Electromagnetically induced transparency (EIT) Electromagnetically induced transparency (EIT)...
date post
19-Jun-2020Category
Documents
view
6download
0
Embed Size (px)
Transcript of Electromagnetically induced transparency (EIT) Electromagnetically induced transparency (EIT)...
Electromagnetically induced transparency (EIT)
Norbert Kalb 19.6.2013
Intro
Absorption
Suppress absorption by avoiding population in the excited state!
ℏω ℏω
nℏω (n-1)ℏω
a) Detune frequency c) EIT b) Saturate absorber
1. Basics and first observation
2. EIT with a single atom in a cavity
3. Slow light in ultracold atomic gases
4. Summary
Intro
Outline
J. Q. You et al., Nature 474, 589 (2011)
2 Ωp 2 + Ωc
2
ℏ H|D =
0 0 Ωp 0 0 Ωc Ωp Ωc 0
Ωc −Ωp 0
=
3-level Hamiltonian on resonance: H = ℏ
2
0 0 Ωp 0 0 Ωc Ωp Ωc 0
Apply Hamiltonian to |D :
|D is eigenvector of H and contains no contribution of the excited state
2-level Hamiltonian on resonance: ℏ
2
0 Ωp Ωp 0
0 0
ΩcΩp − ΩpΩc = 0|D
Basics and first observation
A dark eigenvector
Eigenstates of the Hamiltonian:
|𝜑+ = 1
2 sin 𝜃 1 + cos 𝜃 2 + |3
|𝜑− = 1
2 sin 𝜃 1 + cos 𝜃 2 − |3
|D = Ωp 2 + Ωc
2 −1
Ωc|1 − Ωp|2
|1
|2 ωp, Ωp
ωc, Ωc |3
2 Ωp 2 + Ωc
2
ℏ H|D =
0 0 Ωp 0 0 Ωc Ωp Ωc 0
Ωc −Ωp 0
=
Apply Hamiltonian to |D :
|D is eigenvector of H and contains no contribution of the excited state
0 0
ΩcΩp − ΩpΩc = 0|D
Basics and first observation
A dark eigenvector
Eigenstates of the Hamiltonian:
|𝜑+ = 1
2 sin 𝜃 1 + cos 𝜃 2 + |3
|𝜑− = 1
2 sin 𝜃 1 + cos 𝜃 2 − |3
|D = Ωp 2 + Ωc
2 −1
Ωc|1 − Ωp|2
|1
|2 Ωp
Ωc |3
|3
|1 |2
Basics and first observation
Interference of excitation paths
Excitation path |2 → |3 Excitation path |1 → |3
|D ∝ Ωc|1 − Ωp|2
K. J. Boller et al , PRL 66, 2593 (1991)
ωp
ωc
|3
|1 |2
|3
|1
Basics and first observation
First experimental observation
K. J. Boller et al , PRL 66, 2593 (1991)
ωp
ωc
|3
|1 |2
Basics and first observation
First experimental observation
Basics and first observation
Linewidth of the EIT feature
Probe the lifetime of the dark state
|1 |2
Both states in |D can not decay spontaneously. Dephasing mechanisms result in decay time • Collisions
• Fluctuating magnetic fields
• Broadening by applied fields
p p‘
M. Fleischhauer et al. , Rev. Mod. Phys. 66, 2593 (2005)
ν32 ∝ M32 2ρ E32 ∝ Ωc
2
Γ If Γ ≫ Ωc, treat population transfer by Ωc as perturbation
Transition rate:
Broadening of EIT feature is proportional to Ωc 2
Heisenberg‘s uncertainty principle ∆E ⋅ ∆t ≥ ℏ
⇒ Γ|𝐷 = 1/τ|𝐷
Combining both spectra hints at the response of the system
ωp
ωc
ωp
Cavity QED EIT medium
Cavity EIT
Principle
Empty resonator Cavity QED Cavity EIT
Cavity EIT
Experimental procedure
M. Mücke et al., Nature 465, 755 (2010)
M. Mücke et al., Nature 465, 755 (2010)
N ≈ 15 atoms
Cavity EIT
Multiple atoms Empty resonator Cavity QED Cavity EIT
Contrast
Cavity EIT
Changing the number of atoms
M. Mücke et al., Nature 465, 755 (2010)
Empty resonator Cavity QED Cavity EIT
N = 4 atoms N = 7 atoms
Cavity EIT
A single atom Empty resonator Cavity QED Cavity EIT
M. Mücke et al., Nature 465, 755 (2010)
• Linewidth is proportional to |Ωc| 2
• Contrast is limited by the coupling constant g
• Effective light-light interaction mediated by a single atom
Cavity EIT
Coherent control of the system‘s parameters
M. Mücke et al., Nature 465, 755 (2010)
1. Basics and first observation
2. EIT with a single atom in a cavity
3. Slow light in ultracold atomic gases
4. Summary
J. Q. You et al., Nature 474, 589 (2011)
Slow light
Outline
Absorption coefficient: Refractive index: n ≈ 1 + Re(χ)/2
A = Im(χ)
Re(χ(ω′)) = 1
π Im(χ(ω))
ω − ω′ dω
+∞
−∞
Kramers-Kronig relations
• Steep linear feature around dark state
• Width of the feature is determined by width of transparency window ∝|Ωc|
2
Slow light
Refractive index of EIT media Tr
an sm
is si
o n
( %
) R
ef . i
n d
ex
Probe detuning (MHz)
Susceptibility : Response of several atoms adds up!
ωp
ωc
χ = χ N = 1,ωp
ωc
ωp
χ = N ⋅ χ N = 1,ωp
∝ |Ω𝑐| 2
Group velocity of a pulse in homogeneous media
k = n ω ω
c vg =
dk
dω
−1
= c
n + ω dn dω
= c
1 + ωp dn dωp
Slope of the refractive index around the dark state?
vg ∝ |Ωc|
2
N
Slow light
Group velocity and slow pulses
L. V. Hau et al., Nature 397, 594 (1999)
• BECs have a very high optical density! Absorption = 1 − e−110 ≈ 1 − 10−48
• Sodium atoms trapped at nK temperature
• Camera 1 helps adjusting the pinhole
• Camera 2 provides the length of the cloud
Slow light
Experimental setup
L. V. Hau et al., Nature 397, 594 (1999)
Control beam
Slow light
Group velocity measurements
PM
Reference shot
PM
Slow pulse
L
L. V. Hau et al., Nature 397, 594 (1999)
vg ∝ |Ωc|
2
N
Slow light
Changing parameters
L. V. Hau et al., Nature 397, 594 (1999)
• Opaque media become transparent when a tailored control field is applied
• Cavity EIT gives rise to strong non-linearities from single atoms
• Usain Bolt could outrun light! (Under very restricted conditions)
Summary
Thank you for your attention!
Dr. Stephan Ritter Manuel Brekenfeld