Endpoint spectra of tritium and rhenium beta decays for

25
Endpoint spectra of tritium and rhenium beta decays for massive neutrinos Rastislav Dvornický Department of Nuclear Physics & Biophysics Comenius University, Bratislava Slovakia supervisor - Fedor Šimkovic 14-th Lomonosov conference on Elementary Particle Physics

Transcript of Endpoint spectra of tritium and rhenium beta decays for

Endpoint spectra of tritium and rhenium beta decays for massive neutrinos

Rastislav DvornickýDepartment of Nuclear Physics & Biophysics

Comenius University, Bratislava Slovakia

supervisor - Fedor Šimkovic

14-th Lomonosov conference on Elementary Particle Physics

NeutrinoNeutrino was suggested in y. 1930 by Pauli to explain the continuity of β

spectrum as a spin 1/2 particle obeying Fermi-Dirac statistics

I have done aterrible thingI invented a particle thatcannot bedetectedW. Pauli

Tübingen

Neutrino oscillations

Pontecorvo-Maki-Nakagawa-Sakata

matrix

Flavoreigenstates

Masseigenstates

oscillations ⇒ massive neutrinos

Zh.Eksp.Teor.Fiz.,32(1957)

Maki,Nakagawa,Sakata.Prog.Theor.Phys.28(1962)870

)4

(sin2sin)(2

22

EtmP e

Δ=→ ϑνν μ

0νββ-decay

Absolute mass scale of neutrinos ?

3H decay

Cosmology

Solar neutrinos

Atmospheric neutrinos

1998SuperKamiokande

1968Homestake

We need 3 mass eigenstatesTo explain 2 different Δm2

m22-m1

2=Δmsol2≈ 3.10-5 eV2

m32-m2

2=Δmatm2≈ 2.10-3 eV2

Double beta decay

Observed for 10 isotopes: 48Ca, 76Ge, 82Se, 96Zr,100Mo.116Cd. 128Te, 130Te, 150Nd, 238U, T1/2 ≈1018-1024 years

Enrico Fermi1934

..)()()1()(2 5 chxjxxeG

H e +−= μμβ

β νγγ

Maria GöppertMayer 1935

eeAZAZ ν~22),(),2( ++→− −

0νββ decay

−+→− eAZAZ 2),(),2(

20 m≈Γ νββ 3

232

221

21

3121 meUmeUmUm ie

iee

αα ++=

2=ΔL

neutrino origin

Tritium – 3H

1. low endpoint – Q=18.6 keV2. super-allowed nuclear transition

(spectrum shape)3. short half-live T1/2 = 12.32 y4. simple molecular structure

KATRIN experiment

KArlsruheTRItiumNeutrinoexperiment

Direct measurementof neutrino mass

Measuring last300 eV of endpoint

2010 – startdata taking

Weinheimer, Nucl.Phys.Proc.Suppl. 168,5(2007)

Tritium beta decay

ν~33 ++→ −eHeH

22222GTAFV MgMgM +=

Q=18.6 keV

Differentialspectrum

Kurie plot

Both – Fermi &Gamow-Tellertransitions (T1/2=12.32 y)

Tritium beta decay

ν~++→ −epn

ν~33 ++→ −eHeH

++ → 2/12/1

( )[ ]2222max

21

νmMmMM

E feif

e −−+= νmMME fie −−≅max

Spin – isospin propertiesare identical

Elementary particle treatment (Kim & Primakoff, Phys.Rev. 139, B 1447(1965))

Exact relativistic treatment of tritium β decay. Recoil effect taken into account (3.4 eV less than standard Q value)

Nucleus as elementary particle

Beta decay on free nucleons.Relativistic calculation.No nuclear matrix elements.

Šimkovic, Dvornický, Faessler:Phys. Rev. C77,055502(2008)

Approximation withkeeping dominant terms

Relativistic Kurie plot

22

33

2AV

udFT ggVGB +=

π

( ) 2/1)()2()( νν mymyyByK T ++=

Tritium beta decay

247.132.12exp2/1 =⇒= AgyT

Rhenium beta decay

1. the lowest known Q value 2.47 keV2. T1/2= 4.35 x 1010 y ~ age of universe3. natural abundance 187Re is 63%

MARE experiment

-we don’t bother with energy loses-no corrections for atomic or molecular structure

MicrocalorimeterArrays for aRhenium Experiment

Re-187

Os−187

ßi,

calorimetersource=detector

T1/2=4.35 × 1010 y - low radioactivitycalorimetersource=detector

Rhenium beta decay

Δ Jπ = 2- first unique transition187Re →187Os+e-+νe

5/2+→1/2- higher partial waves of leptons

whole spectrum is measured

Rhenium beta decay

p-waves have to be taken into account Δ Jπ = 2- =>

..)()()1()(2 5 chxjxxG

H e +−= μνμβ

β ψγγψ

)().1()( kvrkix +=νψ

⎟⎠⎞

⎜⎝⎛ +−−= )..

31.(),()ˆ.

21(),()()( 1

00 rprpEZFirZiEZFpuxe γγγγαψ

plane wave expansion - rkie .

s wave p wave

s1/2 wave p1/2 wave p3/2 wave

Rhenium beta decay

Δ Jπ = 2- => leptons have to take

Amplitude = e (s1/2) & ν(p) + e(p3/2) & ν(s)

2/11 − + 2/11 +

Δ L = 2

e (p1/2) & ν(p) => no change of parity

( )),(),(31

02

122 EZFkEZFpR +×

2200

23

22

)()(2 νπ

mEEEEpEMVGdEd udF −−−=Γ

Rhenium beta decay

first unique transition

for allowed trans. only F0 survives = s waves of both leptons

2

1872

1872

2 Re||)(3

4||12

>⊗<+

= ∑ +

nnn

nn

i

A YRrOs

JgM στπ

Rhenium beta decayelectron kinetic energy spectrum normalized to unity

0523.0||)(3

4||10*35.4 210

2/1 =>⊗<⇒= ∑n

innn

f JYRrJyT σπ

Rhenium beta decay

2200

223

22

)()(6 νπ

mEEEEpERMVGdEd udF −−−=Γ ( )),(),( 0

21

2 EZFkEZFp +

dEd

dEd

dEd SP Γ

=Γ 410027.1/ −×=ΓΓ PS

electron P wave is dominant => important

Rhenium beta decay

plane wave limit => neglecting the Coulomb interaction 1),(

1),(

1

0

→→

EZFEZF

keVk 47.2max = keVp 50max ≅

kinematics is enhancing the P wave

Rhenium beta decay

νmQTe −=maxQ - highest electron kinetic energyto obtain in case of zero neutrino mass

S and P wave contributions near the endpoint

maxee TTY −=

Rhenium beta decay

- negligible

The goal is that we can define (similar as for tritium)

- almost constant due to small Q value in comparison with me

220

2 )( νmEEk e −−=

),(),(

0

12

e

e

EZFEZFp

Rhenium beta decay

Kurie plot properly scaled is the same for 3H & 187Re

42

0

2

0Re )(1)(/)(

eee EE

mEEBEK−

−−≅ ν

ee EEy −= max Arnaboldi, PRL 96, 042503 (2006)

experimenttheory

Conclusions

• Exact relativistic treatment of 3H beta decay including recoil

• Dominance of P wave of electron in 187Re first unique decay

• Linearity of Kurie plot in 187Re decay under discussion with Milano group