Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of...

42
Exploring patterns of dependence in financial data. Alexandre d’Aspremont CNRS – CMAP, Ecole Polytechnique Joint work with O. Banerjee, L. El Ghaoui, U.C. Berkeley. Support from NSF, ERC SIPA and Google. A. d’Aspremont, TSE, November 2011. 1/41

Transcript of Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of...

Page 1: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Exploring patterns of dependence

in financial data.

Alexandre d’AspremontCNRS – CMAP, Ecole Polytechnique

Joint work with O. Banerjee, L. El Ghaoui, U.C. Berkeley.

Support from NSF, ERC SIPA and Google.

A. d’Aspremont, TSE, November 2011. 1/41

Page 2: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Introduction

We estimate a sample covariance matrix Σ from empirical data. . .

� Objective: infer dependence relationships between variables.

� We only want to isolate a few key links.

Elementary solution: look at the magnitude of the covariance coefficients:

|Σij| > β ⇔ variables i and j are related,

then simply threshold smaller coefficients to zero (not always psd).

A. d’Aspremont, TSE, November 2011. 2/41

Page 3: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Covariance Selection

4.5Y

5.5Y

1Y

10Y

0.5Y

7Y

9Y

8Y

5Y

4Y

6.5Y

1.5Y

6Y

3Y

9.5Y

2Y

2.5Y

8.5Y

7.5Y

3.5Y

6Y

1.5Y

5.5Y

2.5Y

8Y 5Y

2Y

0.5Y

9.5Y

4Y7.5Y

7Y

10Y

6.5Y

3Y

9Y

8.5Y

1Y

Before After

A. d’Aspremont, TSE, November 2011. 3/41

Page 4: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Covariance Selection

Following Dempster [1972], look for zeros in the inverse covariance matrix:

Parsimony. Suppose that we are estimating a Gaussian density:

f(x,Σ) =

(1

)p2(

1

det Σ

)12

exp

(−1

2xTΣ−1x

),

a sparse inverse matrix Σ−1 corresponds to a sparse representation of thedensity f as a member of an exponential family of distributions:

f(x,Σ) = exp(α0 + t(x) + α11t11(x) + . . .+ αrstrs(x))

with here tij(x) = xixj and αij = Σ−1ij . Dempster [1972] calls Σ−1ij aconcentration coefficient.

A. d’Aspremont, TSE, November 2011. 4/41

Page 5: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Covariance Selection

Conditional independence.

� Suppose X,Y, Z have are jointly normal with covariance matrix Σ, with

Σ =

(Σ11 Σ12

Σ21 Σ22

)

where Σ11 ∈ R2×2 and Σ22 ∈ R.

� Conditioned on Z, X,Y are still normally distributed with covariance matrixC satisfying

C = Σ11 − Σ12Σ−122 Σ21 =

(Σ−1

)−111

� So X and Y are conditionally independent iff(Σ−1

)11

is diagonal, which isalso

Σ−1xy = 0

A. d’Aspremont, TSE, November 2011. 5/41

Page 6: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Covariance Selection

� Suppose we have iid noise εi ∼ N (0, 1) and the following linear model

x = z + ε1y = z + ε2z = ε3

� Graphically, this is

X Y

Z

A. d’Aspremont, TSE, November 2011. 6/41

Page 7: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Covariance Selection

� The covariance matrix and inverse covariance are given by

Σ =

2 1 11 2 11 1 1

Σ−1 =

1 0 −10 1 −1−1 −1 3

� The inverse covariance matrix has Σ−112 clearly showing that the variables x andy are independent conditioned on z.

� Graphically, this is again

X Y

Z

versusX Y

Z

A. d’Aspremont, TSE, November 2011. 7/41

Page 8: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Covariance Selection

Let I⊕J = [1, n]2, Dempster [1972] shows:

� Maximum Entropy. Among all Gaussian models Σ such that Σij = Sij on J ,

the choice Σ−1ij = 0 on I has maximum entropy.

� Maximum Likelihood. Among all Gaussian models Σ such that Σ−1ij = 0 on

I, the choice Σij = Sij on J has maximum likelihood.

� Existence and Uniqueness. If there is a positive semidefinite matrix Σijsatisfying Σij = Sij on J , then there is only one such matrix satisfying

Σ−1ij = 0 on I.

A. d’Aspremont, TSE, November 2011. 8/41

Page 9: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Applications & Related Work

� Gene expression data. The sample data is composed of gene expressionvectors and we want to isolate links in the expression of various genes. SeeDobra et al. [2004], Dobra and West [2004] for example.

� Speech Recognition. See Bilmes [1999], Bilmes [2000] or Chen and Gopinath[1999].

� Related work by Dahl et al. [2005]: interior point methods for sparse MLE.

A. d’Aspremont, TSE, November 2011. 9/41

Page 10: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Financial data

Estimating covariance matrices from financial data.

� Asset returns are given by (schematically)

∆St = ∆Mt + εt

where

◦ Mt is the market return

◦ εt is an idiosyncratic component

� All assets are usually highly correlated: Mt dominates the picture. We are onlyinterested in the correlation between εt for various assets.

� The inverse matrix is also used to computed portfolios on the efficient frontierfor CAPM.

A. d’Aspremont, TSE, November 2011. 10/41

Page 11: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Outline

� Introduction

� Penalized maximum likelihood estimation

� Algorithms & complexity

� Consistency

� Graph layout

� Numerical experiments

A. d’Aspremont, TSE, November 2011. 11/41

Page 12: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Penalized Maximum Likelihood Estimation

A. d’Aspremont, TSE, November 2011. 12/41

Page 13: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

AIC and BIC

Akaike [1973]: penalize the likelihood function:

maxX∈Sn

log detX −Tr(SX)− ρCard(X)

where Card(X) is the number of nonzero elements in X.

� Set ρ = 2/(m+ 1) for the Akaike Information Criterion (AIC).

� Set ρ = log(m+1)(m+1) for the Bayesian Information Criterion (BIC).

Of course, this is a (NP-Hard) combinatorial problem. . .

A. d’Aspremont, TSE, November 2011. 13/41

Page 14: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Convex Relaxation

� We can form a convex relaxation of AIC or BIC penalized MLE

maxX∈Sn

log detX −Tr(SX)− ρCard(X)

replacing Card(X) by ‖X‖1 =∑ij |Xij| to solve

maxX∈Sn

log detX −Tr(SX)− ρ‖X‖1

� Classic l1 heuristic: ‖X‖1 is a convex lower bound on Card(X).

� Heavily used in statistics and signal processing. See Donoho and Tanner[2005], Candes and Tao [2005] on compressed sensing, sparse recovery forpenalized regression.

A. d’Aspremont, TSE, November 2011. 14/41

Page 15: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Outline

� Introduction

� Penalized maximum likelihood estimation

� Algorithms & complexity

� Consistency

� Graph layout

� Numerical experiments

A. d’Aspremont, TSE, November 2011. 15/41

Page 16: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Complexity

The problemmaxX∈Sn

log detX −Tr(SX)− ρ‖X‖1

is convex in the variable X ∈ Sn. This means that we can get explicit complexitybounds and efficient algorithms.

� Standard convex optimization algorithms easily solve small instances.(see Boyd and Vandenberghe [2004])

� Specialized techniques solve larger problems with complexity O(n4.5). We canexploit the block structure of the dual. Cost per iteration comparable to thatof a penalized regression (LASSO).

� In practice, we can get a good solution with complexity O(n3.5). A bit harderthan computing a matrix inverse. . .

A. d’Aspremont, TSE, November 2011. 16/41

Page 17: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Algorithms

Complexity options. . .

O(n) O(n) O(n2)

Memory

Complexity

O(1/ǫ2) O(1/ǫ) O(log(1/ǫ))

First-order Smooth Newton IP

A. d’Aspremont, TSE, November 2011. 17/41

Page 18: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Algorithms

� The convex relaxation of the covariance selection problem has a particularmin-max structure

maxX∈Sn

min|Uij|≤ρ

log detX −Tr((S + U)X)

� This min-max representation means that we use prox function algorithms byNesterov [2005] (see also Nemirovski [2004]) to solve large, dense probleminstances.

� We also detail a “greedy” block-coordinate descent method with goodempirical performance.

A. d’Aspremont, TSE, November 2011. 18/41

Page 19: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Nesterov’s method

Assuming that a problem can be written according to this min-max model, thealgorithm works as follows. . .

� Regularization. Add strongly convex penalty inside the min-maxrepresentation to produce an ε-approximation of f with Lipschitz continuousgradient (generalized Moreau-Yosida regularization step, see Lemarechal andSagastizabal [1997] for example).

� Optimal first order minimization. Use optimal first order scheme forLipschitz continuous functions detailed in Nesterov [1983] to the solve theregularized problem.

A. d’Aspremont, TSE, November 2011. 19/41

Page 20: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Nesterov’s method

Regularization. The objective is first smoothed by penalization. We solve thefollowing (modified) problem

max{X∈Sn: αIn�X�βIn}

min{U∈Sn: |Uij|≤ρ}

log detX −Tr((S − U)X)− (ε/2D2)d2(U)

an ε approximation of the original problem if α ≤ 1/(‖S‖+ nρ) and β ≥ n/ρ.

� Prox on Q2 := {U ∈ Sn : ‖U‖∞ ≤ 1} is d2(U) = 12 Tr(UTU) = 1

2‖U‖2

� Prox d1(X) for the set {αIn � X � βIn} given by

d1(X) = − log detX + log β

This corresponds to a classic Moreau-Yosida regularization of the penalty ‖X‖1and the function fε has a Lipschitz continuous gradient with constant

Lε := M +D2ρ2/(2ε)

A. d’Aspremont, TSE, November 2011. 20/41

Page 21: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Nesterov’s method

Optimal first-order minimization. The minimization algorithm in Nesterov[1983] then involves the following steps

Choose ε > 0 and set X0 = βIn, For k = 0, . . . , N(ε) do

1. Compute ∇fε(Xk) = −X−1 + Σ + U∗(Xk)

2. Find Yk = arg minY {Tr(∇fε(Xk)(Y −Xk)) + 12Lε‖Y −Xk‖2F : Y ∈ Q1}.

3. FindZk = arg minX

{Lεβ

2d1(X) +∑ki=0

i+12 Tr(∇fε(Xi)(X −Xi)) : X ∈ Q1

}.

4. Update Xk = 2k+3Zk + k+1

k+3Yk.

A. d’Aspremont, TSE, November 2011. 21/41

Page 22: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Nesterov’s method

At each iteration

� Step 1: only amounts to computing the inverse of X and the (explicit)solution to the regularized subproblem on Q2.

� Steps 2 and 3: are both projections on Q1 = {αIn � X � βIn} and requirean eigenvalue decomposition.

This means that the total complexity estimate of the method is

O

(κ√

(log κ)

εn4.5αρ

)

where log κ = log(β/α) bounds the solution’s condition number.

A. d’Aspremont, TSE, November 2011. 22/41

Page 23: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Dual block-coordinate descent

� Here we consider the dual of the original problem

maximize log det(S + U)subject to ‖U‖∞ ≤ ρ

S + U � 0

� Let C = S +U be the current iterate, after permutation we can always assumethat we optimize over the last column

maximize log det

(C11 C12 + u

C21 + uT C22

)subject to ‖u‖∞ ≤ ρ

where C12 is the last column of C (off-diag.).

� Each iteration reduces to a simple box-constrained QP

minimize uT (C11)−1usubject to ‖u‖∞ ≤ ρ

A. d’Aspremont, TSE, November 2011. 23/41

Page 24: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Outline

� Introduction

� Penalized maximum likelihood estimation

� Algorithms & complexity

� Consistency

� Graph layout

� Numerical experiments

A. d’Aspremont, TSE, November 2011. 24/41

Page 25: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Consistency

Proposition 1

Consistency. Let Cλk denote our estimate of the connectivity component of nodek. Let α be a given level in [0, 1]. Consider the following choice for the penaltyparameter

λ(α) := (maxi>j

σiσj)tn−2(α/2p

2)√n− 2 + t2n−2(α/2p

2)(1)

where tn−2(α) denotes the (100 − α)% point of the Student’s t-distribution forn− 2 degrees of freedom, and σi is the empirical variance of variable i. Then

Prob(∃k ∈ {1, . . . , p} : Cλk 6⊆ Ck) ≤ α.

Proof. Argument similar to Meinshausen and Buhlmann [2006].

A. d’Aspremont, TSE, November 2011. 25/41

Page 26: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Cross-validation

In practice, we can use cross-validation

� Remove a random subset of the variables and compute the inverse covariancematrix.

� Compute the pattern of zeros.

� Repeat the procedure for various variable subsets and various values of thepenalty ρ.

How do we pick the value of the penalty parameter ρ?

� We pick the ρ minimizing the variability of these dependence relationshipsacross samples.

� Also, dependence relationships which show up in most subsampled networksare considered more reliable.

A. d’Aspremont, TSE, November 2011. 26/41

Page 27: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Outline

� Introduction

� Penalized maximum likelihood estimation

� Algorithms & complexity

� Consistency

� Graph layout

� Numerical experiments

A. d’Aspremont, TSE, November 2011. 27/41

Page 28: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Dependence Network Layout

How do we represent these results?

� Turn the pattern of zeros in the inverse covariance into a graph.

� Use graph visualization algorithms to layout this graph.

6Y

1.5Y

5.5Y

2.5Y

8Y 5Y

2Y

0.5Y

9.5Y

4Y7.5Y

7Y

10Y

6.5Y

3Y

9Y

8.5Y

1Y

Trickier than it sounds. . .

� Graph layout problems are usually very hard. Again, good approximationalgorithms exist.

� Many possible representations.

� Some coefficients are close to zero (numerical noise): threshold.

A. d’Aspremont, TSE, November 2011. 28/41

Page 29: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Network Interpretation

Many characteristics of the graph have a statistical interpretation.

� if the graph is chordal, then there is a linear/Gaussian model with the samesparsity pattern (see Wermuth [1980] for an early reference on linear recursivemodels and path analysis).

Ratio Ratio

Left: a chordal graphical model: no cycles of length greater than three.Right: a non-chordal graphical model of U.S. swap rates.

A. d’Aspremont, TSE, November 2011. 29/41

Page 30: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Network Interpretation

� If there is a path between two nodes on a graph, then the correspondingvariables have nonzero covariance (see Gilbert [1994] for a survey of graphtheory/sparse linear algebra).

Ratio Ratio

Left: connected model of U.S. swap rates, with dense covariance matrix.Right: disconnected model, the covariance matrix is block-diagonal.

A. d’Aspremont, TSE, November 2011. 30/41

Page 31: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Outline

� Introduction

� Penalized maximum likelihood estimation

� Algorithms & complexity

� Consistency

� Graph layout

� Numerical experiments

A. d’Aspremont, TSE, November 2011. 31/41

Page 32: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

ROC curves

00.20.40.60.810

0.2

0.4

0.6

0.8

1

spec

sens

COVSELTHRES

ROC0 10 20 30 40 50

0.45

0.5

0.55

0.6

0.65

0.7

0.75

nsamples

auro

c

COVSELTHRES

Sensitivity

Sparse covariance model. Left: ROC curves for both thresholding and covarianceselection using 20 samples to compute the covariance. Right: Binary dependenceclassification performance of inverse sample covariance thresholding (THRES) andcovariance selection (COVSEL) for various sample sizes, measured by area underROC curve.

A. d’Aspremont, TSE, November 2011. 32/41

Page 33: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Covariance Selection

Forward rates covariance matrix for maturities ranging from 0.5 to 10 years.

4.5Y

5.5Y

1Y

10Y

0.5Y

7Y

9Y

8Y

5Y

4Y

6.5Y

1.5Y

6Y

3Y

9.5Y

2Y

2.5Y

8.5Y

7.5Y

3.5Y

6Y

1.5Y

5.5Y

2.5Y

8Y 5Y

2Y

0.5Y

9.5Y

4Y7.5Y

7Y

10Y

6.5Y

3Y

9Y

8.5Y

1Y

ρ = 0 ρ = .01

A. d’Aspremont, TSE, November 2011. 33/41

Page 34: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Zoom. . .

6Y

1.5Y

5.5Y

2.5Y

8Y 5Y

2Y

0.5Y

9.5Y

4Y7.5Y

7Y

10Y

6.5Y

3Y

9Y

8.5Y

1Y

A. d’Aspremont, TSE, November 2011. 34/41

Page 35: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Foreign exchange rates

Graph of conditional covariance among a cluster of U.S. dollar exchange rates.Positive dependencies are plotted as green links, negative ones in red, thicknessreflects the magnitude of the covariance.

A. d’Aspremont, TSE, November 2011. 35/41

Page 36: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

S&P 500

ISCA

NI

COF

RCII

FCS

SFN

OGE

TXI

CYLEG

BYD

BR

UCI

WGO

FDS

ETN

AZO

FRED

JDAS

MGI

BEN

CTV

AVID

ARS

SEE

ASTE

ESRX

RL

DOWESST

SOV

OSK

DSCP

HRL

CKFR

SCHS

MGAM

HNT

AMZN

YHOO

SUNW

ANF

VFC

TROW

SGP

RADS

DV

BNI

HAE

A. d’Aspremont, TSE, November 2011. 36/41

Page 37: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Hedge fund returns

� We track 116 hedge funds between January 1995 and December 2005.

� Monthly hedge fund returns from the Center for International Securities andDerivatives Markets hedge fund database, via WRDS.

� Hedge fund nodes are colored to represent their primary strategy.

A. d’Aspremont, TSE, November 2011. 37/41

Page 38: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Hedge fund returns

A. d’Aspremont, TSE, November 2011. 38/41

Page 39: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Hedge fund returns: strategies

A. d’Aspremont, TSE, November 2011. 39/41

Page 40: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Hedge fund returns: markets

A. d’Aspremont, TSE, November 2011. 40/41

Page 41: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

Conclusion

� Covariance selection highlights key dependence structure.

� Very good statistical performance compared to thresholding techniques.

� Results are often intuitive.

� Slides, papers and MATLAB software available at:

http://www.cmap.polytechnique.fr/∼aspremon

� R package using a pathwise algorithm at

http://cran.r-project.org/web/packages/Covpath/index.html

� A free network layout software called cytoscape:

http://www.cytoscape.org

A. d’Aspremont, TSE, November 2011. 41/41

Page 42: Exploring patterns of dependence in nancial data.aspremon/PDF/TSE11.pdf · Exploring patterns of dependence in nancial data. ... a sparse inverse matrix 1 corresponds to a sparse

*

References

J. Akaike. Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki, editors, Secondinternational symposium on information theory, pages 267–281, Budapest, 1973. Akedemiai Kiado.

J. A. Bilmes. Natural statistic models for automatic speech recognition. Ph.D. thesis, UC Berkeley, Dept. of EECS, CS Division, 1999.

J. A. Bilmes. Factored sparse inverse covariance matrices. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

E. J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203–4215, 2005.

S. S. Chen and R. A. Gopinath. Model selection in acoustic modeling. EUROSPEECH, 1999.

J. Dahl, V. Roychowdhury, and L. Vandenberghe. Maximum likelihood estimation of gaussian graphical models: numerical implementationand topology selection. Preprint, 2005.

A. Dempster. Covariance selection. Biometrics, 28:157–175, 1972.

A. Dobra and M. West. Bayesian covariance selection. working paper, 2004.

A. Dobra, C. Hans, B. Jones, J.R. J. R. Nevins, G. Yao, and M. West. Sparse graphical models for exploring gene expression data. Journal ofMultivariate Analysis, 90(1):196–212, 2004.

D. L. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. of the NationalAcademy of Sciences, 102(27):9446–9451, 2005.

J.R. Gilbert. Predicting Structure in Sparse Matrix Computations. SIAM Journal on Matrix Analysis and Applications, 15(1):62–79, 1994.

C. Lemarechal and C. Sagastizabal. Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries. SIAM Journal onOptimization, 7(2):367–385, 1997.

N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection with the lasso. Annals of Statistics, 34(3):1436–1462, 2006.

A. Nemirovski. Prox-method with rate of convergence O(1/T) for variational inequalities with lipschitz continuous monotone operators andsmooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127–152, 2005.

N. Wermuth. Linear Recursive Equations, Covariance Selection, and Path Analysis. Journal of the American Statistical Association, 75(372):963–972, 1980.

A. d’Aspremont, TSE, November 2011. 42/41