ms −mu,d at µ = 0At least two possible scenarios on the nature of Nf = 2 chiral transition

    Second order scenario First order scenario

    Direct (expensive) approach: µ = 0 and mu,d → 0Indirect (cheaper) approach: µ = iµi , bigger mu,d and scaling laws

    Svetitsky, Ya�e (1982), 10.1016/0550-3213(82)90172-9Pisarski, Wilczek (1984), 10.1103/PhysRevD.29.338

    Aoki et al. (2006), 10.1038/nature05120de Forcrand and Philipsen (2007), 10.1088/1126-6708/2007/01/077

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 10 / 33

    10.1016/0550-3213(82)90172-910.1103/PhysRevD.29.338 10.1038/nature05120 10.1088/1126-6708/2007/01/077

  • 2D Columbia plot ms −mu,d at µ = iπT3Assuming the ��rst order scenario� is realized

    µ = 0 µ = iπT3

    Tricritical

    Tricritical

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 11 / 33

  • 3D Columbia plot(µT

    )2 −ms −mu,d

    Tricritical

    Tricritical

    Tric

    ritical

    Tricritical����7MKR�TVSFPIQ

    ������������23���WMKRTVSFPIQ

    courtesy of A. Sciarra arXiv:1610.09979

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 12 / 33

    arXiv:1610.09979

  • (µT

    )2 −mu,d Columbia plot

    Tric

    ritical

    Tricritical

    ����7MKR�TVSFPIQ

    ������������23���WMKRTVSFPIQ

    courtesy of A. Sciarra arXiv:1610.09979

    From mtric1 in RW plane µ = iµi =iπT3

    Send µi → 0 mapping µZ2i (mu,d) (3D Ising)Expected tricritical scaling m

    2/5u,d = C

    [(µT

    )2 − ( µT

    )2tric

    ]

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 13 / 33

    arXiv:1610.09979

  • Towards real-µ Columbia plot

    Analytical continuation on constraint that no non-analyticity is met

    Existence of 2nd order CEP depending on the bending of the Z2 surfacescontinued from µi

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 14 / 33

  • Outline

    1 QCD phase diagram at real and imaginary µ

    2 Extended QCD Columbia plot (µ2 6= 0)

    3 The order of the thermal phase transition

    4 Extrapolation from imaginary chemicalpotentialNature of the Roberge-Weiss endpoint at Nf = 2

    Z2 line in mπ −(µT

    )2at Nf = 2

    5 Extrapolation from non-integer Nf at µ = 0Z2 line in mZ2 − (Nf )

    6 Outlook

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 15 / 33

  • Establishing the order of the transition

    Analysis of the order parameter 〈O〉 distribution and its moments

    Bn(〈O〉, β,mq, µ,V ) ≡ Bn(β,mq, µ,Nσ) =〈(O − 〈O〉)n〉〈(O − 〈O〉)2〉n/2

    O = LIm, ψ̄ψ

    ∀mq identify βc by{the condition B3(β,mq, µ,Nσ) = 0 ∀Nσ;the crossing of B4(β,mq, µ,Nσ) for di�erent Nσ.

    B4(β(c),mq, µ,Nσ) gives the order of the transition as function of β,mq or µ

    B4(β(c),mq, µ,Nσ) =〈(O − 〈O〉)4〉〈(O − 〈O〉)2〉2

    ∣∣∣∣βc

    ∼V→∞

    1, 1storder;

    1.604, 2ndorderZ2;

    3, crossover.

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 16 / 33

  • Finite Size Scaling (FSS) analysisCritical exponent ν by either �t or quantitative collapse

    V1 V2>V1 V3>V2>V1 V=¥

    0

    1

    1.604

    3

    HX-XcL

    B4

    B4(X ,Nσ) = B4(Xc ,∞) + a1 x + a2 x2 +O(x3)

    x ≡ (X − Xc)N1/νσ , X = β, m,µiT

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 17 / 33

  • Outline

    1 QCD phase diagram at real and imaginary µ

    2 Extended QCD Columbia plot (µ2 6= 0)

    3 The order of the thermal phase transition

    4 Extrapolation from imaginary chemicalpotentialNature of the Roberge-Weiss endpoint at Nf = 2

    Z2 line in mπ −(µT

    )2at Nf = 2

    5 Extrapolation from non-integer Nf at µ = 0Z2 line in mZ2 − (Nf )

    6 Outlook

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 18 / 33

  • Roberge-Weiss transition in Nf = 2 QCD

    (Unimproved) Wilson fermions on Nτ = 4, 6 [10.1103/PhysRevD.93.054507]

    µiT

    = π ± 2πk, k ∈ Z

    T =1

    a(β)Nτ→ aµi =

    π

    O = LIm

    κ =1

    2(am + 4)

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 19 / 33

    10.1103/PhysRevD.93.054507

  • Roberge-Weiss transition in Nf = 2 QCD

    (Unimproved) Wilson fermions on Nτ = 4, 6 [10.1103/PhysRevD.93.054507]

    −0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08Lwith zero meanIm

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    coun

    ts

    Histogram of Lwith zero meanIm5.7800 5.7840 5.7880 5.7900 5.7920 5.7940

    µiT

    = π ± 2πk, k ∈ Z

    T =1

    a(β)Nτ→ aµi =

    π

    O = LIm

    κ =1

    2(am + 4)

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 19 / 33

    10.1103/PhysRevD.93.054507

  • Roberge-Weiss transition in Nf = 2 QCD

    (Unimproved) Wilson fermions on Nτ = 4, 6 [10.1103/PhysRevD.93.054507]

    5.775 5.780 5.785 5.790 5.795

    β

    1.0

    1.5

    2.0

    2.5

    3.0

    B4(L

    wit

    hze

    rom

    ean

    Im

    )

    Nσ=20 (raw)Nσ=24 (raw)Nσ=30 (raw) µi

    T= π ± 2πk, k ∈ Z

    T =1

    a(β)Nτ→ aµi =

    π

    O = LIm

    κ =1

    2(am + 4)

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 19 / 33

    10.1103/PhysRevD.93.054507

  • Roberge-Weiss transition in Nf = 2 QCD

    (Unimproved) Wilson fermions on Nτ = 4, 6 [10.1103/PhysRevD.93.054507]

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    2.6

    5.78 5.785 5.79 5.795 5.8

    B4pL

    Imq

    β

    Nσ “ 20Nσ “ 24Nσ “ 30

    µiT

    = π ± 2πk, k ∈ Z

    T =1

    a(β)Nτ→ aµi =

    π

    O = LIm

    κ =1

    2(am + 4)

    �t reweighted data by B4(β,Nσ) = B4(βc ,∞) + a1 (β − βc)N1/νσ + . . . .Ferrenberg, Swendsen (1989), 10.1103/PhysRevLett.61.2635

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 19 / 33

    10.1103/PhysRevD.93.054507 10.1103/PhysRevLett.61.2635

  • Roberge-Weiss transition in Nf = 2 QCD

    (Unimproved) Wilson fermions on Nτ = 4, 6 [10.1103/PhysRevD.93.054507]

    0.3

    0.4

    0.5

    0.6

    0.7

    0.08 0.10 0.12 0.14 0.16

    ν

    κ

    2nd order

    Tricritical

    1st triple

    Nτ = 4 Nτ = 6

    Nτ=4 Nτ=60.6301

    13

    12

    κ

    νκtricr.heavy = 0.10(1), κ

    tricr.light = 0.155(5)

    κtricr.heavy = 0.11(1), κtricr.light = 0.1625(25)

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 19 / 33

    10.1103/PhysRevD.93.054507

  • Roberge-Weiss transition in Nf = 2 QCD

    (Unimproved) Wilson fermions on Nτ = 4, 6 [10.1103/PhysRevD.93.054507]

    Pinke, Philipsen (2014), 10.1103/PhysRevD.89.094504, F.C. et al (2015), 10.1103/PhysRevD.93.054507

    Bonati et al. (2011), 10.1103/PhysRevD.83.054505

    0.3

    0.4

    0.5

    0.6

    0.7

    500 1000 1500 2000 2500 3000 3500 4000 4500

    ν

    mπ {MeV}

    2nd order

    Tricritical

    1st triple

    ë staggeredNτ “ 4 Nτ “ 6 Nτ “ 8 Nτ “ 4

    mtricr. heavyπ = 3659+589−619 MeV, m

    tricr. lightπ = 669

    +95−81 MeV

    0.12 fm . a . 0.18 fm

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 19 / 33

    10.1103/PhysRevD.93.05450710.1103/PhysRevD.89.09450410.1103/PhysRevD.93.05450710.1103/PhysRevD.83.054505

  • Roberge-Weiss transition in Nf = 2 QCD

    (Unimproved) Wilson fermions on Nτ = 4, 6 [10.1103/PhysRevD.93.054507]

    Pinke, Philipsen (2014), 10.1103/PhysRevD.89.094504, F.C. et al (2015), 10.1103/PhysRevD.93.054507

    Bonati et al. (2011), 10.1103/PhysRevD.83.054505

    0.3

    0.4

    0.5

    0.6

    0.7

    500 1000 1500 2000 2500 3000 3500 4000 4500

    ν

    mπ {MeV}

    2nd order

    Tricritical

    1st triple

    ë staggeredNτ “ 4 Nτ “ 6 Nτ “ 8 Nτ “ 4

    Tension between results for di�erent discretizations (Wilson, staggered)

    Need larger Nτ to attain continuum limit

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 19 / 33

    10.1103/PhysRevD.93.05450710.1103/PhysRevD.89.09450410.1103/PhysRevD.93.05450710.1103/PhysRevD.83.054505

  • Roberge-Weiss transition in Nf = 2 QCD

    (Unimproved) Staggered fermions on Nτ = 6 [Philipsen and Sciarra arXiv:1610.09979]

    0.003 0.005 0.007 0.009 0.011

    0.3

    0.4

    0.5

    0.6

    0.7

    Only 2 volumes

    Still running

    ν

    0.20 0.30 0.40 0.50 0.60 0.70

    Larger volumeneeded

    Still running

    m

    Tricritical

    2nd order

    1st triple

    Simulations ongoing

    Waiting for pion mass measurementShift wrt Nτ = 4 (d'Elia, San�lippo (2009), 10.1103/PhysRevD.80.111501Bonati et al. (2011), 10.1103/PhysRevD.83.054505)

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 20 / 33

    arXiv:1610.09979 10.1103/PhysRevD.80.111501 10.1103/PhysRevD.83.054505

  • Z2 critical line in mπ −(µT

    )2in Nf = 2 QCD

    (Unimproved) Wilson fermions on Nτ = 4 [10.1103/PhysRevD.93.114507]

    Starting point mtric1 at Nτ = 4 (Pinke, Philipsen (2014), 10.1103/PhysRevD.89.094504)

    chiraltransition

    (crossover/first order)

    RW transition

    triple point

    2.orderendpoint

    simulation point

    µiT /

    π3

    T

    0 1

    O = ψ̄ψ = Nf TrD−1

    T =1

    a(β)Nτ→ aµi =

    π

    3Nτ

    κ =1

    2(am + 4)

    �xed κ←→ B4(µiT,Nσ) = B4(

    µciT,∞) + a1

    [(µiT

    )2−(µciT

    )2]N1/νσ + . . .

    �xed µ = 0←→ B4(κ,Nσ) = B4(κ,∞) + b1[1

    κ− 1κc

    ]N1/νσ + . . .

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 21 / 33

    10.1103/PhysRevD.93.11450710.1103/PhysRevD.89.094504

  • Different discretizations compared

    ( µRWIT )2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0 100 200 300 400 500 600 700 800 900 1000

    (µI T)2

    mZ(2),WilsonπmZ(2),Staggeredπmtric,Staggeredπ

    mtric,Wilsonπ (Nτ = 4)mtric,Wilsonπ (Nτ = 6)

    mCrossoverπ (Twisted Mass, Nτ = 12)mCrossoverπ (Clover, Nτ = 16)

    a & 0.25 fm

    κc(µ = 0) = 0.1815(1)

    mcπ(µ = 0) ≈ 560 MeV

    Wilson O(a) improved results from Burger et al. (2013), 10.1103/PhysRevD.87.074508(Twisted Mass) and Brandt et al. (2014), arXiv:1310.8326 (clover)

    No need for extrapolation using tricritical scaling law

    Only qualitative agreement between di�erent discretizations(cf. staggered Bonati et al. (2014), 10.1103/PhysRevD.90.074030)

    Expected shift of µZ2i (mu,d) to smaller mu,d as a→ 0

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 22 / 33

    10.1103/PhysRevD.87.074508arXiv:1310.8326 10.1103/PhysRevD.90.074030

  • Outline

    1 QCD phase diagram at real and imaginary µ

    2 Extended QCD Columbia plot (µ2 6= 0)

    3 The order of the thermal phase transition

    4 Extrapolation from imaginary chemicalpotentialNature of the Roberge-Weiss endpoint at Nf = 2

    Z2 line in mπ −(µT

    )2at Nf = 2

    5 Extrapolation from non-integer Nf at µ = 0Z2 line in mZ2 − (Nf )

    6 Outlook

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 23 / 33

  • Nf continuous parameter in the pathintegral

    Partition function describing Nf �avours of degenerate mass m

    ZNf (m, µ,Nf ) =

    ∫DA [detM(A,m, µ)]Nf e−SG

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 24 / 33

  • Nf continuous parameter in the pathintegral

    Partition function describing Nf �avours of degenerate mass m

    ZNf (m, µ,Nf ) =

    ∫DA [detM(A,m, µ)]Nf e−SG

    Investigation of the phase diagram in the Nf vs m plane

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 24 / 33

  • Nf continuous parameter in the pathintegral

    Partition function describing Nf �avours of degenerate mass m

    ZNf (m, µ,Nf ) =

    ∫DA [detM(A,m, µ)]Nf e−SG

    Investigation of the phase diagram in the Nf vs m plane

    I mapping out the mZ2(Nf ) line

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 24 / 33

  • Nf continuous parameter in the pathintegral

    Partition function describing Nf �avours of degenerate mass m

    ZNf (m, µ,Nf ) =

    ∫DA [detM(A,m, µ)]Nf e−SG

    Investigation of the phase diagram in the Nf vs m plane

    I mapping out the mZ2(Nf ) line

    Chiral limit extrapolation constrained by universality

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 24 / 33

  • Nf continuous parameter in the pathintegral

    Partition function describing Nf �avours of degenerate mass m

    ZNf (m, µ,Nf ) =

    ∫DA [detM(A,m, µ)]Nf e−SG

    Investigation of the phase diagram in the Nf vs m plane

    I mapping out the mZ2(Nf ) line

    Chiral limit extrapolation constrained by universality

    I tricritical scaling

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 24 / 33

  • Nf continuous parameter in the pathintegral

    Partition function describing Nf �avours of degenerate mass m

    ZNf (m, µ,Nf ) =

    ∫DA [detM(A,m, µ)]Nf e−SG

    Investigation of the phase diagram in the Nf vs m plane

    I mapping out the mZ2(Nf ) line

    Chiral limit extrapolation constrained by universality

    I tricritical scaling

    I Non-unique interpolation between Nf = 2 and Nf = 3;

    ZNf=2.# =

    ∫DU [detM(U,m, µ)]2.# e−SG

    ZNf=2+1 =

    ∫DU [detM(U,m1, µ)]2 [detM(U,m2, µ)] e−SG

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 24 / 33

  • Further insights into the phase diagram

    We still do not know the order of chiral transition for Nf = 2

    ?

    ?Only two possible scenarios out of more are discussed ( Vicari (2007), arXiv:0709.1014,...)

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 25 / 33

    arXiv:0709.1014

  • Further insights into the phase diagram

    mZ2(Nf ) according to the second order scenario

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 25 / 33

  • Further insights into the phase diagram

    mZ2(Nf ) according to the second order scenario

    Ntricf > 2

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 25 / 33

  • Further insights into the phase diagram

    mZ2(Nf ) according to the �rst order scenario

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 25 / 33

  • Further insights into the phase diagram

    mZ2(Nf ) according to the �rst order scenario

    Ntricf < 2

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 25 / 33

  • Code & investigated parameter space

    All simulations employ the OpenCL-based CL2QCD codePhilipsen et al. (2014) arXiv:1411.5219 https://github.com/CL2QCD/cl2qcd

    I Unimproved rooted staggered fermion discretization (RHMC algorithm)

    No. of �avours −→ Nf = 2.8, 2.6, 2.4, 2.2, 2.1, 2.0Coarse lattices −→ Nτ = 4Chemical potential −→ µ = 0Scan in mass −→ m ∈ [0.0250, 0.0007]Finite size scaling −→ Nσ = 8, 12, 16, 20Scan in temperature −→ (3− 5) β valuesStatistics −→ ∼ (200k − 400k) per β

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 26 / 33

    arXiv:1411.5219https://github.com/CL2QCD/cl2qcd

  • Checking the order of the transition...

    Chiral condensate 〈ψ̄ψ〉 and moments of its distribution

    Bn(〈ψ̄ψ〉, β,m,V ) ≡ Bn(β,m,Nσ) =

    〈(ψ̄ψ −

    〈ψ̄ψ〉)n〉〈(

    ψ̄ψ −〈ψ̄ψ〉)2〉n/2

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 27 / 33

  • Checking the order of the transition...

    Chiral condensate 〈ψ̄ψ〉 and moments of its distribution

    Bn(〈ψ̄ψ〉, β,m,V ) ≡ Bn(β,m,Nσ) =

    〈(ψ̄ψ −

    〈ψ̄ψ〉)n〉〈(

    ψ̄ψ −〈ψ̄ψ〉)2〉n/2

    ∀m,Nσ identify βc by the condition B3(β,m,Nσ) = 0

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 27 / 33

  • Checking the order of the transition...

    Chiral condensate 〈ψ̄ψ〉 and moments of its distribution

    Bn(〈ψ̄ψ〉, β,m,V ) ≡ Bn(β,m,Nσ) =

    〈(ψ̄ψ −

    〈ψ̄ψ〉)n〉〈(

    ψ̄ψ −〈ψ̄ψ〉)2〉n/2

    ∀m,Nσ identify βc by the condition B3(β,m,Nσ) = 0

    0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

    β +5.182

    −0.6

    −0.4

    −0.2

    0.0

    0.2

    0.4

    0.6

    B3(〈ψ̄

    ψ〉)

    〈ψ̄ψ〉〈ψ̄ψ〉

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 27 / 33

  • Checking the order of the transition...

    Chiral condensate 〈ψ̄ψ〉 and moments of its distribution

    Bn(〈ψ̄ψ〉, β,m,V ) ≡ Bn(β,m,Nσ) =

    〈(ψ̄ψ −

    〈ψ̄ψ〉)n〉〈(

    ψ̄ψ −〈ψ̄ψ〉)2〉n/2

    ∀m,Nσ identify βc by the condition B3(β,m,Nσ) = 0

    B4(βc ,m,Nσ) to extract the order of the transition as function of m

    B4(βc ,m,Nσ) =

    〈(ψ̄ψ −

    〈ψ̄ψ〉)4〉〈(

    ψ̄ψ −〈ψ̄ψ〉)2〉2

    ∣∣∣∣∣∣∣βc

    ∼V→∞

    1, 1storder;

    1.604, 2ndorderZ2;

    3, crossover.

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 27 / 33

  • ...and locating mZ2(Nf )

    Fitting B4(βc ,m,Nσ) at �xed Nf and various Nσ, as function of m

    B4(βc ,m,Nσ) = B4(βc ,mZ2 ,∞) + a(m −mZ2)N1/νσ + . . .

    1.35

    1.4

    1.45

    1.5

    1.55

    1.6

    1.65

    1.7

    1.75

    1.8

    1.85

    1.9

    0.017 0.018 0.019 0.02 0.021 0.022 0.023 0.024 0.025 0.026

    B4pβc,m

    ,Nσq

    m

    Nf “ 2.8

    Nσ “ 8Nσ “ 12Nσ “ 16

    B4(βc ,mZ2 ,∞) = 1.604

    a = 0.59(5)

    ν = 0.6301

    mZ2 = 0.0211(3)

    χ2ndf=10 = 0.27

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 28 / 33

  • How (wide) small is the tricritical scalingregion in mZ2(Nf )?

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0 0.5 1 1.5 2 2.5 3 3.5 4

    mZ

    2

    Nf

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    0.18

    0.2

    0.22

    0.24

    0 0.5 1 1.5 2 2.5 3 3.5 4

    m2

    {5Z

    2

    Nf

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 29 / 33

  • How (wide) small is the tricritical scalingregion in mZ2(Nf )?

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    1.5 2 2.5 3 3.5

    mZ2

    Nf

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    1.5 2 2.5 3 3.5

    m2

    {5Z2

    Nf

    de Forcrand and Philipsen (2003), 10.1016/j.nuclphysb.2003.09.005

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 29 / 33

    10.1016/j.nuclphysb.2003.09.005

  • How (wide) small is the tricritical scalingregion in mZ2(Nf )?

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    1.5 2 2.5 3 3.5

    mZ2

    Nf

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    1.5 2 2.5 3 3.5

    m2

    {5Z2

    Nf

    de Forcrand and Philipsen (2003), 10.1016/j.nuclphysb.2003.09.005

    Bonati et al. (2014), 10.1103/PhysRevD.90.074030

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 29 / 33

    10.1016/j.nuclphysb.2003.09.005 10.1103/PhysRevD.90.074030

  • How (wide) small is the tricritical scalingregion in mZ2(Nf )?

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    1.5 2 2.5 3 3.5

    mZ2

    Nf

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    1.5 2 2.5 3 3.5

    m2

    {5Z2

    Nf

    m2/5Z2

    (Nf ) = C(Nf − Ntricf

    )

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 29 / 33

  • Nf = 2.2 ∈ tricritical scaling region?

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    1.5 2 2.5 3 3.5

    mZ2

    Nf

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    1.5 2 2.5 3 3.5

    m2

    {5Z2

    Nf

    m2/5Z2

    (Nf ) = C(Nf − Ntricf

    )χ2ndf=1 = 0.28

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 30 / 33

  • Nf = 2.2 ∈ tricritical scaling region?

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    1.5 2 2.5 3 3.5

    mZ2

    Nf

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    1.5 2 2.5 3 3.5

    m2

    {5Z2

    Nf

    Assuming that the tricritical scaling sets in at Nf = 2.2I Same scaling window in m as found in the extrapolation from µiI N

    tric

    f = 1.75(32)

    Waiting for ongoing simulations at Nf = 2.0...

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 30 / 33

  • Outline

    1 QCD phase diagram at real and imaginary µ

    2 Extended QCD Columbia plot (µ2 6= 0)

    3 The order of the thermal phase transition

    4 Extrapolation from imaginary chemicalpotentialNature of the Roberge-Weiss endpoint at Nf = 2

    Z2 line in mπ −(µT

    )2at Nf = 2

    5 Extrapolation from non-integer Nf at µ = 0Z2 line in mZ2 − (Nf )

    6 Outlook

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 31 / 33

  • Outlook

    First investigationI Just entered the scaling region...I Coarse Nτ = 4 lattices exploredI Rooted staggered fermion discretization: cross check needed

    Theoretical caveat: at non-integer Nf our theory lacks locality and does NOTcorrespond to a well de�ned QFT in the CL

    Theoretical caveat: ∞ many interpolations between Nf = 2 and Nf = 3limNf→2,3Z(Nf = 2.#) = Z(Nf = 2, 3)However

    I the relative position of Ntricf w.r.t. Nf = 2 has to be uniquely determined byevery interpolation

    I possible matching among interpolations

    In view of a continuum limit: the width of scaling regions �xed in physicalunits will shrink in lattice units

    I Which extrapolation is more expensive?F from imaginary chemical potential µi at Nf = 2F from non-integer Nf at µ = 0F from Nf = 2+ 1 while increasing ms at µ = 0

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 32 / 33

  • THANK YOU!

    F. Cuteri - Goethe University Extended QCD phase diagram from the lattice Feb 01, 2017 33 / 33

    QCD phase diagram at real and imaginary Extended QCD Columbia plot (2=0)The order of the thermal phase transitionExtrapolation from imaginary chemical potentialNature of the Roberge-Weiss endpoint at Nf=2Z2 line in m- (T)2 at Nf=2

    Extrapolation from non-integer Nf at =0Z2 line in mZ2-(Nf)

    Outlook