Eli Ben-Haïm LPNHE - IN2P3 - Sorbonne University...
Embed Size (px)
Transcript of Eli Ben-Haïm LPNHE - IN2P3 - Sorbonne University...

Eli Ben-Haïm LPNHE - IN2P3 - Sorbonne University (Paris)
On behalf of the BABAR collaboration

The BABAR detector
e- (9 GeV)
e+ (3GeV)
Magnet 1.5T
Electromagnetic calorimeter
Detector of Cherenkov light
Drift Chamber
Silicon Vertex Tracker
Instrumented flux return
2
PEP-II: asymmetric beams at Υ(4S) threshold
BABAR is well suited for the measurements presented here: clean environment, hermetic detector, excellent PID, good π0 reconstruction
Eli Ben-Haim Moriond EW, March 22nd 2019

The BABAR dataset
3 Eli Ben-Haim Moriond EW, March 22nd 2019
BABAR in operation: 1999 –2008
The analyses presented use the full BaBar dataset: ~430 fb-1 at the Υ(4S) ~50 fb-1 40 MeV below (off peak) (à ∼435M τ+τ− pairs)

Eli Ben-Haim Moriond EW, March 22nd 2019
Vus in tau decays
Branching fractions of τ− → K− nπ0 ντ (n = 0,1,2,3) and τ− → π− nπ0 ντ (n = 3, 4)
Partially documented in Tau 2018 proceedings (https://scipost.org/SciPostPhysProc.1.001) First presented in ICHEP 2018 Expected to be published in 2019
4

Main ways to determine |Vus|
5 Eli Ben-Haim Moriond EW, March 22nd 2019
τ−→K−nπ0ντ
Kaon decays (Kℓ3) K → πℓυ (Kℓ2) K → ℓυ / K → ℓυ
CKM unitarity τ lepton decays
“Inclusive” τ → s (sum of exclusives) ⭐ This talk τ → Kυτ / τ → πυτ
The results from τ decays are systematically lower à Inclusive τ → s is 3.1σ lower than the derivation based on CKM unitarity

|Vus| from “inclusive” τ → s
Significant part of the experimental uncertainties originates from τ− → K− nπ0 ντ
Large theoretical uncertainty
6 Eli Ben-Haim Moriond EW, March 22nd 2019
R(...) ⌘ BF (...)
BF (⌧ ! e⌫⌧⌫e)
[JHEP 01 (2003), 060 ; PRL 94 (2005), 011803]
R(⌧ ! Xs⌫)
|Vus|2=
R(⌧ ! Xd⌫)
|Vud|2� �R⌧,SU3
Break-down of sources of relative uncertainties on |Vus|(τ → s) [%]
τ−→K−nπ0ντ
[Plot from Alberto Lusiani]

Analysis method Basics
Signal modes (1-prong): τ−→K− nπ0 ντ (n=0,1,2,3)
τ−→π− nπ0 ντ (n=3,4) 7 Eli Ben-Haim Moriond EW, March 22nd 2019
τ−→K−nπ0ντ
Divide event into two hemispheres along thrust axis
Require one track in each (oppositely charged) and no additional tracks e± or µ± (tag side) π± or K± (signal side)
Reconstruct 0 to 4 π0 → γγ require no additional γ
Apply reconstruction- and PID- eff. corrections based on MC and control samples
Correct for fake γ from neutrons in the EM calorimeter
Control modes w/ similar topology, σ(BF) ~ 1%: τ−→π− nπ0 ντ (n=0,1,2)
τ−→µ− νµ ντ
e+/µ+

Analysis method Event selection
8 Eli Ben-Haim Moriond EW, March 22nd 2019
τ−→K−nπ0ντ
Requirements to suppress different types of background events: [qq] low multiplicity and large thrust [Bhabha and dimuon events] large missing mass [Two photon events] cut on transverse momentum/missing energy
Signal final states with K0S → 2π0 and η → 3π0 are subtracted as backgrounds
Mode # selected events
Purity (%) ε(%)
τ– → K− ντ 80715 77 0.99 τ– → K− π0 ντ 146948 65 2.16 τ– → K− 2π0 ντ 17930 38 1.34 τ– → K− 3π0 ντ 1863 21 0.13 τ– → π− 3π0 ντ 58598 83 0.49 τ– → π− 4π0 ντ 1706 57 0.12

Background and cross-feed Plots: p of the single
signal-hemisphere track for the 6 signal modes
MC distributions weighted according to the measured BFs
Generally: small S/B ratio.
Much cross feed; better accounted for thanks to the simultaneous fit
Differences between Data-MC within systematic uncertainties
9 Eli Ben-Haim Moriond EW, March 22nd 2019
τ−→K−nπ0ντ
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Ev
ents
/ 0
.1 [
GeV
/c]
00.5
11.5
22.5
33.5
44.5
310×
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Ev
ents
/ 0
.1 [
GeV
/c]
00.5
11.5
22.5
33.5
44.5
310×
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Ev
ents
/ 0
.1 [
GeV
/c]
0100200300400500600700800900
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Ev
ents
/ 0
.1 [
GeV
/c]
0100200300400500600700800900
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Even
ts /
0.1
[G
eV/c
]
0
1
2
3
4
5
6
7310×
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Even
ts /
0.1
[G
eV/c
]
0
1
2
3
4
5
6
7310×
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Ev
ents
/ 0
.1 [
GeV
/c]
0
20
40
60
80
100
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Ev
ents
/ 0
.1 [
GeV
/c]
0
20
40
60
80
100
Data τν -π → -ττν
0K -π → -τ τν η - K→ -τ
τν µ
ν -µ → -τ
τν - K→ -τ τν 0π -π → -τ
τν 0π
0K -π → -τ τν 0
π η - K→ -ττν eν - e→ -τ
τν 0π - K→ -τ τν 0
π 0π -π → -τ
τν 0
K - K→ -τ τν 0π η -π → -τ -µ +µ → -e+e
τν 0π 0
π - K→ -τ τν 0π
0π 0
π -π → -ττν 0
π 0
K - K→ -τ τν 0π 0
π η -π → -τ q q → -e+e
τν 0π 0
π 0π - K→ -τ τν 0
π 0π
0π 0
π -π → -ττν 0 K
0K -π → -τ Rest→ -τ
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Ev
ents
/ 0
.1 [
GeV
/c]
0
0.5
1
1.5
2
2.5
3
3.5
310×
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Ev
ents
/ 0
.1 [
GeV
/c]
0
0.5
1
1.5
2
2.5
3
3.5
310×
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Ev
ents
/ 0
.1 [
GeV
/c]
0
20
40
60
80
100
p [GeV/c]0 0.5 1 1.5 2 2.5 3 3.5
Ev
ents
/ 0
.1 [
GeV
/c]
0
20
40
60
80
100
K− ντ K− π0 ντ
K− 2π0 ντ K− 3π0 ντ
π− 3π0 ντ π− 4π0 ντ
BABAR Preliminary
BABAR Preliminary
BABAR Preliminary
BABAR Preliminary
BABAR Preliminary
BABAR Preliminary

Results: branching fractions comparison to world average and previous results
10 Eli Ben-Haim Moriond EW, March 22nd 2019
τ−→K−nπ0ντ
0.6 0.7 0.8) [%]τν
- K→ -τB(
CLEO 1994 0.090± 0.070 ±0.660
DELPHI 1994 0.180±0.850
ALEPH 1999 0.014± 0.025 ±0.696
OPAL 2001 0.029± 0.027 ±0.658
BaBar 2010 0.010± 0.006 ±0.692
HFLAV Spring 2017 0.010±0.696
BaBar ICHEP 2018 0.021± 0.003 ±0.717
A.L. elab.CKM 2018
0.4 0.5 0.6) [%]τν 0π - K→ -τB(
CLEO 1994 0.070± 0.100 ±0.510
ALEPH 1999 0.024± 0.026 ±0.444
OPAL 2004 0.023± 0.059 ±0.471
BaBar 2007 0.018± 0.003 ±0.416
HFLAV Spring 2017 0.015±0.433
BaBar ICHEP 2018 0.015± 0.002 ±0.505
A.L. elab.CKM 2018
0 5 10]-410×)) [0 (ex. Kτν 0π 2- K→ -τB(
CLEO 1994 3.000± 10.000 ±9.000
ALEPH 1999 1.500± 2.000 ±5.600
HFLAV Spring 2017 2.204±6.398
BaBar ICHEP 2018 0.338± 0.117 ±6.151
A.L. elab.CKM 2018
0.9 1 1.1 1.2)) [%]0 (ex. Kτν 0π 3-π → -τB(
ALEPH 05C 0.058± 0.069 ±0.977
HFLAV Spring 2017 0.075±1.029
BaBar ICHEP 2018 0.038± 0.006 ±1.168
A.L. elab.CKM 2018
2 4 6]-410×)) [η,0 (ex. Kτν 0π 3- K→ -τB(
ALEPH 1999 1.100± 2.100 ±3.700
HFLAV Spring 2017 2.161±4.284
BaBar ICHEP 2018 0.238± 0.164 ±1.246
A.L. elab.CKM 2018
K− ντ K− π0 ντ
K− 2π0 ντ K− 3π0 ντ
π− 3π0 ντ
0.1 0.15)) [%]η,0 (ex. Kτν 0π 4- h→ -τB(
ALEPH 2005 0.035± 0.037 ±0.112
HFLAV Spring 2017 0.039±0.110
BaBar ICHEP 2018 0.007± 0.004 ±0.090
A.L. elab.CKM 2018
π− 4π0 ντ
The new BABAR results improve the knowledge of these BFs except for BF(τ−→K− ντ) (for which the 2010 result has better accuracy)
Plots from Alberto Lusiani
(CKM 2018)

Impact on Vus (I)
11 Eli Ben-Haim Moriond EW, March 22nd 2019
τ−→K−nπ0ντ
Break-down of sources of relative uncertainties on |Vus|(τ → s) [%] including new measurements
Substantial improvement from the present analysis
[Plot from Alberto Lusiani]

Impact on Vus (II)
12 Eli Ben-Haim Moriond EW, March 22nd 2019
τ−→K−nπ0ντ
Break-down of sources of
uncertainties on |Vus|(τ → s)
0.22 0.225|us|V
= 2+1+1, PDG 2018f, Nl3K 0.0008±0.2231
= 2+1+1, PDG 2018f, Nl2K 0.0007±0.2253
CKM unitarity, PDG 2018 0.0009±0.2256
s incl., HFLAV Spring 2017→ τ 0.0021±0.2186
s incl., A.L. PHIPSI 2019→ τ 0.0019±0.2195
A. LusianiPHIPSI 2019
Slight increase of the central value and reduced uncertainty Vus from τ → s “inclusive” branching fractions is still ~3σ away from the value derived from CKM unitarity

Eli Ben-Haim Moriond EW, March 22nd 2019
Lepton universality test in D decays
First observation of the decay D0 → K− π+ e+ e−
PRL 122, 081802 (2019)
13

Introduction and motivations
Several measurements in B-meson decays indicate possible deviations from lepton universality à Do electrons and muons couple with equal strength in D-meson decays?
LHCb measured BF(D0→K−π+µ+µ−) [PLB 757 (2016) 558] ; while the e+e− mode was not yet observed
D0→K−π+e+e− are FCNC processes ⇒ small in the SM (forbidden at tree level)
14 Eli Ben-Haim Moriond EW, March 22nd 2019
D0→K−π+e+e−
Short-distance contributions (when no resonances are present): loop/box diagrams (BF ~ O(10-9))
Long-distance contributions such as D0→K−π+ρ0(e+e−) may reach BF ~ O(10-6)
Certain beyond-standard-model scenarios enhance the BF
e+
e−

Analysis strategy
Reconstruct D0→K−π+e+e− and D0→K−π+π+π− from D*+→D0 π+ produced in cc continuum
Maximum-Likelihood Fit to m(D0) and Δm = m(D*+) − m(D0) Apply candidate-by-candidate reconstruction efficiencies and normalize to
D0→K−π+π+π− to determine D0→K−π+e+e− branching fraction:
Reconstruction and event selection: Slow π (from D*) with charge opposite to that of the K (from D0) D0 momentum in the center-of-mass frame > 2.4 GeV/c
(rejects D0 from B-meson decays and most of the continuum background) Particle ID requirements for all particles
15 Eli Ben-Haim Moriond EW, March 22nd 2019
D0→K−π+e+e−

Results in the m(e+e-) ~ m(ρ) region 0.675 < m(e+e−) < 0.875 GeV/c2
Agrees with the SM prediction [JHEP 04 (2013) 135] and with the LHCb measurement in the same mass range: BF(D0→K−π+µ+µ−) = (4.17 ± 0.12 ± 0.40) × 10−6 [PLB 757 (2016) 558]
16 Eli Ben-Haim Moriond EW, March 22nd 2019
D0→K−π+e+e−
BF(D0→K−π+e+e−) = (4.0 ± 0.5 [stat.] ± 0.2 [syst.] ± 0.1 [norm.]) × 10−6
No evidence for deviation from equal lepton
coupling strengths
68 ± 9 signal candidates
Significance: 9.7 σ
sPlot
sPlot
Distributions similar to those from LHCb in D0→K−π+µ+µ−

Results in other m(e+e-) ranges
17 Eli Ben-Haim Moriond EW, March 22nd 2019
D0→K−π+e+e−
ϕ region: 3.8+2.7
−1.9 signal events (1.8σ) BF(D0→K−π+e+e−) < 0.5 ×10−6
at 90% C.L.
Continuum ranges (all white regions): Residual resonant contributions subtracted
(probe NP in short distance contributions, SM: O(10-9) ) 19±7 signal events (2.6σ)
BF(D0→K−π+e+e−) < 3.1 ×10−6 at 90% C.L.

Conclusions
Improvement of the |Vus| determination through hadronic τ decays à still ~3σ away from the value derived from CKM unitarity
The results presented here are expected to be published soon
The decay D0→K−π+e+e− has been observed for the first time à Comparing to BF(D0→K−π+µ+µ−) from LHCb, no evidence of deviation from equal lepton coupling strength
A search for LNV/LFV in D0→h−h’−ℓ+ℓ+ and D0→h−h’+ℓ−ℓ+
(h(’) = K, π ; ℓ = e, µ) is being finalized
Eli Ben-Haim Moriond EW, March 22nd 2019 18
BABAR continues to produce exciting physics results, adding more information and using more sophisticated analysis techniques to probe new physics effects