Estimates for (g-2) μ using VMD constraints & Global Fits
Embed Size (px)
description
Transcript of Estimates for (g-2) μ using VMD constraints & Global Fits

Estimates for (g-2)μ using VMD constraints & Global Fits
M. Benayoun LPNHE Paris 6/7
(collaborators : P. David, L. Delbuono, F. Jegerlehner)

2
OUTLINE
The HLS Model & Breaking : BKY & (ρ,ω,φ) mixingGlobal Fit Scope: V P γ / P γ γ / t vs e+ e-& [e+e-
→ π π /K+K-/KLKS /π γ /η γ /π π π] HLS Estimates of (g-2)μ
Global fits with only scan (NSK) data : e+e- vs τ «t + PDG » Predictions of e+e- → π π vs dataGlobal fit with t, scan and ISR π π data → g-2Conclusions M.Benayoun et al. EPJ C72 (2012) 1848
M.Benayoun et al. arXiv: 1210.7184// EPJC

3
NSK2:: Breaking the HLS Model
The HLS Lagrangian not flexible for data handling
Breaking schemes needed: BKY mechanism :
vector meson mixing :
Latest Model Status :
M.Bando et al. Nucl. Phys. B259 (1985) 493
M.Benayoun et al. EPJ C55 (2008) 199
M.Benayoun et al. Phys. Rev. D58 (1998) 074006
The HLS Model & Breaking
M.Benayoun et al. EPJ C65 (2010) 211
M.Benayoun et al. EPJ C72 (2012) 1848
M.Hashimoto Phys. Rev. D54 (1996) 5611
M. Harada & K. Yamawaki Phys. Rep. 381 (2003) 1

4
Isospin Breaking : Vector Field Mixing
• At one loop, the HLS Lagrangian piece (no IB)
s-dependent transitions among vector fields
ideal fields no longer mass eigenstates
PS mesons :: isospin symmetry breaking :
1 1 1 10
1 102 2VR R R R R V RK K Kz Kz
� �
0K Km m
VVP Lagrangian : K*K loops // Yang-Mills term : K*K*loops
→
→

5
The Mass Matrix Eigen System At one loop:
As :
Solve perturbatively : (kaon loop) Sum , Difference
12
2( ) (, ) )(m s s s
2
2 21 1
1
1 222
2
2 2
2
( ) ( )( ) ((
( ) ()
( ) ( )
))( )
) (
V
s ss
s sss
mM s m
z sms
s
2 2 20( ) ( ) ( )M s M s M s
12 ( ), ( )ss

6
From Ideal To Physical Fields
( ) ( ) 1R s i R s i 0 01
1
1
11
1
R
R
R
2 22
2 21
2( )1
2( )
( )( )2
2
( )( )
()
)(
V
HK HK
H H
V
K K
s
HK HKm ms
z
m m
m
z
ss
s
s
s
m
s
R1 Fields
Physical Fields
At leading order in ε1(s) , ε2(s)

7
BHLS : A Global VMD Model
• The (Broken) Hidden Local Symmetry (BHLS) model : is a unified VMD framework encompassing e+e- → π π /KKbar /π γ /η γ /π π π & τ→ππ ντ&
PVγ, Pγγ decays & η/η’ γπ π/γγ & ……BHLS :: (almost) an empty shell : [αem, GF , fπ , Vud , Vus , mπ’s, mK’s, mη, , mη’] Present Limits :Up to the ≈ φ mass region ( 1.05 GeV) No scalars mesons, no ρ’, no ρ’’ ……

8
HLS : A Global VMD Model
• The (Broken) Hidden Local Symmetry (BHLS) model : is a unified VMD framework encompassing e+e- → π π /KKbar /π γ /η γ /π π π & τ→ππ ντ&
PVγ, Pγγ decays & η/η’ γπ π/γγ & ……BHLS :: (almost) an empty shell : [αem, GF , fπ , Vud , Vus ,mπ’s, mK’s, mη, , mη’] Present Limits :Up to the ≈ φ mass region ( 1.05 GeV) No scalars mesons, no ρ’, no ρ’’ ……

9
HLS : A Global VMD Model
• The (Broken) Hidden Local Symmetry (BHLS) model : is a unified VMD framework encompassing e+e- → π π /KKbar /π γ /η γ /π π π & τ→ππ ντ&
PVγ, Pγγ decays & η/η’ γπ π/γγ & ……BHLS :: (almost) an empty shell : [αem, GF , fπ , Vud , Vus , mπ’s, mK’s, mη , mη’] Present Limits :Up to the ≈ φ mass region ( 1.05 GeV) No scalars mesons, no ρ’, no ρ’’ ……

10
g-2 & Global Models/Fits
• NP Hadronic VP contributions to g-2
(interpolation between energy points)• VMD : Underlying physics correlations ->
HLS cross-sections derived through a global fit (param. values & error covariance matrix) :
3( ) ( ,) )1 (4
cut
th
is
i
s
a ds KH e e H ss
Measured Xsection
Measured Xsection Model Xsection (φ)

11
HLS→Correlated Physics Channels
• Non-Anomalous annihilations : e+e- → π+π- / • Decay spectra : τ ± → π±π0 ντ (later also : η/η’→π+π-γ)• Anomalous Processes : e+e- → π0 γ/ηγ/ π+π- π0
• Radiative decays widths ( VPγ, π0/η/η’ → γ γ)
• φ→ππ (Br ratio and phase)
HLS MODEL & Breaking Schemes:
OVERCONSTRAINED & **DETERMINED** by more than 40 data sets
/K K K KL S

12
HLS→Correlated Physics Channels
• Non-Anomalous annihilations : e+e- → π+π- / • Decay spectra : τ ± → π±π0 ντ (later also : η/η’→π+π-γ)• Anomalous Processes : e+e- → π0 γ/ηγ/ π+π- π0
• Radiative decays widths ( VPγ, π0/η/η’ → γ γ)
• φ→ππ (Br ratio and phase)
New Paradigm : Any information on any channel (π0 γ) is equivalent to improving the statistics on
any other channel (π+π- )
/K K K KL S

13
HLS→Correlated Physics Channels
• Non-Anomalous annihilations : e+e- → π+π- / • Decay spectra : τ ± → π±π0 ντ (later also : η/η’→π+π-γ)• Anomalous Processes : e+e- → π0 γ/ηγ/ π+π- π0
• Radiative decays widths ( VPγ, π0/η/η’ → γ γ)
• φ→ππ (Br ratio and phase)
HOWEVER : Non Perturbative Contributions to HVP above ≈1.05 GeV should be estimated as usual
/K K K KL S

14
VMD Strategy for g-2 Estimate GLOBAL FIT to the largest possible data set
Check:: are VMD constraints well accepted by DATA?
(correct lineshapes & yields with Prob.’s OK) IF YES : 1/ VMD correlations are fulfilled by DATA 2/ THEN :: HLS form factors & fit parameters values &
errors covariance matrix should lead to :
Improved estimates of HVP contributions to g-2 forπ+π-/ / /π γ /η γ /η’ γ /π π π up to 1.05 GeV
/ L SK K K K

15
Data Set (#data points) Configuration B ( χ2)
Decays (9) 10.4π+π- New Timelike (127) 128.3π+π- Old Timelike (82) 50.2 π0γ (86) 66.9 ηγ (182) 121.0
π+π- π0 112.5/99K+K- (36) 30.3KLKS (119) 122.7τ ALEPH (37) 25.1τ CLEO (29) 38.2τ BELLE (19) 25.6χ2/dofProbability
731.2/801 96.3%
Global Fit Quality with NSK only
Fits : see backup slides

16
Dipion Spectra (τ & e+e-): A puzzle?
spectrum t spectrume e
2χ 88.988Np
2χ 128
127Np(Pr 96%)ob

e+e- vs τ : CMD2/SND Fit Residuals
ΔF
ΔF/F
2χ 128.3127Np
Global fit : 96% Prob

18
e+e- vs τ : Tau Fit Residuals
ΔF
ΔF/F
2χ 88.988Np

19
A « e+e- - τ» Puzzle ?
•
• s-dependent (missing) effect !
M. Davier NP Proc. Supp. 169 (2007) 288

20
A « e+e- - τ» Puzzle ?
• e+e- and τ dipion residuals : simultaneously flat
• |Fπ(e+e-)|2 & |Fπ(τ)|2 yield :simultaneously χ2
π+π- /Nπ+π- & χ2π±π0 /Nπ ± π0 ≈1
• Global fit Probability > 90%
• No signal of any e+e- - τ mismatch → nothing puzzling

21
HVP Results with scan & τ data
• (Updated) All uncertainties improved by ≈ 2 Channel Solution B Direct Estimate
+- 495.40 ± 1.92 498.53 ± 3.73(497.72 ± 2.12)
π0 γ 4.61 ± 0.04 3.35 ± 0.11
η γ 0.64 ± 0.01 0.48 ± 0.01
η' γ 0.01 ± 0.00 ---
π+ π- π0 41.16 ± 0.59 43.24 ± 1.47
KL KS 11.90 ± 0.08 12.31 ± 0.33
K+K- 17.59 ± 0.21 17.88 ± 0.54
Total up to 1.05 GeV
571.30 ± 2.02 575.79 ± 4.06

22
HVP Results with scan & τ data
• (Updated) All uncertainties improved by ≈ 2 Channel Solution B Direct Estimate
+- 495.40 ± 1.92 498.53 ± 3.73(497.72 ± 2.12)
π0 γ 4.61 ± 0.04 3.35 ± 0.11
η γ 0.64 ± 0.01 0.48 ± 0.01
η' γ 0.01 ± 0.00 ---
π+ π- π0 41.16 ± 0.59 43.24 ± 1.47
KL KS 11.90 ± 0.08 12.31 ± 0.33
K+K- 17.59 ± 0.21 17.88 ± 0.54
Total up to 1.05 GeV
571.30 ± 2.02 575.79 ± 4.06
Scan +ISR

23
HVP Results with scan & τ data
• (Updated) Central value shifted by ≈ 3 10-10
Channel Solution B Direct Estimate
+- 495.40 ± 1.92 498.53 ± 3.73(497.72 ± 2.12)
π0 γ 4.61 ± 0.04 3.35 ± 0.11
η γ 0.64 ± 0.01 0.48 ± 0.01
η' γ 0.01 ± 0.00 ---
π+ π- π0 41.16 ± 0.59 43.24 ± 1.47
KL KS 11.90 ± 0.08 12.31 ± 0.33
K+K- 17.59 ± 0.21 17.88 ± 0.54
Total up to 1.05 GeV
571.30 ± 2.02 575.79 ± 4.06
Diff=3.1 units

24
τ Predictions for π+ π- Spectra
• τ dipion spectra : basis (Aleph,Belle&Cleo <1 GeV )• ++ Breaking Info from PDG : Γ(ρ→ e+e- ) & Γ(ω→ππ) & Γ(φ→ππ) (& Orsay )
• → → «τ + PDG predictions» for e+e-→ π+ π-
• generated by the model using all data for: • τ→ππ ντ , e+e-→ /π0 γ/ηγ/π+ π- π0
& VPγ & Pγ γ couplings (from PDG)K K
's

25
τ Predictions for π+ π- Spectra
• τ dipion spectra : basis (Aleph,Belle&Cleo < 1 GeV)• ++ Breaking Info from PDG : Γ(ρ→ e+e- ) & Γ(ω→ππ) & Γ(φ→ππ) (& Orsay )
• → → «τ + PDG predictions» for e+e-→ π+ π-
• generated by the model using all data for: • τ→ππ ντ , e+e-→ /π0 γ/ηγ/π+ π- π0
& VPγ & Pγ γ couplings (from PDG)K K

26
!!τ + PDG Predictions
Good agreement data versus predictions
Spacelike region well predicted
&Extrapolates much above 1
GeV!!!

27
τ + PDG Predictions
KLOE’s almost perfect!CMD2&SND ≈ OK
BaBar too large below ω
0.85 GeV >mππ> 0.70GeV
PION Form Factor

28
• Discrepancies between π+ π- data sets (oldnews) • Clear problem at (ρ,ω) Interference for BaBar HOWEVER PDG IB information : Γ(ρ→ e+e- ) & Γ(ω→ππ)
almost equivalent to Experimental IB information : (0.76-0.82) GeV RegionFrom each data set (NSK,KLOE’s,BaBar)
Guesses About Global Fits

29
τ + {BaBar (ρ―ω)} Predictions
0.85 GeV >mππ> 0.70GeV
PION Form Factor
FIT Prediction
Prediction

30
τ + {(ρ―ω) Region from each Exp} Fits
0.85 GeV >mππ> 0.70GeV
PION Form Factor
Fits in «isolation»NSK
KLOE10KLOE 08
BaBar

31
ρ-ω region (0.76→0.82 GeV)/φ(PDG)
Fω = Br(ω→π+π-)*Br(ω→e+e-)DATA SAMPLE Fω X 10-6 Orsay Phase
(degrees)Global Fit Probability
X2/nπ+π-
PDG 1.23±0.07 [104.7±4.1] ------ ---
CMD2+SND (≈ 0σ) 1.22±0.04 106.7±0.3 90% 51/47
KLOE08 (1.9 σ) 1.08±0.04 110.4±1.2 88% 18/11
KLOE10 (3.0 σ) 0.97±0.05 113.6±1.6 93% 11/11
KLOE12 (3.1 σ) 0.92 ±0.07 122.5±2.1 96% 7/11
BaBar (7.7 σ) 1.78±0.01 107.5±0.2 54% 67/35

32
Checking ππ data sets
• Fits performed with each ππ data set in isolation (scan/KLOE’s/BaBar)
• All other channels always included in fits (τ→ππ ντ , e+e-→ K+K-/ K0 K0b/π γ/ηγ/π π π)

KLOE raw & corrected Residuals ΔF
2χ 96.660Np
2χ 63.660Np
2χ 73.775Np

Fits in isolation : Comments
• Good Residuals & Gl. fit Prob. OK & good χ2 : CMD2 & SND & KLOE10 & KLOE12
• (Very) Good Residuals & poor χ2 (1.62) :KLOE08 (correlations in systematics)
• Bad Gl. fit Prob . & at [ρ/ω] peak χ2/N= 1.9 BaBar (hardly consistent with non ππ data)
• Consistent ππ data sets for Global Treatment : CMD2 & SND & KLOE10 & KLOE12

35
GLOBAL FIT RESULTS
• Fits performed with combinations of ππ data sets (incl./excl. Spacelike)
• All other channels always included in fits (τ→ππ ντ , e+e-→ K+K-/ K0 K0b/π γ/ηγ/π π π)

36
GLOBAL FIT RESULTS
Proves consistency of
CMD2/SND/KLOE10/KLOE12
KLOE’s Fits in «isolation»
Global Fit

37
HVP Results up to 1.05 GeV Channel NSK +KLOE 10&12
+ τ (ABC < 1 GeV) scan only(NSK) + τ (ABC < 1GeV)
Direct Estimate
+- 491.12 ± 1.35 495.40 ± 1.92 498.53 ± 3.73(497.72 ± 2.12)
π0 γ 4.63 ± 0.04 4.61 ± 0.04 3.35 ± 0.11
η γ 0.64 ± 0.01 0.64 ± 0.01 0.48 ± 0.01
η' γ 0.003 ± 0.000 0.003 ± 0.000 ---
π+ π- π0 40.78 ± 0.64 41.16 ± 0.59 43.24 ± 1.47
KL KS 11.94 ± 0.08 11.90 ± 0.08 12.31 ± 0.33
K+K- 17.48 ± 0.21 17.59 ± 0.21 17.88 ± 0.54
Total up to 1.05 GeV
566.58 ± 1.50 571.30 ± 2.02 575.79 ± 4.06
Scan +ISR

38
HVP Results up to 1.05 GeV Channel NSK+KLOE10&12
+ τ (ABC < 1 GeV) scan only(NSK) + τ (ABC < 1 GeV)
Direct Estimate
+- 491.12 ± 1.35 495.40 ± 1.92 498.53 ± 3.73(497.72 ± 2.12)
π0 γ 4.63 ± 0.04 4.61 ± 0.04 3.35 ± 0.11
η γ 0.64 ± 0.01 0.64 ± 0.01 0.48 ± 0.01
η' γ 0.003 ± 0.000 0.003 ± 0.000 ---
π+ π- π0 40.78 ± 0.64 41.16 ± 0.59 43.24 ± 1.47
KL KS 11.94 ± 0.08 11.90 ± 0.08 12.31 ± 0.33
K+K- 17.48 ± 0.21 17.59 ± 0.21 17.88 ± 0.54
Total up to 1.05 GeV
566.58 ± 1.50 571.30 ± 2.02 575.79 ± 4.06(574.98±2.66)
Scan +ISR
Scan +ISR

39
g-2 HLS Estimates & Others

40
g-2 HLS Estimates & Others

41
g-2 HLS Estimates & Others

aμ(ππ) over mππ=[0.63,0.958] GeV
Model Estimate in Accord with expectations
Uncertainties improved by ≈45%

43
Accord with Exp. expectations
aμ(ππ) over mππ=[0.63,0.958] GeV
≈ No Bias!

44
aμ(ππ) over mππ=[0.63,0.958] GeV
No Mismatch!

45
The Spacelike & threshold Regions
Low mass tail OK!
2
1.00HK
HK
mm
Extrapolation to s<0 perfect

46
Predicted Phase shift (I)
2
1.00HK
HK
mm

47
Predicted Phase shift (II)
2
1.05HK
HK
mm

48
Threshold Behavior
( )2
( )
( )12
sHK HKsm
s
m
2
2 1HK
m HK
m
m

Conclusions
1/ broken HLS model → good simultaneous fit of all data
2/ suitable IB → NO signal for (e+e- vs τ) puzzle
3/ « τ +PDG » predictions → benchmark for π π samples!
4/ Relative inconsistencies of π+ π- data sets substantiated
5/ Consistent π + π- data sets : CMD2, SND, KLOE 10 & 12
6/ The discrepancy with BNL g-2 value is ≈ 4.8 to 5.1 σ

50
Backup Slides

51
Residuals : e+e- vs τ
Residuals simultaneously flat

52
Global Fit Residuals : e+e- vs τ
Residuals simultaneously flat

53
From Belle

54
g-2 Estimates & Discrepancy II

55
Dipion Mass Spectrum
•
• s-dependent (missing) effect !
M. Davier NP Proc. Supp. 169 (2007) 288

56
Backup Slides II

57
• Define
• Basic pieces :
• The Hidden Local Symmetry (HLS) Lagrangian expanded in
The HLS Model
†/ // ( )L R L RL R D /
/e
f
R
Pi
L
PS field matrix
/
2 2
4A V
fL Tr L R
M. Harada & K. Yamawaki Phys. Rep. 381 (2003) 1
M.Benayoun & H.O’Connell PR D 58 (1998) 074006

58
HLS and the BKY Mechanism • Basic HLS Lagrangians :
• Full HLS Lagrangian
BKY Broken Lagrangian:
Breaking Matrix = Diag
/ /
22{ }
4A V A V
fL Tr L R X
'FKTUYHL t oV Ho ftS AL L a LLL
/A VX , , // / A VA V A Vq y zM. Hashimoto, Phys. Rev. D54 (1996) 5611
/
22
4A V
fL Tr L R
M.Benayoun et al. EPJ C72 (2012) 1848
Isospin Brk SU(3) Brk

59
Isospin Breaking : Vector Field Mixing
• At one loop, the HLS Lagrangian piece (no IB)
s-dependent transitions among vector fields
ideal fields no longer mass eigenstates
PS mesons :: isospin symmetry breaking :
1 1 1 10
1 102 2VR R R R R V RK K Kz Kz
� �
0K Km m
VVP Lagrangian : K*K loops // Yang-Mills term : K*K*loops
→
→

60
Transitions at one loop
• Define the loops : = K+ K- , = K0 K0 Then, beside self-masses :
→ + ~ ε2(s) ≠ 0 always
→ - ≠ 0 by isospin brk
→ - ~ ε1(s)
( )s
( )s
( )s
f(s)

61
The Mass Matrix Eigen System At one loop:
As :
Solve perturbatively
12
2( ) (, ) )(m s s s
2
2 21 1
1
1 222
2
2 2
2
( ) ( )( ) ((
( ) ()
( ) ( )
))( )
) (
V
s ss
s sss
mM s m
z sms
s
2 2 20( ) ( ) ( )M s M s M s

62
• QqqData Set (#data points) Configuration A ( χ2) Configuration B ( χ2)
Decays (9) 12.9 10.4
New Timelike (127) 127.7 128.3
Old Timelike (82) 50.5 50.2
π0γ (86) 67.4 66.9
ηγ (182) 121.4 121.0
π+π- π0 229.3/179 112.5/99
K+K- (36) 35.8 30.3
KLKS (119) 121.1 122.7
τ ALEPH (37) 24.7 25.1
τ CLEO (29) 38.7 38.2
τ BELLE (19) 25.9 25.6
Χ2/dofProbability
855.3/881 72.7%
731.2/801 96.3%
Global Fit Results with NSK

63
Dipion Spectra (τ & NSK)
spectrum t spectrume e
2χ 88.988Np
2χ 128127Np
(Pr 96%)ob

64
2χ 3036Np
K+ K-
KL KS
2χ 123119Np
e+e- → K Kbar Data

65
3-pion Data
2χ 229179Np

66
e+e- → π0 γ
2χ 6786Np

67
e+e- → ηγ Data
2χ 121182Np

68
Former : Prediction for η/η’→ ππ γ
Г(η’→ ππ γ)=53.11±1.47PDG : 58.3±2.8 keV
Г(η→ ππ γ)=55.82±0.83PDG : 60±4 eV
Lineshapes and yields : tests for g value and ρ0 lineshape
M. Benayoun et al. ArXiv 0907.4047

69
Former : Prediction for η/η’→ ππ γ

Fit in isolation : KLOE 08 Residuals
ΔF
ΔF/F
2χ 96.660Np
Global fit : 56% Prob

Fit in isolation : KLOE 10 Residuals
ΔF
ΔF/F
2χ 73.775Np
Global Fit : 88% Prob

Fit in isolation : KLOE 12 Residuals
ΔF
ΔF/F
2χ 63.660Np
Global fit : 92% Prob

73
Fit in isolation : BaBar Residuals
ΔF
ΔF/F
2χ 341275Np
Global Fit : 22% Prob

Fit in isolation : CMD2/SND Residuals
ΔF
ΔF/F
2χ 128.3127Np
Global fit : 96% Prob

75
Tau Fit Residuals (NSK only)
ΔF
ΔF/F

76
NA7 Residuals (χ2/N≈90/60)!

77
Scale Uncertainty
• Minimize :
• Solve for λ (A= m or M) gives:
• And :
2 1 2 2/Tm M A V m M A
2 12 T TAm M V m MA
12
1 1/T TA V m M A V A

78
V π π Couplings: I=1 part of ω and φ
2 Iiag
�
*At leading order : ρ term unchanged (I=1 part)*small s-dependent ω and φ couplings (I=1 part)* Charged and neutral rho’s: same coupling to pions
0(1 ) (1 ) ( )2
( )VVV
i gh sa s
�
Mixing Angles I=1 terms

79
Vector meson couplings to γ
• (γ) V transitions : = +
( ) ( )33
22 13
VVh VVsagf sf z
3 1 22 13
( ) ( )VVf s sVa f hg Vz
( )22 ( )3
s sf ag Vf z

80
ρ couplings to γ/W
• (γ/W) V transitions : = +
Full agreement between data
( ) 2 ( )1 (1 )3 3 3
VV s sf
Wf ag fh VVWf
z
ande e t

81
ρ couplings to γ/W
( )f
WfF s
Re[F(s)]
Im[F(s)]

82
From Belle