Evaluation and Evolution of Low κ - University of ArizonaEvaluation and Evolution of Low κ...

34
. Contact: [email protected] E. Andideh 2003 MIT 1 Evaluation and Evolution of Low κ Inter-Layer Dielectric (ILD) Material and Integration Schemes Dr. Eb Andideh Intel Corporation Logic Technology Development

Transcript of Evaluation and Evolution of Low κ - University of ArizonaEvaluation and Evolution of Low κ...

. Contact: [email protected]. Andideh 2003 MIT

1

Evaluation and Evolution of Low κInter-Layer Dielectric (ILD) Material

and Integration Schemes

Dr. Eb AndidehIntel Corporation

Logic Technology Development

.E. Andideh 2003 MIT

2

• I am neither a Chemical Engineer nor a Material Scientist

– I am an Electrical Engineer with expertise in microfabrication process development

Disclaimer

.E. Andideh 2003 MIT

3

Outline• Motivation and Goals• Low κ ILD Material Trend• Evaluation

– Phase 1-Materials Analyses– Phase 2-Unit Integration Assessment– Phase 3-MLM Integration

• Line-to-Line κ Value Extraction

• Conclusion and Summary

.E. Andideh 2003 MIT

4

Motivation and GoalsInterconnect RC delay and power consumption have become performance-limiting factors in ULSI.

Need high conductivity interconnect (Cu) and low dielectric constant (κ) ILD.

Efficient screening of new ULκ materials for successful integration

.E. Andideh 2003 MIT

5

ILD Material Trend

1.0 to 1.51.9 to 2.62.8 to 3.0Range of κ

Partial Air Gap, Complete Air

Gap

Porous CVD CDO, Porous SOD CDO,

etc.

Carbon Doped Oxide, SOG, etc.

Organosilicates

Partial Air Gap, Complete Air

Gap

Porous SiLκTM, porous FlareTM

OXD, etc

SiLκTM, FlareTM, Paralyne-F(N), αFC,

PAE, etc.

Organic

0.05 µm0.07 µm0.13 µmor 0.09 µm

Materials/Technology

The widely used ILD material for 0.13 µm and older technologies are PECVD SiO2 and SiOF.

.E. Andideh 2003 MIT

6

Decreasing the Dielectric ConstantLowering the material density

Add Porosity (air) or lighter elementsκ decreases due to κair~1Thermal-Mechanical properties degradePore size and pore connectivity is a major integration concern

Lowering the polarizability of bondsReduce number of Si-O bondsInclude Si-F or Si-C bonds in filmOrganic materials such as Teflon.Outgassing, adhesion and other TM properties degrade.

.E. Andideh 2003 MIT

7

κ Trend for Organosilicate Films

CVD Film k Value vs. Film Hardness2

2.2

2.4

2.6

2.8

3

3.2

0 0.5 1 1.5 2 2.5 3Hardness (GPa)

k

.E. Andideh 2003 MIT

8

Evaluation Phases

MLM IntegrationPhase 3

Unit Integration Evaluation

Phase 2

Material Analyses, Material failure-GRC

Phase 1

.E. Andideh 2003 MIT

9

Phase 1 Evaluation-Material AnalysesWe propose that material/film suppliers use phase 1 evaluation methodology listed here before introducing new materials to customers.Understanding composition and material properties-requires 3 wafersScreen-out Materials with unacceptable properties

Wafer No. Intended Analyses Film Stack/Thickness

W1 κ measurement, film stress 500 nm low k film on low resistivity Si

W2 Thermal/mechanical and Material composition, Cracking thickness threshold

2 µm low k film on Si

W3 Outgassing and adhesion 200 nm PECVD SiN on 2 µm low k film on Si

Si SubstrateLow k filmSi3N4

.E. Andideh 2003 MIT

10

Compositional AnalysesKnow the film before introducing it into the fab

Use the Best Known Method (BKM) with standards for these analyses

Analysis FTIR Species concentration

atomic%

Chemical Structure

Depth composition Uniformity

Density

Technique FTIR Spectroscopy

XPS ToFSIMS SIMS XRR, weight

Purpose Chemical bonds,

composition

Chemical composition

Chemical structure of composition

Film depth and within wafer Composition

uniformity

K correlation for inorganic

.E. Andideh 2003 MIT

11

Thermal & Mechanical AnalysesAvoid particle contamination in the fab

Analysis Hardness/ Modulus

Thermal Desorption

Stress Hysteresis

Adhesion/Cohesion/Materials

Toughness

Surface Roughness

Pore Metrologyy

Technique Nanoindentation Thermal Desorption

Spectroscopy

Stress vs. temperature

4-pt bending, Channel Cracking

AFM EP, PALS, SANS, SAXS

Purpose Mechanical properties

Quantification of outgassing

species, thermal properties

Thermal properties

Adhesion or Cohesion assessment

Film roughness

Size, Size Distribution,

Connected or close pores

.E. Andideh 2003 MIT

12

Phase 1 Analyses-The κ

Is κ value acceptable for the current generation of technology?Is there a practical roadmap to improve κ?

κ extendibility for the next generation

.E. Andideh 2003 MIT

13

Phase 1 Analyses-Quick Turn Monitor TM

2 µm film cracks?Film crack threshold thickness must be greater than maximum required thickness

Film outgassing at 425 oC for 1 hour?No blisters or delamination

Chemical compositionCan not contaminate the down stream process tools with heavy metals, etc.

Center-Edge chemical composition uniformity

Etch and CMP process WIW uniformity depends on composition uniformityWIW κ uniformity

.E. Andideh 2003 MIT

14

Phase 1 Analyses-Film Cracking

Film cracks at the maximum required thickness

.E. Andideh 2003 MIT

15

Phase 1 Analyses-Outgassing

Downstream process tool contamination

.E. Andideh 2003 MIT

16

Phase 1 Analyses -SIMS and ToFSIMS Analyses

Wafer #863

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0 20 40 60 80 100 120 140 160

Depth (nm)

mass0 20 40 60 80 100

x10 6

0.0

0.5

1.0

1.5

2.0

inte

nsity

001634B1.DAT 06/20/00 13:40:48 Compression Factor : 23

Si

SiCH3

SiOH

CDO film as deposited

Si(CH3)3

Compositional uniformity of the films are important, WIW and WIF

.E. Andideh 2003 MIT

17

Phase 1 Analyses-FTIR AnalysesChemical bonds peak area ratios can be used for process control and film consistency.

.E. Andideh 2003 MIT

18

Evaluation Phases

MLM IntegrationPhase 3

Unit Module Integration Evaluation

Phase 2

Material Analyses, Material failure-GRC

Phase 1

.E. Andideh 2003 MIT

19

Phase 2 Evaluation-Unit Module Integration Interaction

25 wafers with 1 µm of film needed for phase 2 evaluation

Low and high resistivity wafersCMP, Pre-Treatment, Ash, Etch process evaluationAnalysis:

Etch rates, ash rates, impact to k, FTIR, SIMS, adhesion, metrology recipe development, etc.

.E. Andideh 2003 MIT

20

Phase 2 Evaluation-Unit Integration Module Interaction

CMP process impactFilm delamination- Wafer edge is more susceptiblePost CMP clean-some films are hydrophobic

.E. Andideh 2003 MIT

21

Phase 2 Evaluation-Plasma impact

Plasma exposure impacts filmTop layer is carbon depleted-CDOMoisture absorption in the carbon-depleted layerκ increase

mass0 20 40 60 80 100

x10 6

0.0

0.5

1.0

1.5

2.0

inte

nsity

001634B1.DAT 06/20/00 13:40:48 Compression Factor : 23

Si

SiCH3

SiOH

CDO film as deposited

Si(CH3)3

mass0 20 40 60 80 100

x10 6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

inte

nsity

002548A2.DAT 06/20/00 13:47:49 Compression Factor : 22

Si

SiOH

SiCH3

CDO after O2 plasma

.E. Andideh 2003 MIT

22

Phase 2 Evaluation-Plasma impact

Carbon Depletion w idth vs. Plasma Exposure

y = 5.93x + 0.54R2 = 1.00

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

Plasma Time (Sec.)

Dep

letio

n w

idth

(Arb

. Uni

t)

Carbon depletion depth is a function of process parameters and duration.

.E. Andideh 2003 MIT

23

Phase 2 Evaluation-κ MeasurementAccurate k measurement is essential for material selection

Mercury probe measured κ is only a relative value. More accurate measurement is required.CV dots deposited by shadow mask produces uncertain electrode area.A simple subtractive metal process with multiple size square dots produces the most accurate electrode area.Use of low resistivity wafer is recommended to avoid substrate damage by a plasma deposited film and to avoid substrate depletion capacitor complexity.Film thickness must be measured in close vicinity of the measured dots.

New materials may require accurate SEM/TEM thickness measurement.

.E. Andideh 2003 MIT

24

Adhesion of the new materials to hardmask, etch stop, and Cu diffusion barrier must be quantified with 4-pt bend.

Plasma, thermal or wet clean (Pretreatment) is required in most cases to improve adhesion to new materials.

Impact of pre-treatments on κ must be investigated.Avoidance of κ increase or means to restore the κvalue is required.

Phase 2 Evaluation-Adhesion

.E. Andideh 2003 MIT

25

Evaluation Phases

MLM IntegrationPhase 3

Unit Integration Evaluation

Phase 2

Material Analyses, Material failure-GRC

Phase 1

.E. Andideh 2003 MIT

26

Phase 3 Evaluation-Plasma impact

κ and etch profile are impacted by the ash process

The carbon depleted layer is attacked by post ash clean

Cu CMP process is impacted by the pattern profile

FG Ash

O2 Ash

.E. Andideh 2003 MIT

27

All dimensions must be measured to extract the line-to-line κ.

Trench profile introduce difficulty in measuring κ.κeff measurement requires the second integrated layer.Ultimate performance measurement is the ring oscillator fmax.

Phase 3 Evaluation-Line to Line κ Measurement

M 1

M 2

V 1 lo w κ

V 0 lo w κ

E S

M 1

M 2

V 1 lo w κ

V 0 lo w κ

M 1

M 2

V 1 lo w κ

V 0 lo w κ

E S

.E. Andideh 2003 MIT

28

Line to Line Capacitance

*Thompson et al. IEDM 2002

*

.E. Andideh 2003 MIT

29

Interconnects

Thin Etch Stop Layer

CDO

CDO

Oxide

CDO

CDO

CDO

Cu

Transistors

Low k ILD

.E. Andideh 2003 MIT

30

Backend RC Delay

*Thompson et al. IEDM 2002

*

.E. Andideh 2003 MIT

31

ILD crack

ReliabilityLow k materials are soft and/or brittle.Assembly processes must be developed to address the poor material properties.They are susceptible to delamination and cracking during reliability test cycles.

.E. Andideh 2003 MIT

32

ConclusionsInterconnect engineers face many challenges in evaluating and integrating new materials.

It is important to screen out new materials and focus resources on minimum number of potential candidates.

A methodology has been outlined to evaluate the new material efficiently and effectively.

We have successfully integrated CVD CDO low κILD film in 90 nm technology.

Use of CVD CDO low k ILD can reduce LtL capacitance >20% compared to SiOF.

.E. Andideh 2003 MIT

33

Acknowledgements

. Author wish to thank Mark Bohr, Chi-Hwa Tsang, Chia-Hong Jan, Ajay Jain, Loren Chow, Huey-Chiang Liou, Mansour Moinpour, Jessica Xu, Jun He, Ying Zhou and Markus Kuhn for their technical advice and support.

.E. Andideh 2003 MIT

34

Biography for Eb AndidehEb Andideh received his PhD in Electrical and Computer engineering from University of Illinois at Urbana in 1990. He joined Intel Corporation Portland Technology Development as a Thin Films process development engineer in March of 1990. He has worked on numerous process development projects including ILD gap fill, CMP, selective Si/SiGe epitaxy, and low k ILD material development and integration. He is Currently director of Polymer Memory Technology Development.