ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a...

35
ELECTRICAL TRANSPORT REGIMES + + + + + + + + + l e φ L diffusive ballistic e e l L L l Inelastic scattering Coulomb interactions Phonons Magnetic moments φ L Elastic scattering Grain boundaries Edges Impurities e l λ λ λ λ , , 3D 2 , 1 , , 0 F x y z F z F y z F X y z L L L L D L L D L L L D φ φ fully coherent incoherent L L L L confinement

Transcript of ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a...

Page 1: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

ELECTRICAL TRANSPORT REGIMES

+ +++

+++++ le

φL

diffusive

ballistice

e

l L

L l

Inelastic scatteringCoulomb interactions

PhononsMagnetic moments

φLElastic scatteringGrain boundaries

EdgesImpurities

el

λλλλ

, , 3D

2

, 1

, , 0

F x y z

F z

F y z

F X y z

L L L

L D

L L D

L L L D

φ

φ

fully coherent

incoherent

L

L

L

Lconfinement

Page 2: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

EXPERIMENTAL PLAYGROUND

80 (nm) 0.5

50meV 10eV

15�m 30nm

10 (�m) 101K

F

F

e

E

l

LT

φ

λ

<

( )3 210 mµ −Low density metals High density metals ( )10 310 mµ −

Epitaxial heterostructures Evaporated thin films

M. Heiblum et al, Weizmann Inst., IsraelN. Birge et F. Pierre, MSU, USA

Page 3: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

TRANSPORT AS A SCATTERING PROBLEM

V

Fully Coherent Conductor

Landauer (1957)Büttiker (1992)

Iφ<<L L

Ideal lead

Lµε

1

)(εLf

Reservoir

Ve

ε

1

)(εRf

Reservoir

Ideal lead

µ µ− =L R eV

Page 4: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

SCATTERING MATRIX

( ) ( )( ) ( )

LL LR

RL RR

S S

S SS

� �� �=� �� �

L L

RR

b a

abS

� � � �=� � � �� � � �� �

� �

� �

( ),1

( )

( ),

L R

L R

L R N

a

a

a

� �� �= � �� �� �

��

,1

,

L

L

L N

b

b

b

� �� �= � �� �� �

��

Incoming modes

Outgoing modes

† † 1SS S S= =Current conservation

unitary

,1La

,2La

,3La

,1Ra

,2Ra

,3Ra

,1Lb

,2Lb

,3Lb

,1Rb

,2Rb

,3Rb

Page 5: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

INDEPENDENT CONDUCTION CHANNELS

( ) ( ) ( )

( ) ( ) ( )

L R L R L R

L R L R L R

a U a

b V b

′ =

′ =

� �

� �

Unitary transformation

( ) ( )( ) ( )

† 1/ 2 1/ 2

† 1/ 2 1/ 2

0 00 0

LL LRL L

R RRL RR

S SV U iR TS

V U T iRS S

� �� � � � � �−� �′ = =� � � � � �� � −� �� � � �� �

With R and T real, diagonal, positive matrices

Collection of independent 1D problems

L L

R R

b aS

b a

� � � �′ ′� � � �′=� � � �′ ′� � � �

� �

� �

Th. Martin and R. Landauer, PRB 45, 1742 (92)

Page 6: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

IDEAL 1D LEADS

2 2( ) / 2k k mε ± = �1

exp ( / )( )

εε

− �Li k x thv

If all states in energy range δεare occupied the current is

( )εδ δε δεε

= =dndL

v eI e

h

density of states in 1D

( )dn Ld hvε ε

=( )electron velocity

/for F F

kv eV

v ε εε

= ∂ ∂≈

Maximum rate of fermions emitted by a source into a 1D lead:1 ε=�dN dh

Rk

)( kε

δε

Page 7: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

SINGLE CHANNEL SCATTERING MATRIX

( ) '( )( )

( ) '( )r t

St r

ε εε

ε ε� �

= � �� �

† † 1SS S S= =Current conservation

2 2 2 2

2 2 2 2

1

1

′ ′+ = + =

′ ′+ = + =

r t r t

r t r t

0

0

t r r t

t r r t

∗ ∗

∗ ∗

′ ′+ =′ ′+ =

2 2

2 2

transmission probability

= 1 reflection probability

t t

r r

τ

ρ τ

′= = =

′= = − =

r r’

t

t’

Page 8: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

EXAMPLE: DELTA BARRIER

2 2

02 ( )2

ψ δ ψ εψ∂− + =∂

�U x

m x

( ) ( )

02

02

02

2( 0) ( 0) (0)

2

is continuous at 0

Derivative discontinuity t

a 0,

2L L R R R R

L L R R

L L R R R R

mU

mUika ikb ika ikb a b

a b a b

mUa b a

x

a

x

b b

ψ ψ ψ

ψ

′ ′+ − − =

� − + − + = +

� + = +

� − + − +

=

=

=

� �

( )0

0 0

0

0 0

22 2

22 2

iUiU iU

SiU

iU iU

εε ε

εε

ε ε

−� �� �+ +� �=� �−� �+ +� �

22

2mk

ε=�

ikx ikx ikx ikxL L R Ra e b e a e b e− −+ +

0 x

U0

Schrödinger eq.

Page 9: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

SCATTERING STATES( ) ( )

( )

left

right

( )(e )1

)( , )

(

L L

R

ik x ik x

ik xF

L

e

vt

he

r

x

ε ε

εεε

εϕ

−� += �

( ) ( )

( )

right

left

( )((

( )

e )1

, )

R R

L

ik x ik x

ik xF

R

r

t

e

xhv

e

ε ε

ε

εε

ϕε

� + ′=

Complete orthonormal basis of current carrying states

rt

Li k xe

τ δεδ =L

eh

I

τ δεδ =R

eh

I

Ri k xe−

r’

t’

Page 10: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

FILLING OF THE SCATTERING STATES BY THE RESERVOIRS

Lϕ Rϕ

r r’

t

t’Rk

)( kε

Lk

)( kε

RµVe

Transport described using eigenstates in equilibrium with different reservoirs

[ ] [ ]

[ ]

( ) ( )( ) ( ) ( )

(( )

( )

) ) )( (

δ τ εε δ ε

ε

ε δ δε

ε τ ε

ε

ε

= − = −

= −�

RL L L

L

R R

R

f I ff I f

f

eI V

h

eV d fI

h

Page 11: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

CONDUCTANCE from TRANSMISSION

[ ]( ) (( ))( )L Rfe

I V dh

fε εε τ ε= −�

2

0

( )lim ( )V

I e fG d

V hεε τ εε→

∂= =∂�

Current

Conductance

LANDAUER FORMULA

MULTICHANNEL2

ii

eG

hτ=

2

τ= eG

h2 (spin)×

2

0 38�S 1/ 26k�= � �e

Gh

If over the energy range between µL and µR( )τ ε τ=

[ ] ( )2

((( ) )) ετ ε τµτε µ= − = − =� L LR R

e e eI V d V

h h hf f

Page 12: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

TRANSPORT from TRANSMISSION

{ττττ1111,..., ,..., ,..., ,..., ττττΝΝΝΝ}Normal state Superconducting

state

Conductance

Shot Noise

Josephsonsupercurrent

Shot NoiseCoulomb Blockade

(‘86)

(‘91)

(‘99)

(‘81)

(‘89)

(‘95)

(‘01)(‘01) Shapiro Steps

Current-Voltagecharacteristic

Thermopower

MESOSCOPIC PIN CODE

Page 13: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

CONDUCTANCE QUANTIZATION

ττττ�=1 for all open channels

0<ττττN<1 for the last channel

( )2 22 2

1i N

e eG N

h hτ τ= = − +

van Wees; Wharam (1988)

T < 1 K

Page 14: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

Counter-support

Insulating layer

Pushing rod

QUANTUM POINT CONTACTS IN METALS

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

��������������

�� ����������

0.0 0.1 0.2 compression (nm)

tunnel regime

Aluminum T = 50 mK

N state (H=0.2 T):

�� ��

Page 15: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

-4 -2 0 2 4

-3

-2

-1

0

1

2

3 ∆ = 178 µVIc = 22.9 nA

I / I c

VJ / (∆ / e)

DC Josephsonsupercurrent peak

Multiple AndreevReflections

Counter-support

Insulating layer

Pushing rod

SUPERCONDUCTING ATOMIC CONTACTS

S state (H=0):

Page 16: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

SUPERCONDUCTING RESERVOIRS

Ideal leadIdeal leads s

• New quasiparticles

• New scattering mechanism

Page 17: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

NORMAL REFLECTION

)( kε

)( kε

An incident up-spin electron is reflectedas an up-spin electron of the same energy

Page 18: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

ANDREEV REFLECTION

)( kε)( kε

S

An incident up-spin electron with energy µ+ε« drags » with it

a down-spin electron of energy µ−εto form a Cooper pair in the superconductor

leaving behind a hole in the spin-down band

Pairingpotential

ie φ∆ = ∆

Page 19: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

COUPLING OF e���� AND h����

0 /Fvξ = ∆�

S

SN

N-S interface

Bulk S

Page 20: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

BOGOLIUBOV-de GENNES EQUATION

Spin-up electrons ∂ =∂� N

ui H u

t

Spin-down holes ∗∂ = −∂� N

vi H v

t

Conjugated particles

† † †, ( ( ) )h e h ec cψ ψ ∗= =

( )N

N

H u ui

H v vt

µ

µ∗ ∗

− ∆� �� � � �∂=� �� � � �� �∆ − − ∂� � � �� ��

( ) /( )( )E

ik E x iEtu Ee e

v Eψ ± ± −� �

= � �� �

Propagating solutions of BdG equation

Page 21: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

SUPERCONDUCTING QUASIPARTICLE STATESelectron-like and hole-like

( )

( )

2( ) 2

( )

22( )

1sgn( )

12 sgn( )

e h

ie h

e h

uE E E

v e

k m E E

φ

µ

= ± − ∆∆

= ± − ∆�

for or 0

( ) ( )1 0and

( ) ( )0 1e h

e h

E

u E u E

v E v E

∆ ∆ →

� � � �� � � �→ →� � � �� � � �

� � � �� � � �

-3 -2 -1 0 1 2 30

1

2

3

4

E ∆

( )( )n F

n E

n ξ ε=

Density of states

evanescent

Page 22: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

ANDREEV REFLECTION AMPLITUDEie φ∆

x

( )1 0,

0 1e

e

ua E

� �� � � �+ = � �� � � �

� � � � � �

( ) ( )( )221, sgne

ie

va E E E E

u e φφ = = − − ∆∆

Matching at x=0

-3 -2 -1 0 1 2 3

2φ π+

φ π+

φ

E ∆-3 -2 -1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

E ∆

( ),a E φ ( )( ),Arg a E φ

Page 23: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

ALL TOGETHER NOW…

Normal + Andreev scattering

s s

s sRegion I

(N)Region II

(N)

Page 24: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

MULTIPLE ANDREEV REFLECTIONS (MAR)

2E neV+

( )2 1E n eV+ +

E

E eV+

2E eV+

3E eV+

Page 25: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

MAR + NORMAL SCATTERING

2E neV+

( )2 1E n eV+ +

( )2 1E n eV+ −

E

Scatterer

Region I(N)

Region II(N)

Superconductor (L)Superconductor (R)

Page 26: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

SCATTERING STATES

2E neV+

( )2 1E n eV+ +

( )2 1E n eV+ −

nB2n na A

nA2n na B

1nD −

2 1 1n na C− −

1nC −

nC

2 1n na D+

nD

( )= +na a E neV

2 0

2 1

n n n n

n n n

B a A JS

C a D

δ

+

+� � � �=� � � �

� � � �

2

2 1 1

n n n

n n n

A a BS

D a C∗

+ −

� � � �=� � � �

� � � �

electrons

holes

1/ 22( ) 1 ( )� �= −� �

J E a E

Page 27: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

a.c. JOSEPHSON CURRENTS

( ) ( )( ) ( )2 /1 2 0 2

N N N Ne e h h i E neV tik x ik x ik x ik x

n n n n n n nn

x a A J E e B e A e a B e eψ δ − +− −

� �= + + + +� � �

( ) ( )( )2 1 /2 2 1 2 1

N N N Ne e h h i E n eV tik x ik x ik x ik x

n n n n n nn

x C e a D e a C e D e eψ − + +− −+ +

� �= + + +� �

0 2eVω = �

( )( )( )( )

2 2 2

02 2( )

2tanh

12δ

∗− −

∗ ∗ ∗+ + +

� �� �+� � � �= − �� �� �+ + −� � � �� �� �

k k k k

k kn n k n n k n n kB

n

J E a A a Ae EI eV dE

a a A A B Bh k T

( ) ( ) ( )0 0, ik tk

k

I V t I V e δ ω+∞

+

=−∞

= Currents at all harmonics of

Josephson frequency

Page 28: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

dc MAR CURRENT

( ) ( ) ( )( )2

2 2 20 0 0 0 2

2tanh 1

2 n n nnB

e EI eV dE J E a A A a A B

h k T∗� �� �� � = − + + + − �� �� �

� � � �� � �

� � � � ��

���τ ��� ���

���

���

������������∆��

�����∆��� ����� ! �"�#$%���"����������&�'(�� ���)� *�"�#$����"���++�����+����,�(���-�)� *�"�%.#���"�����������

Page 29: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

MULTIPLE CHARGE TRANSFER PROCESSES

���

��

Blonder, Tinkham, Klapwijk (‘82)

�∆ ����∆ ����∆ ���

��

τ

S S

Page 30: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

SUPERCONDUCTING ATOMIC CONTACTS IV

0 1 2 3 40

1

2

3

����������∆��

eV / ∆

τ3=0.09

τ2=0.11

τ1=0.55

exp 0 ( , )n

nI I V τ=

Number of channels fixed by number of valence orbitals

Fingerprint ofmesoscopic PIN code

Page 31: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

0

5

10

15-60 -40 -20 0 20 40 60

{ 0.21, 0.20, 0.20 } { 0.40, 0.27, 0.03 } { 0.68, 0.25, 0.22 } { 0.996, 0.26 } Theory Poisson's Limit

�,�������/���������01��

�� ( nA )

-20 -10 0 10 20

������������/���������01��

Shot Noise in the Normal State

τ

Spectral density SI

Single channel ,� ��������/τ �

Multi-channel ,� ����������/ Στ�� ��Στ� �

Partition Noise {τι} known from the superconducting fingerprint

Page 32: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

1 2 3 410-4

10-3

10-2

��2�����"�����"������3

��������

������∆

�,����������01��

SHOT-NOISE IN SUPERCONDUCTING STATE

�� � �

1 2 3 40

1

2

3

4

5

������∆

�45����

�����2�����"�����"������3

Effective Charge Q* = SI / 2eI

����6�$�.�� 7

$��' �"�6��8���99� �"�:��;�)��� �!�'��< =�� "�#$%��+"������������>��'��'(�� ���)� *������?��@ �����:����� ��������6�$�.�� 7

Page 33: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

0 1 2 3 4 50.1

1

10 �2�����+"����&��3

�2�����"���&&"�����"������3���

�2���+�"����&������3

��6�$�.�� 7

Q *

/ e

eV / ∆

LARGE CHARGE QUANTA

Page 34: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

SUMMARY

Scattering theory provides a rigorous framework to understand transport phenomena

Simple extension of equilibrium statistical mechanics:

( )

( )

ˆ

and eigenstates and eigenenergies of system

ˆ ,

scattering states

ε

ε

ε µ

= −

= −

nn

n

s

F

sss

A n A n f E

n

A s A s f

s

T

At equilibrium

Each scattering state at equilibrium with a different reservoir

Out of equilibrium

In superconducting mesoscopic systems the BdG equation can be used to construct scattering states in much the same way that the Schrödinger equation is used

in normal mesoscopic systems

Page 35: ELECTRICAL TRANSPORT REGIMES · An incident up-spin electron with energy m+e « drags » with it a down-spin electron of energy m-e to form a Cooper pair in the superconductor leaving

� S. Datta : Electronic transport in Mesoscopic systems, Cambridge University Press(1997).

� C. Glattli, in « Quantum Entanglement and information processing », Les Houches Lecture, Session LXXIX, Elsevier (2004).

� S. Datta, P. Bagwell, and M.P. Anatram, « Scattering Theory of Transport for Mesoscopic Superconductors », Phys. Low-Dim. Struct., 3 pp1-58 (1996).

� M. Büttiker, Phys. Rev. B, 46 12485 (1992).

� Th. Martin and R. Landauer, Phys. Rev. B, 45 1742 (1992).

� G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B, 25 4515 (1982).

� C. Beenakker and H. van Houten, Quantum Transport in SemiconductorNanostructures, in `̀Solid State Physics'', Ehrenreich and Turnbull Eds., Academic Press(1991).

BIBLIOGRAPHY