Electron - Weber State University · 2004-03-26 · THE PERIODIC TABLE Particles like the electron...

34
Electron - Positron Annihilation D. Schroeder, 29 October 2002 µ h W + + + + + + + + + + + + + π K ν γ Z

Transcript of Electron - Weber State University · 2004-03-26 · THE PERIODIC TABLE Particles like the electron...

Electron - Positron Annihilation

D. Schroeder, 29 October 2002

µ

hW

−−

−−

−−

−−

− +

++

+

+

+

+

+

+

+

+

+

+

π

K

ν

γ

Z

OUTLINE

• Electron-positron storage rings

• Detectors

• Reaction examples

e+e− −→ e+e−

[Inventory of known particles]

e+e− −→ µ+µ−

e+e− −→ q q

e+e− −→ W+W−

• The future: Linear colliders

Stanford8 GeV30 GeV100 GeV12 GeV

Ithaca12 GeV

Hamburg11 GeV47 GeV

Geneva200 GeV

Beijing4 GeV

Novosibirsk12 GeV

Tokyo64 GeV12 GeV

Electron-Positron Colliders

$ = αR +β E4

R

0 =d $dR

= α − β E4

R2

=⇒ R =

√β

αE2, $ = 2

√αβ E

E

2

Size (R) and Cost ($) of an e+e− Storage Ring

( = beam energy)

Find minimum $:

SPEAR: E = 8 GeV, R = 40 m, $ = 5 million

LEP: E = 200 GeV, R = 4.3 km, $ = 1 billion

Example 1:

momentum = 0

total

total

energy = 2E

Probability(E,θ) =

E-dependence follows from dimensional analysis:

density = ρ−

A

+

density = ρ+

Probability = (ρ−ρ+ − +A) × (something with units of length2)

When E me, the only relevant length ish

p=hc

E

=⇒

e+e−

e+

e−

θ

︸ ︷︷ ︸ ︸ ︷︷ ︸

e+e− −→ e+e−

?

Probability ∝ 1E2

Num

ber

ofC

ounts

cos θ

−0.8 −0.4 0 0.4 0.80

1000

2000

3000

4000

5000

6000

at SPEAR

Ecm = 4.8 GeV

Theory

Augustin, et al., PRL 34, 233 (1975)

Prediction for e+e− −→ e+e− event rate (H. J. Bhabha, 1935):

(eventrate

)∝ dσ

dΩ=

e4

32π2E2cm

[1 + cos4 θ

2

sin4 θ2

− 2 cos4 θ2

sin2 θ2

+

+

1 + cos2 θ2

]

Interpretation of Bhabha’s formula (R. P. Feynman, 1949):

= (const.) ×

2

Each diagram represents a complex number that depends on E and θ.

Each vertex represents a factor of the electron’s charge, e = −0.303.

e− e+ e− e+

e− e+e− e+

x y

p1 p2

p3 p4

e−ip1·x e−ip2·y

eip3·x eip4·y

∫d4q

(2π)4eiq·(x−y)

q2

e e

Feynman Rules (neglecting spin, h = c = 1)

Multiply pieces together, integrate over x and y . . .

+

+ +++

+ + + +

Higher-Order Diagrams

Also:

More vertices =⇒ more factors of e =⇒ smaller value

any charged particle!

(“vacuum polarization”)

0.4 0.2 0 0.2 0.4 0.60

50

100

150

200

250

cos θ− −

sdσ/d

Ω(G

eV2

nb/s

r)

tree-levelno vacuum polarizationfull radiative corrections

It Works!M. Derrick, et al., Phys. Rev. D34, 3286 (1986)

HRS Collaboration (SLAC)

Ecm = 29 GeV

THE PERIODIC TABLE

Particles likethe electron

Particles likethe photon

(fermions, spin 1/2)

Leptons Quarks (each in 3 “colors”)

−1 0 −1/3 2/3

e

µ

τ

νe

νµ

ντ

ud

cs

tb

γ

g

W± Z0

0.511 MeV

106

1777

< 0.000003

< 0.2

< 20

7 3

1200120

175,0004300

0

0

80,420 91,188

(bosons, spin 1)

photon

gluon(8 “colors”)

“electromagnetism”

“strong interaction”

“weak interaction”

(Gravity is negligible.)

← charge

Example 2: e+e− −→ µ+µ−

Only one diagram:

= (const.)× e4

E2

(1 + cos2 θ

)

(Same as third term in Bhabha formula, provided that E mµ.)

2

e− e+

µ+µ−

e− e+

Example 3: e+e− −→ qq −→ hadrons

uu

d

d

uu d

d

s sπ+π0

π0

K0

K−

gluon

23 |e|

↑ ↑ ↑ ↑ ↑

For 10 GeV< Ecm< 40 GeV,

e+e− → hadronse+e− → µ+µ−

= 3×[(1

3

)2

+(2

3

)2

+(1

3

)2

+(2

3

)2

+(1

3

)2]

colors d u s c b

3 4 5 6 7 8 9 10 20 30 400

1

2

3

4

5

6

7J/ψ ψ(2S)

Ecm (GeV)

R = σ(hadrons)/σ(µ+µ−)

Υ(1S, 2S, 3S)

d+ u+ s

c

b

e− e+

Example 3(b): e+e− −→ Z0 −→ qq

q q

Z01

E2cm −m2

Z

Higher-order diagrams turn ∞ into smooth resonance curve.

0

5

10

15

20

25

30

35

87 88 89 90 91 92 93 94 95 96

Center-of-Mass Energy (GeV)

Tot

al H

adro

nic

Cro

ss-S

ectio

n (n

barn

)

OPAL

+ +

e− e+ e− e+ e− e+

Example 4: e+e− −→W+W−

W− W+ W− W+ W− W+

νeγ Z0

Requires Ecm > 2mW = 160 GeV

0

5

10

15

20

160 170 180 190 200 210

Ecm [GeV]

[p

b]

LEP Preliminary08/07/2001

no ZWW vertex exchange

Full theory

• Direct measurement of mW can be compared to indirect measurements:

• Corrections from higher-order diagrams must be included,

especially:

• Results disagree, typically by ∼

1%!

• Simplest solution: new spin-0 “Higgs” particle, mh < 200 GeV

(Also needed to avoid nonsensical predictions at E > 1000 GeV)

µ−

µ−νµ

νµ

W

W

W

d

t

b

u e−νe

h0

Looking for the Higgs Particle(s)

• Tevatron (Fermilab, Chicago): pp, Ecm = 2000 GeV

• Large Hadron Collider (CERN, Geneva): pp, Ecm = 14, 000 GeV, 2007

Discovery likely! Detailed study difficult.

• e+e− storage ring, Ecm = 500+ GeV? Too big, too expensive.

• e+e− linear collider

e− e+e− e+

W W

νe

Z0

Z0 h0 h0

νe

The Next Linear Collider

e+ e−

20 - 30 km

Suggested Reading

• Feynman, QED: The Strange Theory of Light and Matter

• Barnett, et al., The Charm of Strange Quarks

• Riordan, The Hunting of the Quark

• ParticleAdventure.org

• physics.weber.edu/schroeder/feynman/