Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file ·...

32
Engineering Circuit Analysis Transient Response of Second Order Circuits Perry Carlson, Nick Szapiro, Rio Akasaka Swarthmore College Engineering Performed October 25 th Turned in November 13 th , 2006

Transcript of Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file ·...

Page 1: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Engineering Circuit Analysis Transient Response of Second Order Circuits

Perry Carlson, Nick Szapiro, Rio Akasaka

Swarthmore College Engineering Performed October 25th

Turned in November 13th, 2006

Page 2: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Abstract

The purpose of this lab was to reinforce the understanding of the transient

response of second order circuits. Multiple configurations of a second order RLC circuit

were built, with constant capacitor and inductor values, of 0.01µF and 112mH

respectively, and varying resistances values of 300Ω, 1000Ω, 6700Ω, and 10kΩ. The

following equations were obtained for each resistor value:

R300, V0(t) = -0.97e-1767.3t cos(29369t -0.1231) + 0.466, underdamped response;

R1000, V0(t) = -0.97e-4824cos(29051t -0.1565) + 0.462, underdamped response;

R6700, V0(t) = – 23098t e-27109t – 0.972e-27109t + 0.46, critically damped response;

R10k, V0(t) = – 1.0759 e-10648t – 0.13163e-116100t + 0.46, overdamped response.

The internal resistance or non-ideality of the 112mH inductor was then

experimentally determined, using a LC circuit, to be 41.3Ω, given the internal resistance

of 50Ω of the function generator. Finally, a Multisim model of the RLC circuit was

assembled with a resistor value of 300Ω to compare the experimental data.

Introduction

Knowledge of the transient response, or the natural response of a circuit over

time, is crucial in circuitry design and performance, and its importance is highlighted in

the use of RLC circuits in common electrical appliances such as radio tuners to select

particular wave frequencies. This lab reinforces several concepts of engineering studied

thus far, including, but not limited to: the natural or homogenous response of resistor-

capacitor-inductor circuits, the step and impulse response of first and second order

circuits, the behavior at steady state of capacitors and inductors, as well as the more basic

Ohm’s, Kirchoff’s current and voltage, and node voltage laws. The term “second order”

comes from the fact that when the transient response for voltage or current is determined,

using Kirchoff’s current or voltage laws, a differential equation in which the highest

order derivative is two (2) is obtained. A second order circuit contains two energy

storage devices – either an inductor and a capacitor, or a combination of only capacitors

or only inductors that cannot be reduced to a singular passive element. Often, inductors

Page 3: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

and capacitors are combined in series or parallel with resistors, creating resistor-inductor-

capacitor (RLC) circuits.

Theory INDUCTOR AND CAPACITOR

An inductor is an electrical component that opposes any change in electrical

current (Nilsson and Riedel, pg 216). Inductors are measured in Henrys (H), noted

graphically as a coiled wire, and represented as L (Nilsson and Riedel, p.216).

Figure 1: Graphical representation of an inductor (www.wikipedia.org)

A capacitor is an electrical component that opposes any change in voltage. Capacitance is

measured in Farads (F), noted graphically by two short parallel plates, and represented by

the symbol C (Nilsson and Riedel, p.216).

Figure 2: Graphical representation of an capacitor (www.wikipedia.org) The definitions of the inductor and capacitor will help in determining the steady

state behavior of these circuit elements. In the inductor there is a time-varying magnetic

field (caused by charge in motion), which induces a voltage in any conductor in the field.

Therefore, the inductance of an inductor is a relationship of the induced voltage to the

change in current with respect to time. This relationship can be stated as Equation 1 (from

Nilsson and Riedel, pg 218).

diV = Ldt

(1)

Since a capacitor, composed of two conductors separated by an insulating

material can store electrical charge, the separation of charge, or voltage, varies with time,

and creates an electric field that also varies with time. This time-varying electric field

produces a displacement current. The capacitance of a conductor is a relationship of the

displaced current to the change in voltage with respect to time. This relationship can be

given by Equation 2 (from Nilsson and Riedel, p.225).

Page 4: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

dvI = Cdt

(2)

Employing Equations 1 and 2, one can conclude that at steady state an inductor acts like a

short circuit and a capacitor acts like an open circuit.

TRANSIENT RESPONSE OF SECOND ORDER CIRCUIT

The circuit shown in Figure 3 is of second order due to the two energy storage devices

(inductor and capacitor), and the second order differential equation one would derive to

determine the natural response. 2

2

d R i + + = 0dt L LC

i didt

⎛ ⎞⎜ ⎟⎝ ⎠

(3)

Figure 3: Electric circuit diagram for the second order series RLC circuit constructed during the

lab. Courtesy of Lynne Molter.

An alternative method, impedance, was used in finding the transient response of Vo

(voltage of the capacitor) in the above RLC circuit, given a step input voltage, Vi (Figure

4).

Figure 4 displays the input square wave from the function generator used in this experiment

Since the capacitor (impedance, Z = 1sC

) is in parallel with the inductor, L, (Z = sL),

which is in series with the resistor, R, (Z = R), the impedance is:

Page 5: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

1( )( ) 1ab

R sLsCZ s

R SLsC

⎛ ⎞+ ⎜ ⎟⎝=

+ +

⎠ (4)

Simplifying,

22

( )( ) 11 1ab

RsR sL R sL L LZ s RsCR s LC LC s sR sL sCL LCsC

++ += = =

+ +⎛ ⎞ + ++ +⎜ ⎟⎝ ⎠

(5)

Since abZ = ∞ as it is an open circuit, the denominator of abZ (s) is set to zero, yielding the

characteristic equation:

2 1 0Rs sL LC

+ + = (6)

Employing the quadratic equation to solve for s produces the characteristic equation:

2 12 2

R RsL L L

− ⎛ ⎞= ± −⎜ ⎟⎝ ⎠ C

(7)

THE CHARACTERISTIC EQUATION AND CRITICAL DAMPING

The characteristic equation can be rewritten as:

2 2s α α ω= − ± −

where

α, the damping factor or neper frequency, is 2RL

and

ω0, the resonant radian frequency, is 1LC

Consider the other suggested standard form of the characteristic equation:

s2 + 2αs + ω02 = s2 + 2ζω0s + ω0

2 (8)

From this one can state:

ζ. the damping coefficient, is αω

Page 6: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Therefore when ζ = 1, α must equal ω0. Substituting in 2RL

for α, and 1LC

for ω0, one

obtains:

2RL

= 1LC

It can therefore be said that when ζ = 1, the circuit is critically damped.

From Equation 7 it becomes evident there are three categories for this response:

overdamped, critically damped, and underdamped, each having two solutions. The

complete transient response is not only dependent on the natural response of a circuit, but

also the response due to the input, referred to as the particular response. Therefore the

output can be described as follows:

V0 complete = V0 homogenous + V0 particular

1) OVERDAMPED

If 2 1

2RL LC

⎛ ⎞ >⎜ ⎟⎝ ⎠

, s is two unique real numbers: the sum and difference of two real

numbers. Inserting the test solution (equation 8) into the differential equation

(equation 3), yields a second order homogenous or natural test solution of 10 2s tV Ae Be= + s t where:

s1= 2 1

2 2R RL L LC

− ⎛ ⎞+ −⎜ ⎟⎝ ⎠

s2 = 2 1

2 2R RL L LC

− ⎛ ⎞− −⎜ ⎟⎝ ⎠

,

A and B are real constants, determined by the initial conditions.

a) V since instantaneous voltage change across a capacitor

would require infinite current and is therefore impossible;

0 0(0 ) (0 ) 0.5v v+ −= = −

Page 7: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

b) 0 (0 ) (0 )(0 ) c Ldv i idt C C

+ ++ = = = 0 since L and C are in parallel and the capacitor acts

as an open circuit so there is no current flow.

The output voltage, Vo, will decay to a final voltage value without oscillation, or

is an overdamped response. Using R = 10 kΩ, L = 112mH, and C = F, the

solutions s = -11474 and -77810 were obtained. Substituting,

810−

0(hom)

11474 77810( ) t tV t Ae Be− −= +

From the square input voltage, 0( ) 0.5partV = V, as no current will flow when the

capacitor has been charged (reached steady state). The complete response is as

follows:

0

11474 77810( ) 0.5t tV t Ae Be− −= + + V for t > 0 until Vin switches to -0.5 V.

Using the initial conditions one can solve for A and B.

0.5 0.5 1A B A B+ + = − → + = −

0 11474 77810A B= − −

Solving, A = -1.173 and B = 0.173. The complete solution is therefore:

11474 77810

0( ) 1.173 0.173 0.5tV t e e− −= − + +t V (9)

Graph 1: Plot of overdamped voltage vs. time using Graphing Calculator

Page 8: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

2) CRITICALLY DAMPED

If 2 1

2RL LC

⎛ ⎞ =⎜ ⎟⎝ ⎠

, 02 2

R RsL L

−= ± =

− . Using the same procedure to find a test

solution for the homogenous or natural response of a differential equation as in

the over damped response, one yields:

0stV Ate Be= + st where s =

2RL

a) V as before; 0 0(0 ) (0 ) 0.5v v+ −= = −

b) 0 (0 ) (0 )(0 ) c Ldv i idt C C

+ ++ = = = 0 as before.

The output voltage, V0, will decay until on the verge of oscillation about its final

value, or is a critically damped response.

Using a resistor with resistance equivalent constrained to α=ω0, orLCL2 or

6693Ω, the solution to s was -29881. Substituting s into the general homogenous

test solution yields: 29881 29881

0(hom)( ) t tV t Ate Be− −= + From the square input voltage, 0( ) 0.5partV = V, as no current will flow when the

capacitor has been charged (reached steady state). 29881 29881

0( ) 0.5t tV t Ate Be− −= + + for t > 0 until Vin switches to -0.5 V.

Using the initial conditions and solving for A and B:

0.5 0.5 1B B− = + → = − 0 29881 29881A B A= − → = − Thus, the complete solution is

29881 298810( ) 29881 0.5t tV t te e− −= − − + V (10)

Page 9: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Graph 2: Plot of critically damped voltage vs. time using Graphing Calculator 3) UNDERDAMPED

If 2 1

2RL LC

⎛ ⎞ <⎜ ⎟⎝ ⎠

, we know s = 2 11

2 2R RL L

− ⎛ ⎞+ − −⎜ ⎟⎝ ⎠ LC

. Using the same

procedure to find a test solution for the homogenous or natural response for a

differential equation as in the over and critically damped response, Euler’s

Identity cos sinjMe jθ θ θ= + , and a trigonometric identity involving phase shifts,

one yields:

0 cos( )stdV Ae tω φ= + where:

s = 2

RL

− dω = 2 1

2RL LC

⎛ ⎞ −⎜ ⎟⎝ ⎠

a) V as before; 0 0(0 ) (0 ) 0.5v v+ −= = −

Page 10: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

b) 0 (0 ) (0 )(0 ) c Ldv i idt C C

+ ++ = = = 0 as before.

The output voltage, V0, will decay until it oscillates about its final value- the rate

at which this oscillation takes places is fixed by the damped radian frequency, ωd,

and the rate at which the oscillations subside is determined by α. (Nilsson, Riedel

369), or is an underdamped response.

s, using the resistor value of 300Ω was then calculated to be equivalent to -1339

and dω to be equal to 29851. Substituting into the homogenous test solution

yields: 446

0(hom)( ) cos(29851 )tV t Ae t−= + ϕ

From the square input voltage, 0( ) 0.5partV = V, as no current will flow when the

capacitor has been charged (reached steady state). 446

0( ) cos(29851 ) 0.5tV t Ae t−= + ϕ + V for t > 0 until Vin switches to -0.5 V.

Using the initial conditions one can solve for A andφ . One then has two

unknowns and the two following equations:

0.5 cos( ) 0.5 cos( ) 11339 cos( ) 29851 sin( ) 0 1339 29851tan( )

A AA A

ϕ ϕϕ ϕ ϕ

+ = − → = −− − = = +

Solving, A = -1 and ϕ = -0.0448 radians and the complete solution is therefore: -1339t

0V (t) -1e cos(29851 0.0448) 0.5t= − + V (11)

Page 11: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Graph 3 (previous page): Plot of underdamped voltage vs. time using Graphing Calculator

NON-IDEALITY OF THE INDUCTOR

When determining the transient response in an RLC circuit it is assumed the inductor is

ideal and has zero internal resistance. However, since inductors are usually composed of

winded metal coils, the resistance encountered in the wires converts some of the electric

current running through them to heat.

Figure 5 shows the resistive qualities of a non-ideal inductor. Image courtesy of AllAboutCircuits.com

NON-IDEALITY OF FUNCTION GENERATOR

Though the internal resistance of electrical instruments is generally ignored, it is

important to take them into consideration when taking measurements that involve small

changes in resistance. The function generator used in this experiment had an internal

resistance of 50Ω1.

Figure 6 shows the internal resistance present in a function generator. Image courtesy of Erik Cheever.

1 Ybarra. Gary. “Lab 2: Operation of the Digital Instruments and Basic Measurements” http://www.educatorscorner.com/media/Exp90b.doc Accessed November 9th, 2006.

Page 12: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

KALEIDAGRAPH FITTING

This lab relied extensively on the use of Kaleidagraph to fit exponential curves to the data

extracted from the lab. In order to obtain the most accurate best-fit curve, data points that

were not of concern to the particular segment (the half-period of the square wave during

which the capacitor voltage decayed) were masked using the Mask function. The best fit

equations (see Appendix) were modeled after the calculated (expected) equations, since

though Kaleidagraph’s best-fit is capable of finding most best-fit curves given the correct

parameters, it was nonetheless necessary to provide good estimates for the constants in

the equations. Particular attention was made in minimizing the error of the constants

obtained using the initial conditions, while errors with the solutions to the characteristic

equation did not necessarily have to have small error since they could be explained by the

non-ideality of the inductor.

Procedure

The circuit shown in Figure X was assembled, where Vi was connected to the

function generator, V0 was connected to the oscilloscope, and another channel of the

oscilloscope was connected across Vi. The function generator was set to a 1-volt peak to

peak square wave with a frequency of approximately 100Hz. The circuit also required a

variable resistor box, a 0.01µF capacitor and a 112mH inductor.

Figure 3: Electric circuit diagram for the second order series RLC circuit constructed during the lab. Courtesy of Lynne Molter.

After using the Agilent function in Excel to extract the output voltage provided

through the oscilloscope, the resistor value was varied by twisting the knob on the

resistor box to 300, 1000, 3000 and 10kΩ, as well as RC (the resistance calculated for

Page 13: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

critical damping) and for each value, the outputs were then printed. Rc was calculated by

employing the definition for critical damping and equating α2 to ω02.

To investigate the non-ideality of the inductor, the resistor was then replaced by a

short circuit to create an LC circuit, and the data points were extracted through Agilent.

Lastly, the DC resistance of the inductor was measured using an ohmmeter, and a RLC

measuring tool was used to find the value of resistance and inductance of the same

inductor.

Figure 7 shows the layout of the circuit modeled using MultiSim. Note the oscilloscope is reading both the voltage source and the voltage across the capacitor.

Page 14: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Results The following table outlines the expected values for the damping factor, α, and the resonant radian frequency, ω, and compares them in order to determine the nature of their response. Table 1 Expected values for frequencies and damping for varying resistors:

Expected values

Resistor α (rad/s) ω0 (rad/s) ωd (rad/s) α compared to ω0

2 Damping

300Ω 1339 29851 α2 < ω02 Underdamped

1000Ω 4464 29545 α2 < ω02 Underdamped

6700Ω 29910 N/A α2 ≈ ω02 Critically damped†

10000Ω 44643

29881

N/A α2 > ω02 Overdamped

† We suggest later in this lab that this value, due to non-idealties in the inductor and the internal impedance in the function generator, provides a overdamped response. Table 2: Comparison of best-fit to expected equations

Resistor

Equation obtained using best fit in Kaleidagraph

Expected equation

300Ω

y = -0.97e-1767.3x cos (29369x -0.1231) +

0.466

-1339t0V (t) -1e cos(29851 0.0448) 0.5t= − +

1000Ω y = -0.97e-4824x cos (29051t -0.1565) + 0.462

-4464t0V (t) -1e cos(29545 0.1499) 0.5t= − +

6700Ω y = – 23098x e-27109x – 0.972e-27109x + 0.46

29881 298810( ) 29881 0.5t tV t te e− −= − − +

10000Ω -116100x-10648x e 13163.0e 1.0759 y +−= +

0.46

11474 77810

0( ) 1.173 0.173 0.5t tV t e e− −= − + +

The above table compares the equation obtained using Kaleidagraph’s best-fit curve equation with the expected equation.

Page 15: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

300 ohms

Graph 4 shows the sinusoidal damping that can be seen in an underdamped RLC circuit. The best-fit equation that was derived using Kaleidagraph was y = 0.466 - 0.97e-1767.3x cos(29369x -0.1231)

Page 16: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Graph 5 shows Kaleidagraph’s best fit curve equation applied to the data for MultiSim’s output of a second-order RLC circuit. Note the abundance of data points- MultiSim’s output consisted of over 1400 data points, of which approximately 500 were used.

Page 17: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Graph 6 shows the square wave input and output voltage as seen by the oscilloscope for the 300Ω and the 1 volt peak-to-peak square wave with a frequency of about 100Hz.

Page 18: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

1000 ohms

Graph 7 shows the sinusoidal damping that can be seen in an underdamped RLC circuit. The best-fit equation that was derived using Kaleidagraph was y = 0.462 - 0.97e-4824xcos (29051x -0.1565)

Page 19: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Graph 8 shows the square wave input and output voltage as seen by the oscilloscope for the 1000Ω and the 1 volt peak-to-peak square wave with a frequency of about 100Hz.

Page 20: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

6700 ohms, Resistor value at critical damping

Graph 9 shows the sinusoidal damping that can be seen in a RLC circuit close to critical damping. Due to non-idealities and the internal impedance of the function generator, however, we note that the graph represents an overdamped respons. The best-fit equation that was derived using Kaleidagraph was y = 0.46 – 23098x e-27109x – 0.972e-27109x

Page 21: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Graph 10 shows the square wave input and output voltage as seen by the oscilloscope for the 6700Ω and the 1 volt peak-to-peak square wave with a frequency of about 100Hz.

The graph obtained using the 6700Ω resistor looks similar to the graph of the

overdamped response using the 10kΩ because even though the resistor value at critical

damping was found using the equivalence 2RL

= 1LC

(that is, with a resistor value of

6693.3Ω), the resistor value at critical damping should be less because of the resistance in

the inductor and the function generator.

Page 22: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

10k ohms

Graph 11 shows the sinusoidal damping that can be seen in an over damped RLC circuit. The est-fit equation that was derived using Kaleidagraph was

+ 0.46

b

-116100x-10648x e 13163.0e 1.0759 y +−=

Page 23: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Figure 12 shows the square wave input and output voltage as seen by the oscilloscope for the 10kΩ and the 1 volt peak-to-peak square wave with a frequency of about 100Hz.

Page 24: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Graph 13: This output and best-fit curve from Kaleidagraph shows the damping in a LC circuit. The best fit equation is y = -0.865e-431.93x cos(29384x -0.17144) + 0.47

Page 25: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Graph 14 shows the sinusoidal damping that can be seen in an LC circuit with a 1 volt peak-to-peak square wave.

Page 26: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Discussion We can examine the non-ideality of the circuits by comparing the following values:

Circuit parameters for 300Ω

Expected Measured MultiSim Error s 1339 1767.3 1310 32% ω0 29851 29369 29633 1.6% A -1 -0.97 -1.0019 3% φ -0.0448 -0.1231 -0.0397 175% where -st

0 0V (t) e cos( ) pA w t Vϕ= + + in the underdamped response

Circuit parameters for 1000Ω

Expected Measured Error s 4464 4824 8.1% ω0 29545 29051 1.7% A -1 -0.97 3% φ -0.1499 -0.1565 4.4% where -st

0 0V (t) e cos( ) pA w t Vϕ= + + in the underdamped response

Circuit parameters for 6700Ω

Expected Measured Error s 29881 27109 9.3% A -29881 -23098 23% B -1 -0.972 2.8%

where in the critically damped response 0( ) st stpV t Ate Be V− −= − − +

Circuit parameters for 10000Ω

Expected Measured Error s1 11474 10648 7.2% s2 77810 116100 49% A -1.173 -1.0759 8.3% B -0.173 -0.13163 24% where in the overdamped response 1 20( ) s t s t

pV t Ae Be V− −= − +

Page 27: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Table 3: Inductance and Resistance of Inductor

Inductor

Inductance (mH) Resistance (Ω)

Ohmmeter RLC meter 116mH

7.0 6.4

The above table shows the inductance and resistance values obtained using the RLC meter and the ohmmeter.

As the capacitor value is increased, the resonant frequency of the circuit decreases, a

result of the equation 1LC

.

When shorting the resistor in the RLC circuit, the resulting circuit is still an RLC circuit

since the non-ideal inductor has an internal resistance, as does the function generator, as

previously ascertained. The assumption was made that the combined internal resistance

would be much less than the 6693Ω characteristic of critical damping, since the internal

resistance of circuit elements and instruments are kept at a minimum to lessen their

influence on the rest of the circuit. Therefore, using the relationship determined in the

theory that α =2RL

(note that R is the equivalent resistance of the non-ideal elements) and

with the values for α from the curve fitting of the data points using Kaleidagraph, a

measure for the non-ideality of the internal resistances of the circuit elements can be

obtained using2RsL

α= = that is, 2sLequivalentR =

Considering the data from the 1000Ω resistor, the measured value for the roots of the

characteristic equation is s = 4824. Hence,

equivalentR = 1081Ω. So, Ω. int 1081 1000 81ernalR = − =

Considering the data from the 300 Ω resistor,

s = 1767.3 Ω. int 96ernalR→ =

For the 0Ω (LC circuit with internal resistance) case,

Page 28: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

s = 431.93 Ω. The other two resistor values, 6700Ω and 10kΩ, were not

taken into consideration because they did not lead to coherent results: both overdamped

cases gave a measured resistor value that was less than the expected value, suggesting

consistent errors due to the relative negligible effect of the internal resistances, which are

considerably smaller. The average value of the root of the characteristic equation was

91.3Ω. The values for included the internal resistances of all of the circuit

elements. Noting the negligible effect of the capacitor on the value of ,

for the inductor was calculated to be 41.3Ω since the function generator has an internal

resistance of 50Ω

int 97ernalR→ =

int ernalR

equivalentR int ernalR

2.

ERROR CONSIDERATIONS

The value of 41.3Ω, however, is altogether inconsistent with the measured resistance of

7Ω, and the error can therefore be attributed to lack of sufficient data points or a higher

internal impedance of the function generator. Noting the general trend that the error in

this lab is considerably high, which, considering the data extraction using Agilent, may

suggest the possibility that insufficient data points did not allow for proper curve-fitting

using Kaleidagraph’s function. Furthermore, in choosing the data range on the

oscilloscope screen, a sufficient range might not have been chosen, leading to the lack of

necessary or pertinent data points.

It is also important to note that the assumption was made that, because the voltage across

a capacitor cannot change instantaneously, the capacitor voltage before the step change of

the source from -0.5V to 0.5V was equal to the capacitor voltage immediately thereafter,

that is

vc(0-) = vc(0-) = 0.5

However, it is also assumed that the capacitor has discharged to its steady state in the

time of half a period, which introduces an error.

2 Cheever, Erik. Personal communication, Ybarra. Gary. “Lab 2: Operation of the Digital Instruments and Basic Measurements” http://www.educatorscorner.com/media/Exp90b.doc Accessed November 9th, 2006

Page 29: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

The reading from the RLC meter suggested that the accurate value for the inductance

used should have been 116mH rather than the labeled value of 112mH.

The other discrepancies that were present in this experiment could have been prevented if

more data points were retrieved in Agilent, as only 250 were taken, where 500 or 1000

points could have been taken. The internal resistance of the function generator could have

been confirmed by connecting the input and output of the function generator with a

variable resistor close to 50Ω, and measuring the output- if the function generator is set to

a low voltage, the oscilloscope should measure half the initial voltage due to voltage

divider3.

Figure X: Using a voltmeter, the function generator set to a sinusoidal frequency of 50Hz, a 1.6V output, and a load resistor of 50Ω, the resistance of the function generator can be easily determined.4

Conclusion and Future Work It was determine from this lab that the non-ideality of the circuit lent itself to an average

additional resistance of 91.3Ω. With the RLC meter, the resistance of the inductor was

found to be 6.3Ω, and therefore it could be concluded that other circuit elements,

including the function generator and possibly the oscilloscope, provided the remaining

unaccounted resistances. It was also possible to approximate the non-ideality of the

inductor by assembling a LC circuit with the knowledge that the non-idealities in the

form of resistances contribute to what can be then considered to be a RLC circuit.

Furthermore, in using several different resistor values, it was possible to qualitatively

examine the effect of their values on the overall transient response of the circuit, with 3 Sannuti, P. “Step Response of a RLC series circuit” The State University of New Jersey Rutgers. http://www.ece.rutgers.edu/~panayot/224_06/PEEII_Expt_5_06.pdf Accessed November 9th, 2006 4 “Equivalent Equipment Circuits”, University of Minnesota Duluth, <http://www.d.umn.edu/~snorr/ece2006s5/Lab7b.pdf> Accessed November 11th, 2006

Page 30: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

sinusoidal (under)damping occurring for resistor values less than 6693Ω. Τhe value of

the damping factor, α, contributed to determining whether damping took place and what

type of response could be expected when comparing the value to the neper frequency, ω0.

Though this lab was well conducted and successfully completed, more in-lab time

devoted to the discussion of the calculated decay rates of the output voltage for the circuit

would have helped in a more thorough understanding of the circuit. Consideration for the

number of data points extracted through Agilent would also have been helpful in fitting a

more precise curve using Kaleidagraph.

Acknowledgements Grateful acknowledgement is made to Lynne Molter and Ed Jaoudi, who contributed to

the completion of this lab, as well as to Erik Cheever, for answering queries regarding the

content of this report.

Page 31: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Appendix

The following are the best-fit equations that were used in Kaleidagraph’s curve-fit

function. The equations were modeled after the expected equations calculated previously.

Note for both the critically damped and the overdamped curve-fit equations it would have

been better to not include the 0.46V value in the fit.

Underdamped curve-fit equation

m1 + m2*exp(-m3*M0)*cos(m4*M0 + m5); m1=0.5; m2=-1;m3=4464;m4=30000;m5=-0.1483

Critically damped curve-fit equation M1*x*exp(-m2*x) + m3*exp(-m2*x) + 0.46;m1=-29881;m2=29881;m3=-1;

Overdamped curve-fit equation

m1*exp(-m2*x) + m3*exp(-m4*x) + 0.46;m1=-1.173;m2=11474;m3=0.173;m4=77810

Bibliography

Nilsson and Riedel, Electrical Circuits, 7th ed. Chapters 6 and 7 (Nilsson and Riedel)

Molter, Lynne. Engineering 11 2004 Electric Circuit Analysis Lab 4 – Background

Second Order Systems,

<http://www.swarthmore.edu/NatSci/lmolter1/courses/e11-

2005/Labs/E11L4/E11-02%20Lab4_background.html> Accessed November 10th,

2006.

Sannuti, P. “Step Response of a RLC series circuit” The State University of New Jersey

Rutgers. http://www.ece.rutgers.edu/~panayot/224_06/PEEII_Expt_5_06.pdf

Accessed November 9th, 2006

Page 32: Engineering Circuit Analysis - rioleo | beautiful & simple · PDF file · 2011-09-07Engineering Circuit Analysis ... R L and ω0, the ... Vo, will decay to a final voltage value without

Ybarra. Gary. “Lab 2: Operation of the Digital Instruments and Basic Measurements”

http://www.educatorscorner.com/media/Exp90b.doc Accessed November 9th,

2006