esfuerzo y deformacion, fatiga y torsion

24
Realizado por: Joselys Salazar C.I: 22.653.955 Ing. Industrial Esfuerzo y Deformación

Transcript of esfuerzo y deformacion, fatiga y torsion

Realiz

ado

por:

Jose

lys S

alaza

r

C.I: 2

2.653.9

55

Ing. I

ndustria

l

Esfuerzo y Deformación

Esfuerzo

Las fuerzas internas de un elemento están ubicadas dentro del material por lo que se distribuyen en toda el área; justamente se denomina esfuerzo a la fuerza por unidad de área, la cual se denota con la letra griega sigma (σ) y es un parámetro que permite comparar la resistencia de dos materiales, ya que establece una base común de referencia.

Tipos de Esfuerzo• Tracción: Hace que se separen entre sí las distintas partículas que componen una pieza, tendiendo a alargarla. Por ejemplo, cuando se cuelga de una cadena una lámpara, la cadena queda sometida a un esfuerzo de tracción, tendiendo a aumentar su longitud.

• Compresión: Hace que se aproximen las diferentes partículas de un material, tendiendo a producir acortamientos o aplastamientos. Cuando nos sentamos en una silla, sometemos a las patas a un esfuerzo de compresión, con lo que tiende a disminuir su altura.

Flexión: Es una combinación de compresión y de tracción. Mientras que las fibras superiores de la pieza sometida a un esfuerzo de flexión se alargan, las inferiores se acortan, o viceversa. Al saltar en la tabla del trampolín de una piscina, la tabla se flexiona. También se flexiona un panel de una estantería cuando se carga de libros o la barra donde se cuelgan las perchas en los armarios.

  Cizallamiento o cortadura: Se produce cuando se aplican fuerzas

perpendiculares a la pieza, haciendo que las partículas del material tiendan a resbalar o desplazarse las unas sobre las otras. Al cortar con unas tijeras un papel estamos provocando que unas partículas tiendan a deslizarse sobre otras. Los puntos sobre los que apoyan las vigas están sometidos a cizallamiento.

 

  Torsión: Las fuerzas de torsión son las que hacen que una pieza

tienda a retorcerse sobre su eje central. Están sometidos a esfuerzos de torsión los ejes, las manivelas y los cigüeñales.

Se define como la capacidad torsión de objetos en rotación alrededor de un eje fijo. En otras palabras, es la multiplicación de la fuerza y la distancia más corta entre el punto de aplicación de la fuerza y el eje fijo. De la definición, también se puede inferir que, el par es una cantidad vectorial que tiene tanto la dirección como en magnitud. Sin embargo, ya que está girando alrededor de un eje fijo de su dirección puede ser en sentido horario o antihorario. Durante las explicaciones y ejemplos que dan la dirección "+" si se gira hacia la derecha y "-" si se gira hacia la izquierda. El par se muestra en la física con el símbolo "τ". Usted puede venir a través torsión con otro nombre "momento"

Esfuerzo de torsión

Deformación

Son consecuencia de procesos mecánicos, a partir de fuerzas externas o internas que afectan a las características mecánicas de los elementos constructivos. En el caso de las deformaciones, son una primera reacción del elemento a una fuerza externa, al tratar de adaptarse a ella.

Tipos de Deformación

Dependiendo del tipo de material, el tamaño y la geometría del objeto, y las fuerzas aplicadas, varios tipos de deformación pueden resultar. La imagen de la derecha muestra el esfuerzo de ingeniería vs diagrama de deformación para un material dúctil típica tal como el acero. Diferentes modos de deformación pueden ocurrir en diferentes condiciones, como se puede describir en base a un mapa mecanismo de deformación.

• Deformación elásticaEste tipo de deformación es reversible. Una vez que ya no se aplican

las fuerzas, el objeto vuelve a su forma original. Elastómeros y metales con memoria de forma tales como Nitinol exhiben grandes rangos de deformación elástica, como el caucho. Sin embargo elasticidad es no lineal en estos materiales. Metales normales, cerámica y la mayoría de los cristales muestran elasticidad lineal y una zona elástica pequeña.

• Deformación plásticaEste tipo de deformación es irreversible. Sin embargo, un objeto en el

rango de deformación plástica primero se ha sometido a deformación elástica, que es reversible, por lo que el objeto volverá forma parte a su forma original. Termoplásticos blandos tienen una gama bastante grande deformación plástica como hacer metales dúctiles tales como el cobre, la plata, y oro. Acero también lo hace, pero no es de hierro fundido. Plásticos duros termoestables, caucho, cristales, y cerámicas tienen rangos de deformación plástica mínimos. Un material con un amplio rango de deformación plástica es la goma de mascar en húmedo, que puede ser estirado decenas de veces su longitud original.

Ejercicio

Fundamentos de estática

Fatiga de los Materiales

Se refiere a un fenómeno por el cual la rotura de los materiales bajo cargas dinámicas cíclicas se produce más fácilmente que con cargas estáticas. Aunque es un fenómeno que, sin definición formal, era reconocido desde la antigüedad, este comportamiento no fue de interés real hasta la Revolución Industrial, cuando, a mediados del siglo XIX comenzaron a producir las fuerzas necesarias para provocar la rotura con cargas dinámicas son muy inferiores a las necesarias en el caso estático; y a desarrollar métodos de cálculo para el diseño de piezas confiables. Este no es el caso de materiales de aparición reciente, para los que es necesaria la fabricación y el ensayo de prototipos.

• La rotura tiene su origen en pequeños defectos ó CONCENTRADORES de tensión.

• Cada uno de los ciclos produce un avance del frente de grieta hasta que la sección remanente NO ES CAPAZ DE SOPORTAR la carga estática.

• El inicio y la propagación de la grieta dependen fuertemente de las características resistentes del material, de su estructura cristalina y del tratamiento a que se somete en su proceso de fabricación.

• El colapso por fatiga, en su inicio, es un fenómeno SUPERFICIAL y su avance depende del nivel de tensión aplicado.

Características de una rotura por fatiga

La Falla por Fatiga es repentina y total, las señales son microscópicas. En las Fallas estáticas las piezas sufren una deformación detectable a simple vista. Para evitar la falla por fatiga se pueden aumentar considerablemente los factores de seguridad, pero esto implicaría aumentar ostensiblemente los costos de fabricación de las piezas.

SEÑALES DE FATIGA

Curvas S-NEstas curvas se obtienen a través de una serie de

ensayos donde una probeta del material se somete a tensiones cíclicas con una amplitud máxima relativamente grande (aproximadamente 2/3 de la resistencia estática a tracción). Se cuentan los ciclos hasta rotura. Este procedimiento se repite en otras probetas a amplitudes máximas decrecientes.

Fatiga Térmica se induce normalmente a temperaturas elevadas

debido a tensiones térmicas fluctuantes; no es necesario que estén presentes tensiones mecánicas de origen externo. La causa de estas tensiones térmicas es la restricción a la dilatación y o contracción que normalmente ocurren en piezas estructurales sometidas a variaciones de temperatura. La magnitud de la tensión térmica resultante debido a un cambio de temperatura depende del coeficiente de dilatación térmica y del módulo de elasticidad. Se rige por la siguiente expresión:

Fatiga Estática Ocurre por acción de una tensión cíclica y ataque químico

simultáneo. Lógicamente los medios corrosivos tienen una influencia negativa y reducen la vida a fatiga, incluso la atmósfera normal afecta a algunos materiales. A consecuencia pueden producirse pequeñas fisuras o picaduras que se comportarán como concentradoras de tensiones originando grietas. La de propagación también aumenta en el medio corrosivo puesto que el medio corrosivo también corroerá el interior de la grieta produciendo nuevos concentradores de tensión.

Ejercicio

Torsión

Es la solicitación que se presenta cuando se aplica un momento sobre el eje longitudinal de un elemento constructivo o prisma mecánico, como pueden ser ejes o, en general, elementos donde una dimensión predomina sobre las otras dos, aunque es posible encontrarla en situaciones diversas.

La torsión se caracteriza geométricamente porque cualquier curva paralela al eje de la pieza deja de estar contenida en el plano formado inicialmente por las dos curvas. En lugar de eso una curva paralela al eje se retuerce alrededor de él.

El estudio general de la torsión es complicado porque bajo ese tipo de solicitación la sección transversal de una pieza en general se caracteriza por dos fenómenos:

1: Aparecen tensiones tangenciales paralelas a la sección transversal. Si estas se representan por un campo vectorial sus líneas de flujo "circulan" alrededor de la sección.

2:Cuando las tensiones anteriores no están distribuidas adecuadamente, cosa que sucede siempre a menos que la sección tenga simetría circular, aparecen alabeos seccionales que hacen que las secciones transversales deformadas no sean planas.

Estudio General

Característica

La torsión se caracteriza geométricamente porque cualquier curva paralela al eje de la pieza deja de estar contenida en el plano formado inicialmente por las dos curvas. En lugar de eso una curva paralela al eje se retuerce alrededor de él mismo.

Torsión de Saint-Venant pura.

Es aplicable a piezas prismáticas de gran inercia torsional con cualquier forma de sección, en esta simplificación se asume que el llamado momento de alabeo es nulo, lo cual no significa que el alabeo seccional también lo sea.

Torsión alabeada pura

Para piezas de muy escasa inercia torsional, como las piezas de pared delgada, puede construirse un conjunto de ecuaciones muy simples en la que casi toda la resistencia a la torsión se debe a las tensiones cortantes inducidas por el alabeo de la sección.

Tipos de Torsión

En el dominio de torsión de Saint-Venant dominante y de torsión alabeada dominante, pueden emplearse con cierto grado de aproximación la teoría de Sant-Venant y la teoría de torsión alabeada. Sin embargo en el dominio central de torsión extrema, se cometen errores importantes y es necesario usar la teoría general más complicada.

Torsión mixta

Cuando un árbol de sección circular es sometido a Torsión, debe cumplir lo siguiente:

• Las secciones del árbol de sección circular deben permanecer circulares antes y después de la torsión.

• Las secciones planas del árbol de sección circular deben permanecer planas antes y después de la torsión sin alabearse.

• La Torsión que se le aplicara al árbol de sección circular debe estar dentro del rango de elasticidad del material.

• La proyección sobre una sección transversal de una línea radial de una sección, debe permanecer radial luego de la torsión.

Torsión en una Barra

Ejercicio