EM 424: Equilibrium in Cylindrical Coordinatese_m.424/Equi_Cylind_Coord.pdf · EM 424: Equilibrium...

3
EM 424: Equilibrium in Cylindrical Coordinates Equilibrium Equations in Cylindrical Coordinates The equilibrium equations in Cartesian coordinates in terms of the traction vectors acting on the coordinate planes were found to be: T e i ( ) x i i =1 3 + f = 0 where T e i ( ) = σ ij e j j =1 3 i = 1, 2, 3 ( ) We would like to be able to generalize these equations to other coordinate systems, with cylindrical coordinates in particular in mind. We can do this if we place these equations in a coordinate- invariant form. This can be done with the aid of the vector identity ∇⋅ φ A ( ) = φ A + A φ To see this, first consider B i x i i =1 3 =∇⋅ B =∇⋅ B i e i ( ) i =1 3 If we let φ = B i and A = e i then we have B i x i = B i ∇⋅ e i ( ) + e i ⋅∇ ( ) B i i =1 3 i =1 3 = ∇⋅ e i ( ) + e i ⋅∇ ( ) [ ] B i i =1 3 which is a coordinate-invariant form of the divergence. Now, consider B i x i i =1 3 = x i B ij e j j =1 3 i1 3 = B ij x i e j + B ij e j x i j =1 3 i =1 3 = B ij x i e j + B ij e i ⋅∇ ( ) e j j =1 3 i =1 3 But from our previous result on the divergence we can write

Transcript of EM 424: Equilibrium in Cylindrical Coordinatese_m.424/Equi_Cylind_Coord.pdf · EM 424: Equilibrium...

Page 1: EM 424: Equilibrium in Cylindrical Coordinatese_m.424/Equi_Cylind_Coord.pdf · EM 424: Equilibrium in Cylindrical Coordinates Equilibrium Equations in Cylindrical Coordinates The

EM 424: Equilibrium in Cylindrical Coordinates

Equilibrium Equations in Cylindrical Coordinates The equilibrium equations in Cartesian coordinates in terms of the traction vectors acting on the coordinate planes were found to be:

∂T e i( )

∂xii=1

3∑ + f = 0

where T e i( ) = σ ij e j

j=1

3∑ i = 1,2,3( )

We would like to be able to generalize these equations to other coordinate systems, with cylindrical coordinates in particular in mind. We can do this if we place these equations in a coordinate- invariant form. This can be done with the aid of the vector identity ∇⋅ φA( )= φ ∇⋅A +A ⋅∇φ To see this, first consider

∂Bi∂xii=1

3∑ = ∇⋅B = ∇ ⋅ Bi e i( )

i=1

3∑

If we let φ = Bi and A = ei then we have

∂Bi∂xi

= Bi ∇⋅ e i( )+ e i ⋅ ∇( )Bii=1

3∑

i=1

3∑

= ∇⋅ e i( )+ e i ⋅ ∇( )[ ]Bii=1

3∑

which is a coordinate-invariant form of the divergence. Now, consider

∂Bi∂xii=1

3∑ =

∂∂xi

Bije jj=1

3∑

i−1

3∑

=∂Bij∂xi

e j + Bij∂e j∂xi

j=1

3∑

i=1

3∑

=∂Bij∂xie j + Bij e i ⋅ ∇( )e j

j=1

3∑

i=1

3∑

But from our previous result on the divergence we can write

Page 2: EM 424: Equilibrium in Cylindrical Coordinatese_m.424/Equi_Cylind_Coord.pdf · EM 424: Equilibrium in Cylindrical Coordinates Equilibrium Equations in Cylindrical Coordinates The

EM 424: Equilibrium in Cylindrical Coordinates

∂Bij∂xii=1

3∑ = ∇⋅ e i( )+ ei ⋅ ∇( )[ ]Bij

i=1

3∑

so that we have

∂Bi∂xii=1

3∑ = Bije j ∇⋅ e i( )+ e j ei ⋅ ∇( )Bij + Bij e i ⋅ ∇( )e j[ ]

j=1

3∑

i=1

3∑

= Bi ∇⋅ e i( )+ ei ⋅ ∇( )Bi[ ]i=1

3∑

= ∇⋅ e i + ei ⋅ ∇( )i=1

3∑ Bi

which is the coordinate-invariant form we wanted. If we let Bi = T e i( ) then the equilibrium equations in coordinate-invariant form are

∇⋅ ei + e i ⋅ ∇( )T e i( )

i=1

3∑ + f = 0

To use this result, let

e1 ≡ er = cosθ ex + sinθ e ye2 ≡ eθ = −sinθ ex + cosθ eye3 ≡ ez

and

T e 1( ) = σrrer +σ rθeθ + σrzezT e 2( ) = σθrer +σθθeθ +σθzez

T e 3( ) = σ zrer + σ zθeθ + σzzezf = frer + fθeθ + frer

Using these results and the fact that in cylindrical coordinates

∇ = er∂∂r

+ eθ1r

∂∂θ

+ ez∂∂z

we find

Page 3: EM 424: Equilibrium in Cylindrical Coordinatese_m.424/Equi_Cylind_Coord.pdf · EM 424: Equilibrium in Cylindrical Coordinates Equilibrium Equations in Cylindrical Coordinates The

EM 424: Equilibrium in Cylindrical Coordinates

∇⋅ e1 + e1 ⋅ ∇ =1r

+∂∂r

∇ ⋅ e2 + e2 ⋅∇ =1r

∂∂θ

∇⋅ e3 + e3 ⋅∇ =∂∂z

so that the equilibrium equations are explicitly

∂T e r( )

∂r+T er( )

r+

1r

∂T eθ( )

∂θ+

∂T ez( )

∂z+ f = 0

or, in terms of the stress components

∂σrr

∂rer +

∂σ rθ

∂reθ +

∂σ rz

∂rez

+

σ rr

rer +

σrθ

reθ +

σrz

rez

+1r

∂σθr

∂θer +

∂σθθ

∂θeθ +

∂σθz

∂θez + σθr

∂er∂θ

+ σθθ∂eθ

∂θ

+∂σ zr

∂zer +

∂σ zθ

∂zeθ +

∂σ zz

∂zez

+ frer + fθeθ + fzez( )= 0

which gives

∂σ rr

∂r+ σrr − σθθ

r+ 1r

∂σrθ

∂θ+ ∂σ rz

∂z+ fr = 0

∂σ rθ

∂r+

2σ rθ

r+

1r

∂σθθ

∂θ+

∂σθz

∂z+ fθ = 0

∂σ zr

∂r+

σzr

r+

1r

∂σ zθ

∂θ+

∂σzz

∂z+ fz = 0

and, as with the Cartesian components of stress, we have, from moment equilibrium σrθ = σθ r , σ zθ = σθ z , σz r = σr z