Exercises of course ELEC0029 Power flow computation and...

of 27 /27
Exercises of course ELEC0029 Power flow computation and sensitivity analysis in a simple system T. Van Cutsem February 2018 1 / 27

Embed Size (px)

Transcript of Exercises of course ELEC0029 Power flow computation and...

  • Exercises of course ELEC0029

    Power flow computation and sensitivity analysisin a simple system

    T. Van Cutsem

    February 2018

    1 / 27

  • System data

    Lines data

    UN (kV) X (/km) X/R C/2 (S/km) SN (MVA) km

    380 0.3 10 1.5 1350 50150 0.4 5 1.2 300 50

    Transformers data

    orig extr R (pu) X (pu) B (pu) SN (MVA) n (extr side)

    A B 0 0.14 0 500 1.08F B 0 0.14 0 250 1.08D B 0 0.14 0 300 1.00E C 0 0.14 0 600 1.00

    2 / 27

  • Operating point data

    I generators:I voltage at bus A: 15 kVI voltage at bus F: 15 kVI production of F: 150 MW

    I loads:I at bus E: 400 MW / 120 MvarI at bus D: 100 MW / 30 Mvar

    3 / 27

  • I Specify the data at all buses and run a power flow computation todetermine the electrical state of the system. In this computationassume that transformers D-B and E-C are of Yd11 type, and takeinto account the phase angle of their transformer ratios.

    The data are available in the file 6bus.dat, while the results can bedisplayed on the one-line diagram by using the file 6bus.svg

    I Detail the active and reactive power balances of the system.

    I Check that line D-E and transformer C-E operate below theirthermal ratings.

    4 / 27

  • Transformers D-B et E-C of type Yd11; complex ratios

    150 kV

    380 kVpuissances ractives (Mvar)

    puissances actives (MW)

    D E

    A

    B

    C

    modules tensions (pu)15 kV phases tensions (deg)

    F

    0.9912

    1.0000

    106

    14

    53

    14

    54

    352

    163

    348

    128347

    137

    154

    56

    1.0363

    1.0134

    1.0194

    347

    5.9 7.8

    20.2

    0.0

    100

    30

    1.0000

    150

    79

    0.9

    400

    120

    17.6

    5 / 27

  • I Simulate the misuse of a transformer E-C of type Yy0, whiletransformer D-B is of type Yd11. Show that the resulting electricalstate is unacceptable.

    6 / 27

  • Transformer D-B of type Yd11 and E-C of type Yy0

    150 kV

    380 kVpuissances ractives (Mvar)

    puissances actives (MW)

    D E

    A

    B

    C

    modules tensions (pu)15 kV phases tensions (deg)

    F

    0.9205

    1.0000

    207

    87

    310

    20

    332

    372

    296

    90

    20690

    221

    432

    147

    0.9967

    0.9495

    0.9732

    90

    6.5 6.9

    11.2

    0.0

    100

    30

    1.0000

    150

    145

    1.3

    400

    120

    8.3

    7 / 27

  • I Getting back to the correct configuration of the transformers,perform a new power flow computation in which the phase angles ofthe transformer ratios are set to zero. Comment on the resultsobtained.

    Unless otherwise specified, the phase angles are neglected in thesequel.

    8 / 27

  • Phase angles of transformer ratios neglected

    150 kV

    380 kVpuissances ractives (Mvar)

    puissances actives (MW)

    D E

    A

    B

    C

    modules tensions (pu)15 kV phases tensions (deg)

    F

    12.4

    0.9912

    1.0000

    106

    14

    53

    14

    54

    352

    163

    348

    128347

    137

    154

    56

    1.0363

    1.0134

    1.0194

    347

    5.9 7.8

    9.8

    0.0

    100

    30

    1.0000

    150

    79

    0.9

    400

    120

    9 / 27

  • I Assuming that transformer D-B is equipped with a phase shiftingdevice allowing to vary progressively the phase angle of itstransformer ratio, study the impact of this phase angle on branchpower flows and bus voltage magnitudes.

    10 / 27

  • Varying the phase angle of the ratio of transformer D-B

    10 for E-C and 1 for D-B. Example for = 10.

    150 kV

    380 kVpuissances ractives (Mvar)

    puissances actives (MW)

    D E

    A

    B

    C

    modules tensions (pu)15 kV phases tensions (deg)

    F

    10.6

    0.9815

    1.0000

    132

    12

    153

    7

    157

    355

    179

    248

    136247

    151

    257

    68

    1.0315

    1.0073

    1.0145

    247

    6.0 7.3

    2.6

    0.0

    100

    30

    1.0000

    150

    87

    0.9

    400

    120

    11 / 27

  • Variation of

    -100

    0

    100

    200

    300

    400

    500

    600

    -15 -10 -5 0 5 10 15

    phi (deg)

    P B-C (MW)P D-E (MW)P B-D (MW)

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -15 -10 -5 0 5 10 15

    phi (deg)

    Q B-C (MVar)Q D-E (MVar)Q B-D (MVar)

    0.97

    0.975

    0.98

    0.985

    0.99

    0.995

    1

    1.005

    1.01

    1.015

    1.02

    -15 -10 -5 0 5 10 15

    phi (deg)

    V C (pu)V D (pu)V E (pu)

    12 / 27

  • I Assuming that transformer D-B is equipped with a tap changerallowing to vary progressively (the magnitude of) its transformerratio, study the impact of this ratio on branch power flows and busvoltage magnitudes.

    I Same question for an identical variation of the ratios of bothtransformers D-B an E-C.

    13 / 27

  • Varying the (magnitude) of the ratio of transformer D-B

    10 for E-C and n0 for D-B. Example for n = 0.95.

    150 kV

    380 kVpuissances ractives (Mvar)

    puissances actives (MW)

    D E

    A

    B

    C

    modules tensions (pu)15 kV phases tensions (deg)

    F

    12.2

    1.0029

    1.0000

    74

    46

    61

    48

    62

    352

    162

    340

    91339

    102

    162

    91

    1.0364

    1.0541

    1.0232

    339

    5.9 7.8

    9.7

    0.0

    100

    30

    1.0000

    150

    79

    0.9

    400

    120

    14 / 27

  • Variation of n

    0

    50

    100

    150

    200

    250

    300

    350

    400

    90 95 100 105 110

    n (pu)

    P B-C (MW)P D-E (MW)P B-D (MW)

    -50

    0

    50

    100

    150

    200

    90 95 100 105 110

    n (pu)

    Q B-C (MVar)Q D-E (MVar)Q B-D (MVar)

    0.94

    0.96

    0.98

    1

    1.02

    1.04

    1.06

    1.08

    1.1

    90 95 100 105 110

    n (pu)

    V C (pu)V D (pu)V E (pu)

    15 / 27

  • Same variation of the ratios of transformers D-B et E-C

    n0 for both transformers. Example for n = 0.95.

    150 kV

    380 kVpuissances ractives (Mvar)

    puissances actives (MW)

    D E

    A

    B

    C

    modules tensions (pu)15 kV phases tensions (deg)

    F

    11.8

    1.0487

    1.0000

    105

    15

    55

    15

    56

    352

    159

    346

    123345

    133

    156

    55

    1.0374

    1.0705

    1.0210

    345

    5.9 7.8

    9.5

    0.0

    100

    30

    1.0000

    150

    77

    0.9

    400

    120

    16 / 27

  • Same variation of n in both transformers

    50

    100

    150

    200

    250

    300

    350

    400

    90 95 100 105 110

    n (pu)

    P B-C (MW)P D-E (MW)P B-D (MW)

    0

    20

    40

    60

    80

    100

    120

    140

    90 95 100 105 110

    n (pu)

    Q B-C (MVar)Q D-E (MVar)Q B-D (MVar)

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    90 95 100 105 110

    n (pu)

    V C (pu)V D (pu)V E (pu)

    17 / 27

  • I Let ARTERE (the power flow computation software) adjustautomatically the ratios of both transformers D-B and E-C so as tobring the voltages at buses D and E in the dead-band [1.02 1.04] pu

    18 / 27

  • Automatic adjustment of the ratios of both transformersto bring the voltages at buses D and E in [1.02 1.04] pu

    iter max mismatches : MW Mvar phi(MVA)

    1 395.2 407.1 605.1

    2 27.4 62.4 78.0

    3 1.0 1.2 2.0

    4 0.1 0.1 0.1

    in-phase trfo taps : 2 down 0 up

    4 4.4 58.8 90.6

    5 0.2 0.8 1.0

    6 0.0 0.1 0.1

    in-phase trfo taps : 1 down 0 up

    6 4.5 61.1 83.7

    7 0.1 0.7 0.7

    8 0.0 0.0 0.0

    in-phase trfo taps : 1 down 0 up

    8 4.5 63.5 86.9

    9 0.1 0.7 0.7

    10 0.0 0.0 0.0

    transfo ctld bus volt set-pt tol ratio tap max

    E-C E 1.0275 1.0300 0.0100 0.963 14 25

    D-B D 1.0350 1.0300 0.0100 0.988 16 2519 / 27

  • Situation after the transformers have been adjusted

    150 kV

    380 kVpuissances ractives (Mvar)

    puissances actives (MW)

    D E

    A

    B

    C

    modules tensions (pu)15 kV phases tensions (deg)

    F

    12.1

    1.0275

    1.0000

    121

    1

    51

    2

    51

    352

    161

    351

    143349

    151

    151

    38

    1.0368

    1.0350

    1.0184

    349

    5.9 7.8

    9.6

    0.0

    100

    30

    1.0000

    150

    78

    0.9

    400

    120

    20 / 27

  • I Study the effect of varying the voltage of generator F on thereactive power productions of both generators, on the branch powerflows and on the bus voltage magnitudes.

    I Same question for an identical variation of the voltages of bothgenerators A and F.

    21 / 27

  • Varying the voltage of generator F

    Example: VF = 0.98 pu

    150 kV

    380 kVpuissances ractives (Mvar)

    puissances actives (MW)

    D E

    A

    B

    C

    modules tensions (pu)15 kV phases tensions (deg)

    F

    12.5

    0.9828

    1.0000

    106

    14

    53

    14

    54

    352

    189

    348

    129347

    137

    154

    56

    1.0283

    1.0052

    1.0112

    347

    5.9 7.9

    9.9

    0.0

    100

    30

    0.9800

    150

    55

    0.8

    400

    120

    22 / 27

  • Variation of VF

    0

    50

    100

    150

    200

    250

    0.96 0.98 1 1.02 1.04

    V F (pu)

    Q Gen A (MVar)Q Gen F (MVar)

    0.97

    0.98

    0.99

    1

    1.01

    1.02

    1.03

    1.04

    0.96 0.98 1 1.02 1.04

    V F (pu)

    V C (pu)V D (pu)V E (pu)

    23 / 27

  • Variation of VF

    50

    100

    150

    200

    250

    300

    350

    0.96 0.98 1 1.02 1.04

    V F (pu)

    P B-C (MW)P D-E (MW)P B-D (MW)

    0

    20

    40

    60

    80

    100

    120

    140

    0.96 0.98 1 1.02 1.04

    V F (pu)

    Q B-C (MVar)Q D-E (MVar)Q B-D (MVar)

    24 / 27

  • Same variation of voltages of generators A and F

    Example: VF = VA = 0.98 pu

    150 kV

    380 kVpuissances ractives (Mvar)

    puissances actives (MW)

    D E

    A

    B

    C

    modules tensions (pu)15 kV phases tensions (deg)

    F

    13.0

    0.9658

    0.9800

    106

    14

    53

    15

    54

    352

    168

    348

    131347

    139

    154

    57

    1.0124

    0.9888

    0.9949

    347

    6.2 8.1

    10.3

    0.0

    100

    30

    0.9800

    150

    81

    0.9

    400

    120

    25 / 27

  • Variation of VF = VA

    60

    80

    100

    120

    140

    160

    180

    0.96 0.98 1 1.02 1.04

    V Gen (pu)

    Q Gen A (MVar)Q Gen F (MVar)

    0.92

    0.94

    0.96

    0.98

    1

    1.02

    1.04

    1.06

    1.08

    1.1

    0.96 0.98 1 1.02 1.04

    V Gen (pu)

    V C (pu)V D (pu)V E (pu)V B (pu)

    26 / 27

  • Variation of VF = VA

    50

    100

    150

    200

    250

    300

    350

    0.96 0.98 1 1.02 1.04

    V Gen (pu)

    P B-C (MW)P D-E (MW)P B-D (MW)

    0

    20

    40

    60

    80

    100

    120

    140

    0.96 0.98 1 1.02 1.04

    V Gen (pu)

    Q B-C (MVar)Q D-E (MVar)Q B-D (MVar)

    27 / 27