Ensemble Calibration for Uncertainty Estimation · 2012. 4. 18. · Conclusion • Ensemble...

14
Ensemble Calibration for Uncertainty Estimation Damien Garaud 1,2 Vivien Mallet 2,1 CEREA 1 , INRIA 2 27 October 2009

Transcript of Ensemble Calibration for Uncertainty Estimation · 2012. 4. 18. · Conclusion • Ensemble...

  • Ensemble Calibration forUncertainty Estimation

    Damien Garaud 1,2

    Vivien Mallet 2,1

    CEREA1, INRIA2

    27 October 2009

  • Introduction to Air Quality

    ∂ci∂t

    = −div(Vci) + div(ρK∇ci

    ρ

    )+ χi(c, t) + Si − Pi

  • Air Quality Forecast

    -10 -5 0 5 10 15 20

    35

    40

    45

    50

    55

    41

    53

    65

    78

    90

    102

    115

    127

    139

    Ozone map (µg m−3)

    May Jun Jul Aug20

    40

    60

    80

    100

    120

    140

    160

    Concentration

    SimulationObservation

    Ozone daily peak concentration

  • Uncertainty Sources

    Input Data

    • Emission data• Meteorological fields

    Physical Parameterizations

    • Chemical mechanism• Vertical diffusion coefficient

    Numerical Approximations

    • Time step• Vertical resolution• Schemes

  • Ensemble Approach

    Different alternatives

    • Kz : T&M or Louis• Chemical mechanism: RACM

    ou RADM2• Numerical approximations: ∆t ,

    Nz, . . .• Perturbations: winds,

    emissions, boundaryconditions. . .

    Large dispersion

    0 5 10 15 20Hour

    40

    60

    80

    100

    120

    140

    Concentration

    Ozone daily profiles from 101members (µg m−3)

    ∂ci∂t

    = −div(Vci) + div(ρK∇ci

    ρ

    )+ χi(c, t) + Si − Pi

  • Uncertainty Estimation

    • Concentration: random vector — a normal distribution for instanceN (µ,Σ)

    • Measure example: standard deviation (Σ)

    Why is it important?

    • Confidence in forecasts• Risk prediction ([O3] ≥ 240 µg m−3)• Economic and health issues• Data assimilation (matrix B)

  • Uncertainty Example

    -10 -5 0 5 10 15 20

    42

    44

    46

    48

    50

    52

    54

    56

    1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 28.5

    Standard deviation (µg m−3)

  • Strategy

    1 List all possible alternatives and so available models (150 billion)

    2 Sample possible model space efficiently in order to obtain asmaller space (100 models)

    3 Select according to an objective criterion (30–50 models)

  • Ensemble Assessment

    Rank Histogram

    0 5 10 15Member

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    Num

    ber

    of

    obse

    rvati

    ons

    Brier Score

    Assessment for a given event.c ≥ 240µg m−3

    BS = 1N∑N

    i=1(pi − oi)2 .

    pi : probability for the date i .

    oi : observed probability for thedate i .

    The best Brier Score is 0.

  • Objective Criterion and Method

    Rank Histogram Variance

    S ⊆ E

    Cost function:

    J(S) =NS∑i=0

    (bi − b̂S)2

    minS⊆E

    J(S)

    Genetic Algorithm

    1 Population {S1,S2, . . . ,SK}

    2 Assessment and selection{Si/J(Si) ≤ δ}

    3 Crossover (Sa,Sb)→ (Sc ,Sd )

    4 Mutation Si → S ′i

    5 New population of Ksubensembles

  • Rank Histograms

    0 20 40 60 80 100Member

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Num

    ber

    of

    obse

    rvati

    ons

    1e4

    limitobservation

    Large ensemble

    0 2 4 6 8 10 12 14Member

    0

    1

    2

    3

    4

    5

    6

    Num

    ber

    of

    obse

    rvati

    ons

    1e4

    limitobservation

    Random subensemble

    0 2 4 6 8 10 12 14Member

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Num

    ber

    of

    obse

    rvati

    ons

    1e4

    limitobservation

    Calibrated subensemble

  • Uncertainty Maps

    Large ensemble Random subensemble Calibrated subensemble

  • Time series

    0 10 20 30 40 50Week

    16

    18

    20

    22

    24

    26

    28

    30

    Sta

    ndard

    Devia

    tion

    LargeRandomCalibrated

    Weekly standard deviation (µg m−3)

  • Conclusion

    • Ensemble calibration to estimate uncertainty

    • D.Garaud and V.Mallet. Automatic generation of a largeensemble for air quality forecasting using the Polyphemussystem. Geoscientific Model Development Discussion, 2,889-933, 2009

    • Comparison with other ensembles

    • Other pollutants (aerosols, NO, . . . )

    • Risk prediction