exercicios p2

56
Problem 4.56

Transcript of exercicios p2

Page 1: exercicios p2

Problem 4.56

Page 2: exercicios p2
Page 3: exercicios p2

Problem 4.64

Page 4: exercicios p2

Problem 4.65

Page 5: exercicios p2

k x0 L sin q( )Ö-( )Ö r V2Ö AÖ sin q( )Ö=Hence

Fspring k xÖ= k x0 L sin q( )Ö-( )Ö=But

Fspring V sin q( )Ö r VÖ AÖ( )Ö=

Momentum

Governing equation:

x0 1 mÖ=k 1NmÖ=L 2 mÖ=A 0.005 m2Ö=r 999

kg

m3Ö=

The given data are

Solution

Find: Deflection angle as a function of speed; jet speed for 10o deflection

Given: Data on flow and system geometry

2 is deflected by a hinged plate of length 2 m supported by a spring with spring constant k = 1 N/m and uncompressed length x0 = 1 m. Find and plot the deflection angle θ as a function of jet speed V. What jet speed has a deflection of 10°?

Problem 4.68

Page 6: exercicios p2

Solving for θ q asink x0Ö

k LÖ r AÖ V2Ö+

åææç

õöö÷

=

For the speed at which θ = 10o, solve

Vk x0 L sin q( )Ö-( )Ö

r AÖ sin q( )Ö=

V1

NmÖ 1 2 sin 10( )Ö-( )Ö mÖ

999kg

m3Ö 0.005Ö m2Ö sin 10( )Ö

kg mÖ

N s2ÖÖ=

V 0.867ms

=

The deflection is plotted in the corresponding Excel workbook, where the above velocity is obtained using Goal Seek

Page 7: exercicios p2

Problem 4.68 (In Excel)

A free jet of water with constant cross-section area 0.005 m2 is deflected by a hingedplate of length 2 m supported by a spring with spring constant k = 1 N/m and uncompressedlength x 0 = 1 m. Find and plot the deflection angle θ as a function of jetspeed V . What jet speed has a deflection of 10°?

Given: Geometry of systemFind: Speed for angle to be 10o; plot angle versus speed

Solution

ρ = 999 kg/m3

x o = 1 m To find when θ = 10o, use Goal SeekL = 2 m

k = 1 N/m V (m/s) θ (o)A = 0.005 m2 0.867 10

V (m/s) θ (o)0.0 30.00.1 29.20.2 27.00.3 24.10.4 20.90.5 17.90.6 15.30.7 13.00.8 11.10.9 9.521.0 8.221.1 7.141.2 6.251.3 5.501.4 4.871.5 4.33

Deflection Angle vs Jet Speed

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

V (m/s)

θ (d

eg)

The equation for q is q asink x0Ö

k LÖ r AÖ V2Ö+

åææç

õ

÷=

Page 8: exercicios p2

Problem 4.69

Page 9: exercicios p2

Problem 4.70

Page 10: exercicios p2

Problem 4.71

Page 11: exercicios p2

Problem 4.72

Page 12: exercicios p2

Problem 4.73

Page 13: exercicios p2

Problem 4.74

Page 14: exercicios p2

Problem 4.75

Page 15: exercicios p2

Problem 4.76

Page 16: exercicios p2

Problem 4.77

Page 17: exercicios p2

Problem 4.78

Page 18: exercicios p2

Problem 4.79

Page 19: exercicios p2

Problem 4.80

Page 20: exercicios p2

F p r U2 20

1rr u r( )2Ö

òóô

dÖ-åææç

õöö÷

Ö=

F- U r- pÖ 12Ö UÖ( )Ö0

1ru r( ) rÖ 2Ö pÖ rÖ u r( )Ö

òóô

d+=

Applying this to the horizontal motion

Momentum

Governing equation:

Solution

Find: An expression for the drag

Given: Data on wake behind object

where r is the non-dimensional radial coordinate, measured perpendicular to the flow. Find an expression for the drag on the object.

r 1>u r( ) U=

r 1¢u r( ) U 1 cosp rÖ2

åæç

õö÷

2-

åæç

õö÷

Ö=

The horizontal velocity in the wake behind an object in an air stream of velocity U is given by

Problem 4.81

Page 21: exercicios p2

F p r U2Ö 1 2

0

1

rr 1 cosp rÖ2

åæç

õö÷

2-

åæç

õö÷

2

Ö

òóóóô

dÖ-

èéééê

øùùùú

Ö=

F p r U2Ö 1 2

0

1

rr 2 rÖ cosp rÖ2

åæç

õö÷

2Ö- r cos

p rÖ2

åæç

õö÷

4Ö+

òóóô

dÖ-

åæææç

õööö÷

Ö=

Integrating and using the limits

F p r U2Ö 138

2

p2+å

æç

õö÷

-èéê

øùú

Ö=

F5 pÖ8

2p

-åæç

õö÷rÖ U2Ö=

Page 22: exercicios p2

Problem 4.82

Page 23: exercicios p2

Problem 4.83

Page 24: exercicios p2

Problem 4.86

Page 25: exercicios p2

Problem *4.91

Page 26: exercicios p2
Page 27: exercicios p2
Page 28: exercicios p2
Page 29: exercicios p2

Problem 4.107

Page 30: exercicios p2

Problem 4.108

Page 31: exercicios p2

Vr QÖ2 kÖ

-r QÖ2 kÖ

åæç

õö÷

2 r QÖ VjÖ

k++=Solving for V

k V2Ö r QÖ VÖ+ r QÖ VjÖ- 0=

k V2Ö r QÖ VjÖ r QÖ VÖ-=Hence

Fdrag V r- QÖ( )Ö Vj r QÖ( )Ö+=

Applying the horizontal component of momentum

Momentum

Governing equation:

CV in boat coordinatesSolution

Find: Formula for boat speed; jet speed to double boat speed

Given: Data on jet boat

A jet boat takes in water at a constant volumetric rate Q through side vents and ejects it at a high jet speed Vj at the rear. A variable-area exit orifice controls the jet speed. The drag on theboat is given by Fdrag = kV2, where Vspeed V. If a jet speed Vj = 25 m/s produces a boat speed of 10 m/s, what jet speed will be required to double the boat speed?

Problem 4.109

Page 32: exercicios p2

Let ar QÖ2 kÖ

=

V a- a2 2 aÖ VjÖ++=

We can use given data at V = 10 m/s to find α V 10ms

Ö= Vj 25ms

Ö=

10ms

Ö a- a2 2 25Öms

Ö aÖ++=

a2 50 aÖ+ 10 a+( )2= 100 20 aÖ+ a2+=

a103

ms

Ö=

Hence V103

-1009

203

VjÖ++=

For V = 20 m/s 20103

-1009

203

VjÖ++=

1009

203

VjÖ+703

=

Vj 80ms

Ö=

Page 33: exercicios p2

Problem 4.110

Page 34: exercicios p2
Page 35: exercicios p2

Problem 4.112

Page 36: exercicios p2

Problem 4.113

Page 37: exercicios p2

Problem 4.114

Page 38: exercicios p2
Page 39: exercicios p2
Page 40: exercicios p2
Page 41: exercicios p2
Page 42: exercicios p2
Page 43: exercicios p2
Page 44: exercicios p2

Problem *4.168

Page 45: exercicios p2

Tshaft A­

Vxyz­½½

³ rÖ Vxyz­½½

Öòóóô

d=

For no rotation (ω = 0) this equation reduces to a single scalar equation

Governing equation: Rotating CV

d 0.005 mÖ=ri 0.05 mÖ=ro 0.25 mÖ=D 0.015 mÖ=

mflow 15kgs

Ö=r 999kg

m3Ö=The given data is

Solution

Given: Data on rotating spray system

Water flows in a uniform flow out of the 5 mm slots of the rotating spray system as shown. Theflow rate is 15 kg/s. Find the torque required to hold the system stationary, and the steady-statespeed of rotation after it is released.

Problem *4.171

Page 46: exercicios p2

or Tshaft 2 dÖri

rorr VÖ rÖ VÖ

òóô

dÖ= 2 rÖ V2Ö dÖri

rorr

òóô

dÖ= r V2Ö dÖ ro2 ri

2-åç

õ÷Ö=

where V is the exit velocity with respect to the CV

V

mflowr

2 dÖ ro ri-( )Ö=

Hence Tshaft r

mflowr

2 dÖ ro ri-( )Ö

èééê

øùùú

2

Ö dÖ ro2 ri

2-åç

õ÷Ö=

Tshaftmflow

2

4 rÖ dÖ

ro ri+( )ro ri-( )Ö=

Tshaft14

15kgs

Öåæç

õö÷

m3

999 kgÖ³

10.005 mÖ

³0.25 0.05+( )0.25 0.05-( )

³=

Tshaft 16.9N mÖ=

For the steady rotation speed the equation becomes

Vr­

2 w­Ö Vxyz

­½½³å

çõ÷³ rÖ

òóóô

d- A­

Vxyz­½½

³ rÖ Vxyz­½½

Öòóóô

d=

Page 47: exercicios p2

The volume integral term Vr­

2 w­Ö Vxyz

­½½³å

çõ÷³ rÖ

òóóô

d- must be evaluated for the CV.

The velocity in the CV varies with r. This variation can be found from mass conservation

For an infinitesmal CV of length dr and cross-section A at radial position r, if the flow in is Q, the flow out is Q + dQ, and the loss through the slot is Vδdr. Hence mass conservation leads to

Q dQ+( ) V dÖ drÖ+ Q- 0=

dQ V- dÖ drÖ=

Q r( ) V- dÖ rÖ const+=

At the inlet (r = ri) Q Qi=mflow

2 rÖ=

Hence Q Qi V dÖ ri r-( )Ö+=mflow

2 rÖ

mflow2 rÖ dÖ ro ri-( )Ö

dÖ ri r-( )Ö+=

Qmflow

2 rÖ1

ri r-

ro ri-+

åæç

õö÷

Ö=mflow

2 rÖ

ro r-

ro ri-

åæç

õö÷

Ö=

and along each rotor the water speed is v r( )QA

=mflow2 rÖ AÖ

ro r-

ro ri-

åæç

õö÷

Ö=

Page 48: exercicios p2

Hence the term - Vr­

2 w­Ö Vxyz

­½½³å

çõ÷³ rÖ

òóóô

d becomes

Vr­

2 w­Ö Vxyz

­½½³å

çõ÷³ rÖ

òóóô

d- 4 rÖ AÖ wÖri

rorr v r( )Ö

òóô

dÖ= 4 rÖ wÖ

ri

ro

rrmflow

2 rÖÖ

ro r-

ro ri-

åæç

õö÷

Öòóóóô

dÖ=

or

Vr­

2 w­Ö Vxyz

­½½³å

çõ÷³ rÖ

òóóô

d- 2 mflowÖ wÖ

ri

ro

rrro r-

ro ri-

åæç

õö÷

Öòóóóô

dÖ= mflow wÖro

3 ri2 2 riÖ 3 roÖ-( )Ö+

3 ro ri-( )ÖÖ=

Recall that A­

Vxyz­½½

³ rÖ Vxyz­½½

Öòóóô

d r V2Ö dÖ ro2 ri

2-åç

õ÷Ö=

Hence equation Vr­

2 w­Ö Vxyz

­½½³å

çõ÷³ rÖ

òóóô

d- A­

Vxyz­½½

³ rÖ Vxyz­½½

Öòóóô

d= becomes

mflow wÖro

3 ri2 2 riÖ 3 roÖ-( )Ö+

3 ro ri-( )ÖÖ r V2Ö dÖ ro

2 ri2-å

çõ÷Ö=

Solving for ω w3 ro ri-( )Ö rÖ V2Ö dÖ ro

2 ri2-å

çõ÷Ö

mflow ro3 ri

2 2 riÖ 3 roÖ-( )Ö+èê

øúÖ

= w 461 rpm=

Page 49: exercicios p2

Tshaft 2 dÖri

rorr VÖ rÖ VÖ

òóô

dÖ=or

Tshaft A­

Vxyz­½½

³ rÖ Vxyz­½½

Öòóóô

d=

For no rotation (ω = 0) this equation reduces to a single scalar equation

Governing equation: Rotating CV

d 0.005 mÖ=ri 0.05 mÖ=ro 0.25 mÖ=D 0.015 mÖ=

mflow 15kgs

Ö=r 999kg

m3Ö=The given data is

Solution

Given: Data on rotating spray system

If the same flow rate in the rotating spray system of Problem 4.171 is not uniform but instead varies linearly from a maximum at the outer radius to zero at a point 50 mm from the axis, find the torque required to hold it stationary, and the steady-state speed of rotation.

Problem *4.172

Page 50: exercicios p2

where V is the exit velocity with respect to the CV. We need to find V(r). To do this we use maconservation, and the fact that the distribution is linear

V r( ) Vmaxr ri-( )

ro ri-( )Ö=

and 212Ö VmaxÖ ro ri-( )Ö dÖ

mflowr

=

so V r( )mflowr dÖ

r ri-( )ro ri-( )2

Ö=

Hence Tshaft 2 rÖ dÖri

rorr V2Ö

òóô

dÖ= 2mflow

2

r dÖÖ

ri

ro

rrr ri-( )

ro ri-( )2

èééê

øùùú

2

Ö

òóóóô

dÖ=

Tshaftmflow

2 ri 3 roÖ+( )Ö

6 rÖ dÖ ro ri-( )Ö=

Tshaft16

15kgs

Öåæç

õö÷

m3

999 kgÖ³

10.005 mÖ

³0.05 3 0.25Ö+( )0.25 0.05-( )

³=

Tshaft 30N mÖ=

Page 51: exercicios p2

For the steady rotation speed the equation becomes

Vr­

2 w­Ö Vxyz

­½½³å

çõ÷³ rÖ

òóóô

d- A­

Vxyz­½½

³ rÖ Vxyz­½½

Öòóóô

d=

The volume integral term Vr­

2 w­Ö Vxyz

­½½³å

çõ÷³ rÖ

òóóô

d- must be evaluated for the CV.

The velocity in the CV varies with r. This variation can be found from mass conservation

For an infinitesmal CV of length dr and cross-section A at radial position r, if the flow in is Q, the flow out is Q + dQ, and the loss through the slot is Vδdr. Hence mass conservation leads to

Q dQ+( ) V dÖ drÖ+ Q- 0=

dQ V- dÖ drÖ=

Q r( ) Qi d-

ri

r

rmflowr dÖ

r ri-( )ro ri-( )2

Öòóóóô

dÖ= Qi

ri

r

rmflowr

r ri-( )ro ri-( )2

Öòóóóô

d-=

At the inlet (r = ri) Q Qi=mflow

2 rÖ=

Q r( )mflow

2 rÖ1

r ri-( )2

ro ri-( )2-

èééê

øùùú

Ö=Hence

Page 52: exercicios p2

and along each rotor the water speed is v r( )QA

=mflow2 rÖ AÖ

1r ri-( )2

ro ri-( )2-

èééê

øùùú

Ö=

Hence the term - Vr­

2 w­Ö Vxyz

­½½³å

çõ÷³ rÖ

òóóô

d becomes

4 rÖ AÖ wÖri

rorr v r( )Ö

òóô

dåææç

õöö÷

Ö 4 rÖ wÖ

ri

ro

rmflow

2 rÖrÖ 1

r ri-( )2

ro ri-( )2-

èééê

øùùú

Ö

òóóóô

dÖ=

or

2 mflowÖ wÖ

ri

ro

rr 1ro r-( )2

ro ri-( )2-Ö

èééê

øùùú

Ö

òóóóô

dÖ mflow wÖ16

ro2Ö

13

riÖ roÖ+12

ri2Ö-åæ

çõö÷

Ö=

Recall that A­

Vxyz­½½

³ rÖ Vxyz­½½

Öòóóô

dmflow

2 ri 3 roÖ+( )Ö

6 ro ri-( )Ö rÖ dÖ=

Hence equation Vr­

2 w­Ö Vxyz

­½½³å

çõ÷³ rÖ

òóóô

d- A­

Vxyz­½½

³ rÖ Vxyz­½½

Öòóóô

d= becomes

Page 53: exercicios p2

mflow wÖ16

ro2Ö

13

riÖ roÖ+12

ri2Ö-åæ

çõö÷

Ömflow

2 ri 3 roÖ+( )Ö

6 ro ri-( )Ö rÖ dÖ=

Solving for ω wmflow ri 3 roÖ+( )Ö

ro2 2 riÖ roÖ+ 3 ri

2Ö-åç

õ÷ ro ri-( )Ö rÖ dÖ

=

w 1434 rpm=

Page 54: exercicios p2
Page 55: exercicios p2
Page 56: exercicios p2

Problem *4.175