EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

30
Triune Pairing Revelation Luciano G. Moretto & Augusto Macchiavelli even-odd ass differences Critical temperatur from level densiti Superfluid moments of inertia

Transcript of EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Page 1: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Triune Pairing RevelationLuciano G. Moretto

&Augusto Macchiavelli

even-oddmass differences

Critical temperatures from level densities

Superfluid momentsof inertia

Page 2: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Anomalous Quasi Particle Spectrum

Ek

22)( kkE

kkE

Ground State Masses

21

12

A

Hence even odd mass differences

δ

A

k

Page 3: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Anomalous Moments of Inertia in rotational nuclei

I )1()(2

)(2

IIIE

%60%50)( of rigid

Gap parameters from moments of Inertia

Page 4: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Memories….Gilbert and Cameron

0

lnρ

E

lnρ≈E/TaEln

Bn

Low energy level counting …..exponential?Neutron resonances ……………. 1 pointHigher energy………………………..Fermi gas

Global Solution : matching a Fermi Gas to an exponential dependence

Away from shells TG.C. ≈ TCr pairing = 2∆/3.5

Page 5: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.
Page 6: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

6

Level densities, actinides

Page 7: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Universal 1st Order Low Energy Phase Transition in Atomic Nuclei

Luciano G. Moretto Hallmark of 1st order phase transition in micro-canonical systems?

Linear Dependence of Entropy with Energy !

T

EKEES )( or )exp()(

T

EE

ρ(E)

0 5 10E (MeV)

This is universally observed in low energy nuclear level densitiesT is the micro-canonical temperature characterizing the phase transition

Energy goes in, Temperature stays the same

Page 8: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Can a “thermostat” have a temperature other than its own?

• Is T0 just a “parameter”?

• According to this, a thermostat, can

have any temperature lower than its

own!

Z T dE E e E T T0T

T0 TeS0

E eS eS0

E

T0

S S0 QT

S0 E

T0

T = Tc = 273Kor

0 ≤ T ≤ 273K ?

Page 9: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

What causes the phase transition?

1. In non magic nuclei Pairing

2. In magic nuclei Shall gap

Page 10: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.
Page 11: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Δ= 1.76 TCr

Page 12: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

BCS Phase Transition

TCr T

∆0

2nd order

Nearly 1st order?

CrCr gTQ 2ln4

22

20 32

1CrCr gTgE

002ln16

53.3

Cr

Cr

Q

E

Fixed energy cost per quasi particle up to criticality : little blocking ?

# quasi particle at TCr

Energy at criticality

!

Page 13: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Pairing: Fixed Energy cost/ quasi particle up to TCR !

Is this consistent with blocking?

22)( kkE

∆ goes down (εk-λ) goes up

Proof:

λ=0

g

g

x

x

for x=0 ECr/QCr= ½ ∆0

for x>0 ECr/QCr ∆0

21CrCr QE

Page 14: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

1st order phase transition implies two phases

Superfluid phase gas of independent quasi particles

superfluid

What fixes the transition temperature?constant entropy per quasi particle

Remember Sackur Tetrode

)/ln(#)3

4ln(

3

3

clequasipartistatesNh

p

N

VNS

Page 15: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Entropy / Quasi Particle

0

00

2

53.3

Q

T

QS

Cr

76.12

53.3

Q

S

Page 16: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Testing the picture:a) Even-Odd horizontal shift….

should be compared with even-odd mass differences

b) Relationship between the above shift and the slope 1/T

c) Vertical shift or ″entropy excess”

MeV

A

A2

1

12

MeVT53.3

2

76.12

53.3

Q

S

Page 17: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.
Page 18: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Low energy level densities for nuclei away from shells vademecum for beginners………..

1) Get TCr from Δ=12/A1/2

2) Write lnρ(E)=S(E)=E/T

3) Shift horizontally by Δ or 2Δ for odd or odd-odd nuclei

Page 19: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Ek

22)( kkE

kkE

δ

Ek

k k

Pairing 22)( kkE Shell Model kkE

Spectra with “any” gap

δquasi particles vacuum N slots

qpE nET nN NnS ln

(E) eE lnN

eE

T Nn

Sln

Entropy/particle

T

lnN

Page 20: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.
Page 21: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Let us compare….

Entropy/ quasi particle

Sn

lnN

53.3

2

ln

NT

76.1ln NGood enough!!!!

6-7 levels/ quasi particle

0

00

2

53.3

Q

T

QS

Cr

76.12

53.3

Q

S

Page 22: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.
Page 23: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Conclusions

1) The “universal” linear dependence of S=lnρ with E at low energies is a clear cut evidence of a first order phase transition

2) In non magic nuclei the transition is due to pairing. The coexisting phases are a) superfluid; b) ideal gas of quasi particles

3) In magic nuclei the transition is due to the shell gap

……. AD MULTOS ANNOS, ALDO.WITH FRIENDSHIP

Page 24: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.
Page 25: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Low Energy Level Densities

E

lnρ

202

1 gC

Condensation energy

Gilbert and Cameron did empirically the match between linear and square root dependence.

In so doing they extracted TCR !

Page 26: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.
Page 27: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.
Page 28: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.

Memories….Gilbert and Cameron

0

lnρ

E

lnρ≈E/TaEln

Bn

Low energy level counting …..exponential?Neutron resonances ……………. 1 pointHigher energy………………………..Fermi gas

Global Solution : matching a Fermi Gas to an exponential dependence

Away from shells TG.C. ≈ TCr pairing = 2∆/3.53

Page 29: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.
Page 30: EkEk ∆ δ A I of rigid Gap parameters from moments of Inertia.