Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10,...

26
Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics, Chinese Academy of Sciences I. Introduction III. In the Z c region II. A coupled-channel IV. In the Z b region Sch¨ odinger model V. Summary & Conclusions

Transcript of Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10,...

Page 1: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

Institute for Nuclear Theory - Seattle, November 10, 2015

Excited light-quarks and the Z family

Susana Coito

Institute of Modern Physics, Chinese Academy of Sciences

I. Introduction III. In the Zc region

II. A coupled-channel IV. In the Zb region

Schodinger model V. Summary & Conclusions

Page 2: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

I. Introduction

Zc(3900)± M = 3888.7± 3.4, Γ = 35± 7 [MeV]

π±J/ψ, (DD∗)± (BESIII, Belle, Cleo-c group)

Zc(3900)0 M = 3894.8± 2.3± 3.2, Γ = 29.6± 8.2± 8.2 [MeV]

π0J/ψ (Cleo-c group, BESIII)

favored JP = 1+

Zc(4020)± M = 4022.9± 0.8± 2.7, Γ = 7.9± 2.7± 2.6 [MeV]

π±hc (BESIII) JP =?

Zc(4025)± M = 4026.3± 2.6± 3.7, Γ = 24.8± 5.6± 7.7 [MeV]

(D∗D∗)± (BESIII) JP =?

Zc(4050)± M = 4051± 14+20−41, Γ = 82+21+47

−17−22 [MeV]

π+χc1 (Belle) JP =?

Page 3: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

Zb(10610)± M1 = 10607.2± 2.0, Γ1 = 18.4± 2.4 [MeV]

π±Υ(1, 2, 3S) and π±hc(1, 2P) (Belle)

Zb(10610)0 M = 10609± 4± 4

π0Υ(2, 3S)

favored JP = 1+

Zb(10650)± M2 = 10652.2± 1.5, Γ2 = 11.5± 2.2 [MeV]

π±Υ(1, 2, 3S) and π±hc(1, 2P) (Belle)favored JP = 1+

Page 4: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

Theoretical Models

Zc family

Tetraquarks consistency in masses, no width predictions

Braaten PRL 111, 162003 - all three states with 1+

other works - Zc(3900) 1+, Z (4020) other q.n.

Molecules pure molecules desfavored namely, in lattice:

PLB 727, 172; 1411.1389 [hep-lat]; PRD 89, 094506

Molecules with possible, namely QCD sum rules require

light hadrons light < qq > condensate for OPE convergence

PRD 87, 116004; JPG 41, 075003; EPJC 74, 2891

Threshold effects might be. Swanson PRD 91, 034009

Page 5: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

Zb family

Tetraquarks masses far below thresholds

i.e. , 10.44 and 10.50/10.63 [GeV]

Molecules pure molecules desfavored

disagreement about 1P1/3P1 dominance

Molecules with possible, with 3P1. one-pion-exchange

light hadrons

Threshold effects might be

Bugg EPL 96, 11002, Swanson PRD 91, 034009.

Page 6: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

Idea

Previous works employed a simple Schrodinger model

to study the system cc − D0D∗0, which could represent

the X (3872) as a highly unquenched 2 3P1

EPJC 73, 2351(2013); EPJC 75, 26(2015); ZPC 19, 275(1983)

N. Kochelev (private communication)

What if the same model is used to the system nn − D±/0D∗0/±

to describe the Z (3900)±/0 with JP = 1+.

Requirement

A very high radial excitation strongly coupled to the decay channel.

Within the harmonic oscillator confining potential with

ω = 190 MeV, the closest bare state is unequivocal.

Page 7: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

H.O. eigenvalues, ω = 190 MeV

n l=0 l=10 1.097 1.2871 1.477 1.6672 1.857 2.0473 2.237 2.4274 2.617 2.8075 2.997 3.1876 3.377 3.5677 3.757 3.9478 4.137 4.3279 4.517 4.707

10 4.897 5.08711 5.277 5.46712 5.657 5.84713 6.037 6.22714 6.417 6.607

n l=0 l=115 6.797 6.98716 7.177 7.36717 7.557 7.74718 7.937 8.12719 8.317 8.50720 8.697 8.88721 9.077 9.26722 9.457 9.64723 9.837 10.02724 10.217 10.40725 10.597 10.78726 10.977 11.16727 11.357 11.54728 11.737 11.92729 12.117 12.307

Th [MeV]KK = 994KK∗ = 1389K∗K∗ = 1784DD = 3734DD∗ = 3876D∗D∗ = 4018BB = 10558BB∗ = 10604B∗B∗ = 10650

n = 0a1(1260)b1(1235)f1(1285)h1(1170)

Page 8: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

II. A coupled-channel Schrodinger model

Coupled-channel system: qq −MM(hc VV hf

)(ucuf

)= E

(ucuf

)

hc =1

2µc

(− d2

dr2+

lc(lc + 1)

r2

)+µcω

2r2

2+ mq + mq

hf =1

2µf

(− d2

dr2+

lf (lf + 1)

r2

)+ mM1 + mM2

V =g

2µcaδ(r − a)

E = (2ν + lc +3

2)ω + mq + mq

Page 9: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

{1

2µc

(− d2

dr2+

lc(lc + 1)

r2

)+

1

2µcω

2r2 + mq + mq − E

}uc(r)

= − λ

2µcaδ(r − a)uf (r)

uc(r) =

{AcFc(r) r < a

BcGc(r) r > a

with the definitions

F (r) =1

Γ(l + 3/2)z (l+1)/2 e−z/2 Φ(−ν, l + 3/2, z)

G (r) = −1

2Γ(−ν) z l/2 e−z/2 Ψ(−ν, l + 3/2, z)

Page 10: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

{1

2µf

(− d2

dr2+

lf (lf + 1)

r2

)+ M1 + M2 − E

}uf (r)

= − λ

2µcaδ(r − a)uc(r)

Bound states

uf (r) =

Af Jlf (kr) r < a

Bf

[Jlf (kr)k2lf +1i − Nlf (kr)

]r > a

with Jl(kr) = k−l rjl(kr), Nl(kr) = k l+1rnl(kr).

Resonances

uf (r) =

Af Jlf (kr) r < a

Bf

[Jlf (kr)k2lf +1i + Nlf (kr)

]r > a

Page 11: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

Boundary conditions

u′c(r ↑ a)− u′c(r ↓ a) = −λauf (a)

u′f (r ↑ a)− u′f (r ↓ a) = −λµf

aµcuc(a)

uc(r ↑ a) = uc(r ↓ a)

uf (r ↑ a) = uf (r ↓ a)

Page 12: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

Partial amplitudes:

Ac , Bc =Fc(a)

Gc(a)Ac ,

Af =a

λ

1

Gc(a)JlfAc ,

Bf =λ

a

µf

µcJlf (ka)Fc(a),

Bf =a

λ

1

Gc(a)[Jlf (ka)k2lf +1i + Nlf (ka)]Ac .

Poles:

J2lf (ka)k2lf +1i + Jlf (ka)Nlf (ka) =

( aλ

)2µc

µf

1

Fc(a)Gc(a)

Page 13: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

Coupled-channel: n qq −m MM

(hνc V gνjV gνj hfj

)(uνcufj

)= E

(uνcufj

)Boundary conditions

u′νc (r ↑ a)− u′

νc (r ↓ a) = −λ

a

∑j

gνj ufj(a),

u′fj(r ↑ a)− u′fj(r ↓ a) = −λaµfj

∑ν

gνj uνc (a)

Aνc =λ

aGνc (a)

∑j

gνj Jlf j(kja)Afj

Afj =λ

aµfjClf j(kja)

∑ν

gνj Fνc (a)Aνc

with Clf j(kja) = Jlf j(kj r)k2lf j+1i + Nlf j(kj r), and gνj = gνj /µν

Page 14: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

Dividing the above equations by Aa, similarly defined, we get

Aνc =Gνc (a)

G ac (a)

∑j g

νj µfjJlf jClf j

∑α g

αj F

α(a)Aαc∑j g

aj µfjJlf jClf j

∑α g

αj F

α(a)AαcAac

Afj =a

λG ac (a)

µfjClf j

∑α g

αj A

αc∑

j gaj µfjJlf jClf j

∑α g

αj F

α(a)AαcAac

If α = 2 the amplitudes are fully resolved analytically.

Poles:[(λa

)2 G bF a

µa

∑i

µiJiCigbi g

ai

][(λa

)2 G aF b

µb

∑i

µiJiCigai g

bi

]=

[1−

(λa

)2 G aF a

µa

∑i

µiJiCigai

2

][1−

(λa

)2 G bF b

µb

∑i

µiJiCigbi

2]

Page 15: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

Model Parameters

Partial couplings: as in Resonance-Spectrum-Expansion coupled-channelmodel, computed by Eef van Beveren

g2

l 1++ 1+− n factor

PV 0 1/18 1/36 n + 1VV 2 5/72 5/36 2n/5 + 1PV 0 0 1/36 n + 1VV 2 5/24 5/36 2n/5 + 1

Meson masses: experimental

Constituent light quark masses: mn = 406 MeV

Global coupling λ: free

’String-breaking’ distance a ≡ r0: free

Page 16: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

III. In the Zc region

nn − DD∗, n = u, d with lc = 1, lf = 0

3.86 3.88 3.90 3.92 3.94

-0.03

-0.02

-0.01

0.00

ReE (GeV)

ImE

(GeV

)

••

DD∗ r0 = 3.2− 3.5 GeV−1 ↑

λ = 2.0

λ = 1.1

λ = 1.5

λ = 0.2

⋆En,lc = E7,1 = 3.947

Page 17: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

10 20 30-0.10

-0.05

0.00

0.05

r(GeV−1)

λ = 2.0

Pole: 3874 MeVRc(r)

Rf (r)

r0 = 3.3 GeV−1

P (Rc) = 0.51

P (Rf ) = 0.49

10 20 30-0.10

-0.05

0.00

0.05

r(GeV−1)

λ = 1.5Pole: 3877− i6 MeV

Re(Rc)Im(Rc)

Im(Rf )Re(Rf )

r0 = 3.3 GeV−1

P (Rc) = 0.42

P (Rf ) = 0.58

10 20 30-0.10

-0.05

0.00

0.05

r(GeV−1)

λ = 1.1

Pole: 3889− i17 MeVRe(Rc)Im(Rc)

Im(Rf )Re(Rf )

r0 = 3.3 GeV−1

P (Rc) = 0.40P (Rf ) = 0.61

10 20 30-0.10

-0.05

0.00

0.05

r(GeV−1)

λ = 0.2

Pole: 3946− i2 MeVRe(Rc)Im(Rc)

Re(Rf )Im(Rf )

r0 = 3.3 GeV−1

P (Rc) = 0.49P (Rf ) = 0.51

Page 18: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

nn(1P1+3P1) − DD∗(l=0+l=2)

3.86 3.88 3.90 3.92 3.94

-0.02

-0.01

0.00

ReE (GeV)

ImE

(GeV

)

DD∗

λ = 1.3c1

λ = 1.3 c2

r0 = 3.3 GeV−1

Prob. (%) 3889− i17 3946− i0.6P(Rc1) 26.3 68.3P(Rc2) 11.6 29.7

P(RDD∗(l=0)) 53.9 1.9P(RDD∗(l=2)) 8.3 0.2

10 20 30

0.00

0.05

r(GeV−1)

Rc1Rc2

dark −Re(R)

light− Im(R)

r0 = 3.3 GeV−1

λ = 1.3

Pole: 3889− i17 MeV

10 20 30-0.10

-0.05

0.00

0.05

r(GeV−1)

λ = 1.3Pole: 3889− i17 MeV

Rf2(lf2 = 2)

Rf1(lf1 = 0)

dark −Re(R)

light− Im(R)

r0 = 3.3 GeV−1

Page 19: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

nn(1P1+3P1) − [DD∗ + D∗D∗](l=0+l=2)

3.90 4.00 4.10

-0.040

-0.030

-0.020

-0.010

0.000

ReE (MeV)

ImE

(MeV

)

DD∗ D∗D∗

r0 = 4.5 GeV−1

λ = 6.2r0 λ Pole Type

3.2 1.0 3889− i14 conf13942− i1 conf24000− i163 dyn14026− i176 dyn2

4.5 6.2 3890− i3 conf24006− i28 conf14027− i7 dyn14053− i20 dyn2

Page 20: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

III. In the Zb region

nn − BB∗, n = u, d with lc = 1, lf = 0

10.60 10.65 10.70 10.75

-0.04

-0.02

0.00

ReE (GeV)

ImE

(GeV

)

∗∗

BB∗

⋆En,lc = E25,1 = 10.787 MeV

r0 = 3.1 GeV−1

∗ λ = 2.2

10.6 10.7 10.8

-0.04

-0.02

0.00

ReE (MeV)

ImE

(MeV

)

∗∗∗

BB∗

⋆E25,1 = 10.787 MeV

r0 = 4.7 GeV−1

∗ λ = 2.2

10 20 30 40 50

-0.02

0.00

0.02

0.04

0.06

0.08

r(GeV−1)

λ = 2.2

Pole: 10611− i6 MeVRf (r)

Rc(r)

r0 = 3.1 GeV−1

dark− Re R

light− Im R

10 20 30 40 50

-0.08

-0.06

-0.04

-0.02

0.00

0.02

r(GeV−1)

λ = 2.2Pole: 10607− i9 MeV

Rf (r)

Rc(r)

r0 = 4.7 GeV−1

dark− Re Rlight− Im R

Page 21: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

nn − BB∗

r0 λ Poles Type3.1 2.2 10611− i6 dyn

10794 conf4.7 2.2 10607− i9 dyn

10709− i6 dyn10879− i18 conf

nn(1P1+ 3P1) − BB∗(l=0+l=2) nn(1P1+3P1) − BB∗ + B∗B∗

(l=0+l=2)

r0 λ Poles Type3.1 2.0 10609− i3 dyn1

10779− i26 conf110791− i0.6 conf2

4.7 2.0 10607− i5 dyn110701− i3 dyn210785− i0.8 conf210891− i17 conf1

r0 λ Poles Type3.1 2.0 10608− i2 dyn1

10647− i2 dyn210711− i47 conf110817− i7 conf2

4.7 2.0 10607− i4 dyn110650− i3 dyn210665− i9 dyn310754− i5 conf210911− i7 conf1

Page 22: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

nn(1P1+3P1) − [BB∗ + B∗B∗](l=0+l=2)

10.60 10.65 10.70 10.75 10.80

-0.04

-0.02

0.00

ReE (GeV)

ImE

(GeV

)

∗∗ ∗

BB∗ B∗B∗r0 = 3.1 GeV−1

∗ λ = 2.0

10.60 10.65 10.70 10.75 10.80

-0.04

-0.02

0.00

ReE (GeV)

ImE

(GeV

)

∗∗∗

BB∗ B∗B∗r0 = 4.7 GeV−1

∗ λ = 2.0

Page 23: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

nn − BB∗ [w.f. Prob. (%)]

r0 λ Poles Type P(Rc) P(Rf )3.1 2.2 10611− i6 dyn 41.3 58.7

10794 conf 11.3 88.74.7 2.2 10607− i9 dyn 28.5 71.5

10709− i6 dyn 18.0 82.010879− i18 conf 14.1 85.9

nn(1P1+3P1) − [BB∗ + B∗B∗](l=0+l=2)

r0 λ Poles Type P(Rc1) P(Rc2) P(R l=0BB∗) P(R l=2

BB∗) P(R l=0B∗B∗) P(R l=2

B∗B∗)3.1 2.0 10608− i2 dyn1 15.2 2.0 76.2 6.3 0.1 0.3

10647− i2 dyn2 14.1 13.0 66.4 4.5 1.6 0.410711− i47 conf1 42.9 50.2 3.2 0.7 0.9 2.210817− i7 conf2 59.7 33.7 0.3 0.7 0.1 5.6

4.7 2.0 10607− i4 dyn1 13.0 1.8 83.9 0.11 0.10 1.110650− i3 dyn2 15.0 27.1 46.5 0.04 9.6 1.710665− i9 dyn3 14.5 36.7 18.2 0.17 20.3 10.110754− i5 conf2 51.9 28.9 3.3 0.06 0.12 15.810911− i7 conf1 4.8 10.1 18.7 16.6 19.3 31.6

Page 24: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

10 20 30 40 50

-0.010

0.000

0.010

0.020

r(GeV−1)

λ = 2.0

Pole: 10608− i2 MeVRc1(r)

Rc2(r)

r0 = 3.1 GeV−1

dark− Re Rlight− Im R

10 20 30 40 50

-0.010

0.000

0.010

0.020

r(GeV−1)

λ = 2.0

Pole: 10647− i2 MeVRc1(r)

Rc2(r)

r0 = 3.1 GeV−1

dark− Re Rlight− Im R

10 20 30 40 50

-0.02

0.00

0.02

0.04

0.06

r(GeV−1)

RBB∗

green : l = 0blue : l = 2

10 20 30 40 50

-0.02

0.00

0.02

0.04

0.06

r(GeV−1)

RBB∗

green : l = 0blue : l = 2

10 20 30 40 50

-0.015

-0.010

-0.005

0.000

r(GeV−1)

RB∗B∗

green : l = 0

blue : l = 2

10 20 30 40 50-0.020

-0.015

-0.010

-0.005

0.000

0.005

r(GeV−1)

RB∗B∗

green : l = 0

blue : l = 2

Page 25: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

10 20 30 40 50

-0.010

0.000

0.010

0.020

r(GeV−1)

λ = 2.0

Pole: 10607− i4 MeVRc1(r)

Rc2(r)

r0 = 4.7 GeV−1

dark− Re Rlight− Im R

10 20 30 40 50

-0.010

0.000

0.010

0.020

r(GeV−1)

λ = 2.0

Pole: 10650− i3 MeVRc1(r)

Rc2(r)

r0 = 4.7 GeV−1

dark− Re Rlight− Im R

10 20 30 40 50

-0.02

0.00

0.02

0.04

r(GeV−1)

λ = 2.0Pole: 10665− i9 MeV

Rc2(r)

Rc1(r)

r0 = 4.7 GeV−1

10 20 30 40 50

-0.06

-0.04

-0.02

0.00

0.02

0.04

r(GeV−1)

RBB∗

green : l = 0

blue : l = 2

10 20 30 40 50

-0.06

-0.04

-0.02

0.00

0.02

r(GeV−1)

RBB∗

green : l = 0

blue : l = 2

10 20 30 40 50

-0.02

0.00

0.02

0.04

0.06

0.08

r(GeV−1)

RBB∗

green : l = 0

blue : l = 2

10 20 30 40 50

0.00

0.01

0.02

r(GeV−1)

RB∗B∗

green : l = 0

blue : l = 2

10 20 30 40 50

-0.02

0.00

0.02

r(GeV−1)

RB∗B∗

green : l = 0blue : l = 2

10 20 30 40 50

-0.04

-0.02

0.00

0.02

0.04

r(GeV−1)

RB∗B∗

green : l = 0

blue : l = 2

Page 26: Excited light-quarks and the Z family€¦ · Institute for Nuclear Theory - Seattle, November 10, 2015 Excited light-quarks and the Z family Susana Coito Institute of Modern Physics,

VI. Summary & Conclusions

• We present a description of several exotic resonances Z as systemsoriginating from a highly excited qq component, from a nonperturbativespectrum, strongly coupled to the nearby decay channels.

• By varying both real free parameters within a short range, not differentthan the range considered in other applications of the same type ofmodel, but for lower excitations, we are able to find poles correspondingto the Z (3900), Z (10610), and Z (10650).

• the same model can be used with diferent quantum numbers to studyor predict new ’exotic’ states.