Electroweak Theory and Higgs Physics Preliminary Version

35
Electroweak Theory and Higgs Physics Preliminary Version Chris Quigg Fermilab Theory Group [email protected] Fermilab Academic Lectures · 1 – 17 November 2005 Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 1 bis

Transcript of Electroweak Theory and Higgs Physics Preliminary Version

Page 1: Electroweak Theory and Higgs Physics Preliminary Version

Electroweak Theory

and Higgs Physics

Preliminary Version

Chris QuiggFermilab Theory Group

[email protected]

Fermilab Academic Lectures · 1 – 17 November 2005

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 1bis

Page 2: Electroweak Theory and Higgs Physics Preliminary Version

A Decade of Discovery Past . . . Electroweak theory → law of nature

[Z, e+e−, pp, νN , (g − 2)µ, . . . ]

Higgs-boson influence observed in the vacuum

[EW experiments]

Neutrino flavor oscillations: νµ → ντ ,νe → νµ/ντ [ν, νatm, reactors]

Understanding QCD

[heavy flavor, Z0, pp, νN , ep, ions, lattice]

Discovery of top quark [pp]

Direct CP violation in K → ππ [fixed-target]

B-meson decays violate CP [e+e− → BB]

Flat universe dominated by dark matter, energy

[SN Ia, CMB, LSS]

Detection of ντ interactions [fixed-target]

Quarks & leptons structureless at TeV scale

[mainly colliders]

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 2bis

Page 3: Electroweak Theory and Higgs Physics Preliminary Version

A Decade of Discovery Past . . . Electroweak theory → law of nature

[Z, e+e−, pp, νN , (g − 2)µ, . . . ]

Higgs-boson influence observed in the vacuum

[EW experiments]

Neutrino flavor oscillations: νµ → ντ ,νe → νµ/ντ [ν, νatm, reactors]

Understanding QCD

[heavy flavor, Z0, pp, νN , ep, ions, lattice]

Discovery of top quark [pp]

Direct CP violation in K → ππ [fixed-target]

B-meson decays violate CP [e+e− → BB]

Flat universe dominated by dark matter, energy

[SN Ia, CMB, LSS]

Detection of ντ interactions [fixed-target]

Quarks & leptons structureless at TeV scale

[mainly colliders]

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 2bis

Page 4: Electroweak Theory and Higgs Physics Preliminary Version

Goal: Understanding the Everyday

Why are there atoms?

Why chemistry?

Why stable structures?

What makes life possible?

What would the world be likewithout a (Higgs) mechanism to hideelectroweak symmetry and givemasses to the quarks and leptons?Consider the effects of all theSU(3)c ⊗ SU(2)L ⊗ U(1)Y gaugesymmetries.

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 3bis

Page 5: Electroweak Theory and Higgs Physics Preliminary Version

Goal: Understanding the Everyday

Why are there atoms?

Why chemistry?

Why stable structures?

What makes life possible?

What would the world be like,without a (Higgs) mechanism to hideelectroweak symmetry and givemasses to the quarks and leptons?Consider the effects of all theSU(3)c ⊗ SU(2)L ⊗ U(1)Y gaugesymmetries.

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 3bis

Page 6: Electroweak Theory and Higgs Physics Preliminary Version

Searching for the mechanism ofelectroweak symmetry breaking,we seek to understand

why the world is the way it is.

This is one of the deepestquestions humans have everpursued, and

it is coming within the reach ofparticle physics.

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 4bis

Page 7: Electroweak Theory and Higgs Physics Preliminary Version

Tevatron Collider is running now,

breaking new ground in sensitivity

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 5bis

Page 8: Electroweak Theory and Higgs Physics Preliminary Version

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 6bis

Page 9: Electroweak Theory and Higgs Physics Preliminary Version

Tevatron Collider in a Nutshell

980-GeV protons, antiprotons

(2π km)

frequency of revolution ≈ 45 000 s−1

392 ns between crossings

(36 ⊗ 36 bunches)

collision rate = L · σinelastic ≈ 107 s−1

c ≈ 109 km/h; vp ≈ c − 495 km/h

Record Linit = 1.64 × 1032 cm−2 s−1

[CERN ISR: pp, 1.4]

Maximum p at Low β: 1.661 × 1012

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 7bis

Page 10: Electroweak Theory and Higgs Physics Preliminary Version

The LHC will operate soon, breaking

new ground in energy and sensitivity

30 June 200530 June30 June30 June 200520052005Gigi Rolandi - CERNGigi RolandiGigi RolandiGigi Rolandi - CERN - CERN - CERN

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 8bis

Page 11: Electroweak Theory and Higgs Physics Preliminary Version

LHC in a nutshell

7-TeV protons on protons (27 km);

vp ≈ c − 10 km/h

Novel two-in-one dipoles (≈ 9 teslas)

Startup: 43 ⊗ 43 → 156 ⊗ 156

bunches, L ≈ 6 × 1031 cm−2 s−1

Early: 936 bunches,

L∼> 5 × 1032 cm−2 s−1 [75 ns]

Next phase: 2808 bunches,

L → 2 × 1033 cm−2 s−1

25 ns bunch spacing

Eventual: L∼> 1034 cm−2 s−1:

100 fb−1/year

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 9bis

Page 12: Electroweak Theory and Higgs Physics Preliminary Version

Tentative Outline . . .

Preliminaries

Current state of particle physics

A few words about QCD

Sources of mass

Antecedents of the electroweak theory

What led to EW theory

What EW theory needs to explain

Some consequences of the Fermi theory

µ decay

νe scattering

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 10bis

Page 13: Electroweak Theory and Higgs Physics Preliminary Version

. . . Outline . . .

SU(2)L ⊗ U(1)Y theory

Gauge theories

Spontaneous symmetry breaking

Consequences: W±, Z0/NC, H, mf?

Measuring sin2 θW in νe scattering

GIM / CKM

Phenomena at tree level and beyond

Z0 pole

W mass and width

Atomic parity violation

Vacuum energy problem

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 11bis

Page 14: Electroweak Theory and Higgs Physics Preliminary Version

. . . Outline

The Higgs boson and the 1-TeV scale

Why the Higgs boson must exist

Higgs properties, constraints

How well can we anticipate MH?

Higgs searches

The problems of mass

The EW scale and beyond

Hierarchy problem

Why is the EW scale so small?

Why is the Planck scale so large?

Outlook

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 12bis

Page 15: Electroweak Theory and Higgs Physics Preliminary Version

General References

C. Quigg, “Nature’s Greatest Puzzles,”

hep-ph/0502070

C. Quigg, “The Electroweak Theory,”

hep-ph/0204104 (TASI 2000 Lectures)

C. Quigg, Gauge Theories of the Strong, Weak,

and Electromagnetic Interactions

I. J. R. Aitchison & A. J. G. Hey, Gauge Theories

in Particle Physics

R. N. Cahn & G. Goldhaber, Experimental

Foundations of Particle Physics

G. Altarelli & M. Grunewald, “Precision

Electroweak Tests of the SM,” hep-ph/0404165

F. Teubert, “Electroweak Physics,” ICHEP04

S. de Jong, “Tests of the Electroweak Sector of

the Standard Model,” EPS HEPP 2005

Problem sets: http://lutece.fnal.gov/TASI/default.html

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 13bis

Page 16: Electroweak Theory and Higgs Physics Preliminary Version

Our picture of matter

Pointlike constituents (r < 10−18 m)

(

u

d

)

L

(

c

s

)

L

(

t

b

)

L

(

νe

e−

)

L

(

νµ

µ−

)

L

(

ντ

τ−

)

L

Few fundamental forces, derived from

gauge symmetries

SU(3)c ⊗ SU(2)L ⊗ U(1)Y

Electroweak symmetry breaking

Higgs mechanism?

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 14bis

Page 17: Electroweak Theory and Higgs Physics Preliminary Version

uL

dL

cL

sL

tL

bL

eL

µL

τLνe

νµ

ντ

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 15bis

Page 18: Electroweak Theory and Higgs Physics Preliminary Version

uR

dR

cR

sR

tR

bR

eR

µR

τR

uL

dL

cL

sL

tL

bL

eL

µL

τLνe

νµ

ντ

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 16bis

Page 19: Electroweak Theory and Higgs Physics Preliminary Version

uR

dR

cR

sR

tR

bR

eR

µR

τR

uL

dL

cL

sL

tL

bL

eL

µL

τLνe

νµ

ντ

νe

νµ

ντ

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 16bis

Page 20: Electroweak Theory and Higgs Physics Preliminary Version

uR

dR

cR

sR

tR

bR

eR

µR

τR

uL

dL

cL

sL

tL

bL

eL

µL

τLν1

ν2

ν3

ν1

ν2

ν3

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 16ter

Page 21: Electroweak Theory and Higgs Physics Preliminary Version

Elementarity Are quarks and leptons structureless?

Symmetry Electroweak symmetry breaking and the 1-TeV scale

Origin of gauge symmetries

Meaning of discrete symmetries

Unity Coupling constant unification

Unification of quarks and leptons

(neutrality of atoms ⇒ new forces!);

of constituents and force particles

Incorporation of gravity

Identity Fermion masses and mixings; CP violation; ν oscillations

What makes an electron an e and a top quark a t?

Topography What is the fabric of space and time?

. . . the origin of space and time?

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 17bis

Page 22: Electroweak Theory and Higgs Physics Preliminary Version

Elementarity

The World’s Most Powerful Microscopes

nanonanophysics

CDF dijet event (√

s = 1.96 TeV):

ET = 1.364 TeV

qq → jet + jet

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 18bis

Page 23: Electroweak Theory and Higgs Physics Preliminary Version

Elementarity

If the Lagrangian has the form ±g2

2Λ2 ψLγµψLψLγµψL (with g2/4π set

equal to 1), then we define Λ ≡ Λ±

LL. For the full definitions and for other

forms, see the Note in the Listings on Searches for Quark and Lepton Compos-iteness in the full Review and the original literature.

Λ+

LL(e e e e) > 8.3 TeV, CL = 95%

Λ−

LL(e e e e) > 10.3 TeV, CL = 95%

Λ+

LL(e eµµ) > 8.5 TeV, CL = 95%

Λ−

LL(e eµµ) > 6.3 TeV, CL = 95%

Λ+

LL(e e τ τ) > 5.4 TeV, CL = 95%

Λ−

LL(e e τ τ) > 6.5 TeV, CL = 95%

Λ+LL

(````) > 9.0 TeV, CL = 95%

Λ−

LL(````) > 7.8 TeV, CL = 95%

Λ+

LL(e e uu) > 23.3 TeV, CL = 95%

Λ−

LL(e e uu) > 12.5 TeV, CL = 95%

Λ+

LL(e e d d) > 11.1 TeV, CL = 95%

Λ−

LL(e e d d) > 26.4 TeV, CL = 95%

Λ+

LL(e e c c) > 1.0 TeV, CL = 95%

Λ−

LL(e e c c) > 2.1 TeV, CL = 95%

Λ+LL

(e e bb) > 5.6 TeV, CL = 95%

Λ−

LL(e e bb) > 4.9 TeV, CL = 95%

Λ+LL

(µµqq) > 2.9 TeV, CL = 95%

Λ−

LL(µµqq) > 4.2 TeV, CL = 95%

Λ(`ν `ν) > 3.10 TeV, CL = 90%Λ(e ν qq) > 2.81 TeV, CL = 95%

Λ+

LL(qqqq) > 2.7 TeV, CL = 95%

Λ−

LL(qqqq) > 2.4 TeV, CL = 95%

Λ+

LL(ν ν qq) > 5.0 TeV, CL = 95%

Λ−

LL(ν ν qq) > 5.4 TeV, CL = 95%

HTTP://PDG.LBL.GOV Page 3 Created: 6/14/2004 20:00

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 19bis

Page 24: Electroweak Theory and Higgs Physics Preliminary Version

Two views of Symmetry

1. Indistinguishability

One object transformed into another

Familiar (and useful!) from

Global Symmetries: isospin, SU(3)f , . . .

Spacetime Symmetries

Gauge Symmetries

“EQUIVALENCE”

Idealize more perfect worlds, the better

to understand our diverse, changing world

Unbroken unified theory: perfect world of

equivalent forces, interchangeable massless

particles . . .Perfectly boring?

Symmetry ⇔ Disorder

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 20bis

Page 25: Electroweak Theory and Higgs Physics Preliminary Version

A Perfect World

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 21bis

Page 26: Electroweak Theory and Higgs Physics Preliminary Version

Two views of Symmetry

2. Unobservable

Goodness of a symmetry means

something cannot be measured

e.g., vanishing asymmetry

Un observable Transformation Conserved

Absolute position ~r → ~r + ~∆ ~p

Absolute time t → t + δ E

Absolute orientation r → r′ ~L

Absolute velocity ~v → ~v + ~w

Absolute right ~r → −~r P

Absolute future t → −t T

Absolute charge Q → −Q C

Absolute phase...

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 22bis

Page 27: Electroweak Theory and Higgs Physics Preliminary Version

Unity

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 23bis

Page 28: Electroweak Theory and Higgs Physics Preliminary Version

QCD is part of the standard model

. . . a remarkably simple, successful, and rich theory

Wilczek, hep-ph/9907340

Perturbative QCD

• Exists, thanks to asymptotic freedom

• Describes many phenomena in quantitative

detail:

Q2-evolution of structure functions

Jet production in pp collisions

Many decays, event shapes, . . .

• We can measure the running of αs

(engineering value for unification)

Nonperturbative (lattice) QCD

• Predicts the hadron spectrum

• Gives our best information on quark masses,

etc. El-Khadra & Luke, hep-ph/0208114

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 24bis

Page 29: Electroweak Theory and Higgs Physics Preliminary Version

F2(x,Q2) in νFe interactions (NuTeV)

0.1

1

1 10 100 1000

F 2(x

,Q2 )

Q2 (GeV/c)2

x=0.015 (X3)

x=0.045 (X1.8)

x=0.080 (X1.3)

x=0.125x=0.175x=0.225

x=0.275

x=0.35

x=0.45

x=0.55

x=0.65

x=0.75NuTeVCCFR

CDHSWNuTeV fit

hep-ex/0509010

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 25bis

Page 30: Electroweak Theory and Higgs Physics Preliminary Version

F2(x,Q2) in `N interactions (ZEUS)

ZEUS

0

1

2

3

4

5

1 10 102

103

104

105

F2 em

-log

10(x

)

Q2(GeV2)

ZEUS NLO QCD fit

tot. error

ZEUS 96/97

BCDMS

E665

NMC

x=6.32E-5 x=0.000102x=0.000161

x=0.000253

x=0.0004x=0.0005

x=0.000632x=0.0008

x=0.0013

x=0.0021

x=0.0032

x=0.005

x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65

ZEUS, hep-ex/0208023.

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 26bis

Page 31: Electroweak Theory and Higgs Physics Preliminary Version

Inclusive jet cross section at√s = 1.96 TeV (CDF-II)

(GeV/c)Tp0 100 200 300 400 500 600 700

[n

b/(

GeV

/c)]

T

/dyd

pσ2

d

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

CDF Run II Preliminary

/2)JetT=pµNLO pQCD EKS CTEQ 6.1M, (

=1.3 Sep

=0.75, Rmerge=0.7, fconeMidpoint R0.1<|y|<0.7

-1 L = 385 pb∫

Total systematic uncertainty

Data corrected to parton level

NLO pQCD

CDF Run II Preliminary

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 27bis

Page 32: Electroweak Theory and Higgs Physics Preliminary Version

Running αs(Q)

Comprehensive survey: W. de Boer, hep-ex/0407021

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 28bis

Page 33: Electroweak Theory and Higgs Physics Preliminary Version

jets & shapes 161 GeV

jets & shapes 172 GeV

0.08 0.10 0.12 0.14

(((( ))))s Z

-decays [LEP]

xF [ -DIS]F [e-, µ-DIS]

decays

(Z --> had.) [LEP]

e e [ ]+had

_e e [jets & shapes 35 GeV]+ _

(pp --> jets)

pp --> bb X

0

QQ + lattice QCD

DIS [GLS-SR]

2

3

pp, pp --> X

DIS [Bj-SR]

e e [jets & shapes 58 GeV]+ _

jets & shapes 133 GeV

e e [jets & shapes 22 GeV]+ _

e e [jets & shapes 44 GeV]+ _

e e [ ]+had

_

jets & shapes 183 GeV

DIS [pol. strct. fctn.]

jets & shapes 189 GeV

e e [scaling. viol.]+ _

jets & shapes 91.2 GeV

e e F+ _2

e e [jets & shapes 14 GeV]+ _

e e [4-jet rate]+ _

jets & shapes 195 GeVjets & shapes 201 GeVjets & shapes 206 GeV

DIS [ep –> jets]

hep-ex/0407021

2

4

6

8

1 0

1 2

1 1 0 100

1/α

s

Q [GeV]

NM

C

G–

LS

CL

EO

PE

P

τ

TR

ISTA

N

LE

PU

A2

La

ttic

e

e+e

e+e

– e

ven

t sh

ap

es

LEP2

PDG

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 29bis

Page 34: Electroweak Theory and Higgs Physics Preliminary Version

Quenched hadron spectrum

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

m [

Ge

V]

GF11 infinite volume K input

CPPACS K input

CPPACS φ inputK

K*

φ

N

Λ

Σ

Ξ

Σ*

Ξ*

Ω

S. Aoki, et al. (CP–PACS), Phys. Rev. Lett. 84, 238 (2000)

(No dynamical fermions)

2 + 1 dynamical flavors: A. Ukawa, Beijing QCD 2005,

http://www.phy.pku.edu.cn/˜qcd/transparency/20-plen-m/Ukawa.pdf.

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 30bis

Page 35: Electroweak Theory and Higgs Physics Preliminary Version

The Origins of Mass

(masses of nuclei “understood”)

p, [π], ρ understood: QCD

confinement energy is the source

“Mass without mass”

Wilczek, Phys. Today (November 1999)

We understand the visible mass of the Universe

. . . without the Higgs mechanism

W,Z electroweak symmetry breaking

M2W = 1

2g2v2 = πα/GF

√2 sin2 θW

M2Z = M2

W /cos2 θW

q, `∓ EWSB + Yukawa couplings

ν` EWSB + Yukawa couplings; new physics?

All fermion masses ⇔ physics beyond standard model

H ?? fifth force ??

Chris Quigg Electroweak Theory · Fermilab Academic Lectures 2005 31bis