Electrical impedance tomography usingequipotentialline jylee/Paper/equi02.pdf · PDF file...
date post
17-May-2020Category
Documents
view
6download
3
Embed Size (px)
Transcript of Electrical impedance tomography usingequipotentialline jylee/Paper/equi02.pdf · PDF file...
Electrical impedance tomography using equipotential line method (A new approach to Inverse Conductivity Problem)(A new approach to Inverse Conductivity Problem)(A new approach to Inverse Conductivity Problem)(A new approach to Inverse Conductivity Problem)
June-Yub Lee (Ewha),
Ohin Kwon (Konkuk),
Jeong-Rock Yoon (RPI)
Physical Background (Forward) Conductivity Problem
Ω∂= ∂ ∂=
Ω Ω∈
ong n uORfu
tsinxufind xxgivenFor ..)(
,),(σ
0=∇⋅∇ uσ
Inverse Conductivity Problem
Ω∂= ∂ ∂= ong n uANDfu
givenfromxFind )(σ
Ω∂ ),( gf
Impedance ~Voltage/Current
Tomography
Electrical Impedance Electrical Impedance Electrical Impedance Electrical Impedance TomographyTomographyTomographyTomography (EIT)(EIT)(EIT)(EIT)
생체조직의저항률 (20-100KHz)
10
100
1000
10000
100000
체 액
혈 장
혈 액
근 육 (횡
방 향 ) 간 팔 근 육
신 경 조 직
심 장 근 육
근 육 (종
방 향 ) 폐
지 방 뼈
최소값
최대값
[Ω-cm]
경혈 및 경락의 전기적 특성
가 설
경혈과 경락 전기저항이 낮은 지점이다.
즉, 조직의 저항률이 낮다.
A model problem with heart and lungA model problem with heart and lungA model problem with heart and lungA model problem with heart and lung
Methods of EIT/ICP
g n uuxuf kkMin =∂
∂=∇⋅∇−∑ ,0 where)( Objective 2 σσ σ
σ
voltagefi =currentgi =
)(xσ
• Single Measurement ⇒ minimum information
• Many Measurement ⇒ full information(?) on σ
• Infinite Measurement ⇒ mathematical theory
Numerical Obstacles for EIT/ICP
σσ
σ
σ σ
σσ σ
~better Find ,0 Solve Guss
,0 where)()( Objective )(2
→= ∂ ∂=∇⋅∇→
= ∂ ∂=∇⋅∇−∑ Ω
g n uuσ(x)
g n uuxuxf
LMin
• Strongly nonlinear:
• Ill-posed problem:
)()( 22 Ω∂∈→Ω∈ LuL σσ
σσσσ ~~ uu ≈→≈/
fug n uu −→= ∂ ∂=∇⋅∇ σσσ σσ using ~better Find ,0 Solve
σσ on on restrictiu Regularity 0condition Stop →≅− fu
Ill-posed Nonlinear
• 50 iterations
EIT and MREIT (Magenetic Resonace Electrical Impedance Tomography)
0.95 mA
Current Source Voltmeter
변수형 고속 영상복원 알고리즘
진단 변수 추출
심폐기능 소화기능 배뇨기능 뇌기능
비정상 조직 검출 기타 변수
실시간실시간 영상영상 모니터링모니터링
MREIT 고해상도 영상
적응형 요소융합 및 세분화
변수형 고속 알고리즘
초기해초기해초기해초기해
(1)문제정의
(2)자속밀도의 영상화
MRCDI 및 MREIT의 원리
1E 2EΩ
∂Ω
( ), , ,Vρ J BI I
n3 \ Ω
L− L +
a
1 ( ) 0 ( )
V ρ
∇ ∇ =
r
r 1 on V J
nρ ∂ = ∂Ω ∂
1( ) ( ) ( )
V ρ
= − ∇J r r r
0 3 '( ) ( ') '
4 ' J dv
µ π Ω
−= × −∫
r rB r J r r r
3 0
3\
0 3
'( ) ( ') ( ') ' 4 '
'( ') ( ') ' 4 '
I
L
dv
I dl
µ π
µ π
±
±
Ω
−= × −
−= × −
∫
∫
r rB r J r a r r r
r rr a r r r
0
1( ) ( )B µ
= ∇×J r B r
1E
2E
x
y z
x y z
1E
2E
1E
2E
x
y z
Transversal Imaging Slice
Three Sagittal Imaging Slices
Three Coronal Imaging Slices
전류밀도 영상 실험용 팬텀
자속밀도 및 전류밀도 영상
y
z
]Tesla[
y
z
]Tesla[
x
z
]Tesla[
x
z
]Tesla[
x
y
]Tesla[
x
y
]Tesla[
Bx By
Bz
]mA/mm[ 2
x
y
]mA/mm[ 2 ]mA/mm[ 2
x
y
|J| 0
1 µ
= ∇×J B
자속밀도 및 전류밀도 영상
J-Substitution Algorithm
Original Conductivity
Reconstructed Conductivity
Current Density
Schematic Diagram for Equi-potential Line Method
Numerical Algorithm
Equipotential Line Method
Smooth conductivity distribution
Conductivity Result with noisy J
Phantom with 1%Add+10%Mul Noise
Artificially generated Human Body
1%Add+10%Mul Noise
Conclusions and further works • Fast, stable and efficient • Well-posed (error~noise) • Better interpolation method to handle discontinuous cases
• Noise handling for high conductivity ratio case where |J|~0
• 3D extension is trivial But 3D data for J is expensive Usage of Bz instead of J is better