Eigenfunction & eigenvalues of LTI systems Understanding...

42
Overview of Complex Sinusoids Topics Eigenfunction & eigenvalues of LTI systems Understanding complex sinusoids Four classes of signals Periodic signals CT & DT Exponential harmonics J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 1

Transcript of Eigenfunction & eigenvalues of LTI systems Understanding...

Page 1: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Overview of Complex Sinusoids Topics

• Eigenfunction & eigenvalues of LTI systems

• Understanding complex sinusoids

• Four classes of signals

• Periodic signals

• CT & DT Exponential harmonics

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 1

Page 2: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Complex Sinusoids

• A complex sinusoid is defined as

x(t) = Aejωt = A [cos(ωt) + j sin(ωt)]

• These are a special case of complex exponentials

x(t) = Aest = Aeαt [cos(ωt) + j sin(ωt)]

when α = 0

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 2

Page 3: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Review: Signals as Impulses

h(t)x(t) y(t) h[n]x[n] y[n]

• Fourier series is used for signal decomposition

• In ECE 222 we decomposed signals into sums and of impulses

x(t) =∫ ∞

−∞x(τ) δ(t − τ) dτ x[n] =

∞∑k=−∞

x[k] δ[n − k]

y(t) =∫ ∞

−∞x(τ) h(t − τ) dτ y[n] =

∞∑k=−∞

x[k] h[n − k]

• We then used the LTI properties (linearity and time invariance) tosolve for the output as a sum of the impulse responses

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 3

Page 4: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Review of Energy and Power Signals

E∞ =∫ ∞

−∞|x(t)|2 dt P∞ = lim

T→∞1

2T

∫ T

−T

|x(t)|2 dt

E∞ =∞∑

n=−∞|x[n]|2 P∞ = lim

N→∞1

2N + 1

N∑n=−N

|x[n]|2

• A signal is an energy signal if E∞ < ∞• A signal is a power signal if 0 < P∞ < ∞• Most signals are either energy signals or power signals

• A signal cannot be both

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 4

Page 5: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Orthogonalality

A pair of real-valued energy signals are orthogonal if

0 =∫ ∞

−∞x1(t)x∗

2(t) dt

0 =∞∑

n=−∞x1[n]x∗

2[n]

A pair of real-valued power signals are orthogonal if

0 = limT→∞

12T

∫ T

−T

x1(t)x∗2(t) dt

0 = limN→∞

12N + 1

N∑n=−N

x1[n]x∗2[n]

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 5

Page 6: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Examples of Orthogonal Signals

Like impulses, complex sinusoids are special

• Impulses are orthogonal to one another∫ ∞

−∞δ(t − t1)δ(t − t2) dt = 0 for t1 �= t2

∞∑n=−∞

δ[n − n1]δ[n − n2] = 0 for n1 �= n2

• Complex sinusoids are also orthogonal to one another

limT→∞

12T

∫ T

−T

ejω1t ejω2t dt = 0 for ω1 �= ω2

limN→∞

12N + 1

N∑n=−N

ejΩ1n ejΩ2n = 0 for Ω1 �= Ω2

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 6

Page 7: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Importance of Orthogonality

• Orthogonal basis functions (e.g., complex sinusoids, shiftedimpulses) enable us to decompose signals into distinct(orthogonal) components

• More later

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 7

Page 8: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Eigenfunctions & Eigenvalues

h(t)x(t) y(t) h[n]x[n] y[n]

• There are other basic signals that are also orthogonal

• But exponentials have another special property:

• You may be familiar with eigenvectors & eigenvalues for matrices

• There is a related concept for LTI systems

• Any signal x(t) or x[n] that is only scaled when passed through asystem is called an eigenfunction of the system

– y(t) = x(t) ∗ h(t) = c x(t)– y[n] = x[n] ∗ h[n] = c x[n]

• The scaling constant c is called the system’s eigenvalue

• Complex exponentials are eigenfunctions of LTI systems

• Complex sinusoids are the only eigenfunctions of LTI systems thathave finite power!

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 8

Page 9: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

CT LTI System Response to Complex Exponentials

Let x(t) = ejωt. Then

y(t) =∫ ∞

−∞h(τ) x(t − τ) dτ

=∫ ∞

−∞h(τ) ejω(t−τ) dτ

=∫ ∞

−∞h(τ) ejωte−jωτ dτ

= ejωt

∫ ∞

−∞h(τ)e−jωτ dτ

= ejωtH(jω)

where

H(jω) =∫ ∞

−∞h(τ)e−jωτ dτ

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 9

Page 10: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

DT LTI System Response to Complex Exponentials

Let x[n] = ejΩn

y[n] =∞∑

k=−∞h[k] x[n − k]

=∞∑

k=−∞h[k] ejΩ(n−k)

=∞∑

k=−∞h[k] ejΩne−jΩk

= ejΩn∞∑

k=−∞h[k] e−jΩk

= ejΩnH(ejΩ)

where

H(ejΩ) =∞∑

k=−∞h[k] e−jΩk

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 10

Page 11: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Eigenfunctions & Eigenvalues

h(t)x(t) y(t) h[n]x[n] y[n]

• Thus, complex sinusoids are eigenfunctions of LTI systems

ejωt → H(jω)ejωt

ejΩn → H(ejΩn)ejΩn

• The Fourier transform of the impulse response are the eigenvalues

H(jω) = F {h(t)} =∫ ∞

−∞h(t)e−jωt dt

H(ejΩ) = F {h[n]} =∞∑

n=−∞h[n] e−jΩn

• H(jω) and H(ejΩ) are functions of frequency

• Called the frequency response of the system

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 11

Page 12: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 1: Real and Complex Sinusoids

Are real sinusoids eigenfunctions of LTI systems?

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 12

Page 13: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Magnitude and Phase Response

x(t) y(t) x[n] y[n]H(jω) H(ejΩ)

H(jω) = F {h(t)} =∫ ∞

−∞h(t)e−jωt dt

H(ejΩ) = F {h[n]} =∞∑

n=−∞h[n] e−jΩn

• Both the eigenfunctions and eigenvalues of LTI systems arecomplex-valued

• |H(jω)| and |H(ejΩ)| are called the magnitude response

• The complex phase angle of H(jω) and H(ejΩ)– Called the phase response

– Denoted as arg H(jω) in the text

– This is not the same as arctan{

Im{H(jω)}Re{H(jω)}

}, in general

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 13

Page 14: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Magnitude and Phase Response Continued

x(t) y(t) x[n] y[n]H(jω) H(ejΩ)

ejωt → |H(jω)|ej arg H(jω)ejωt = |H(jω)|ej(ωt+arg H(jω))

ejΩn → |H(ejΩ)|ej arg H(ejΩ)ejΩn = |H(ejΩ)|ej(ωt+arg H(ejΩ))

Thus, if a complex sinusoid is applied at the input to an LTI system

• The system scales the amplitude by |H(·)|• The system changes the phase by arg H(·)

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 14

Page 15: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Sums of Complex Exponentials

h(t)x(t) y(t) h[n]x[n] y[n]

• Fourier series represent signals as sums (or integrals) of complexsinusoids

x(t) =∞∑

k=−∞akejkω0t x[n] =

N0−1∑k=0

akejkΩ0n

• Since the signals are real, the imaginary portions of the complexexponentials must cancel out to zero

• This decomposition makes it particularly easy to solve for andanalyze the system output

• Sums of complex sinusoids can only represent periodic and nearlyperiodic signals

• Integrals of complex sinusoids are more general

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 15

Page 16: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Complex Exponential Sums

x(t) y(t) x[n] y[n]H(jω) H(ejΩ)

By linearity and time-invariance (LTI),

x(t) =∑

k

akejωkt → y(t) =∑

k

akH(jωk)ejωkt

x[n] =∑

k

akejΩkn → y[n] =∑

k

akH(ejΩk)ejΩkn

• Thus if the input signal can be expressed as a sum of complexsinusoids, so can the output of the LTI system

• But what types of signals can be represented in this form?

• Virtually all of the (periodic) signals that we are interested in!

• Important and interesting idea

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 16

Page 17: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Continuous-Time Signal Intuition

x(t) =∑

k

akejωkt → y(t) =∑

k

akH(jωk)ejωkt

• Fourier transforms represent signals as sums (or integrals) ofcomplex sinusoids

• It is therefore worthwhile to understand complex sinusoids asthoroughly as possible

x(t) = est∣∣s=jω

= ejωt = cos(ωt) + j sin(ωt)

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 17

Page 18: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 2: x(t) = ejt

−10 −8 −6 −4 −2 0 2 4 6 8 10−1

−0.5

0

0.5

1

Rea

l Par

t

−10 −8 −6 −4 −2 0 2 4 6 8 10−1

−0.5

0

0.5

1

Time (s)

Imag

inar

y Pa

rt

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 18

Page 19: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 2: x(t) = ejt

−10−5

05

10

−1−0.5

00.5

1

−1

−0.5

0

0.5

1

Time (s)

Complex:Blue Real:Green Imaginary:Red Complex Plane:Yellow

Real Part

Imag

inar

y Pa

rt

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 19

Page 20: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 2: MATLAB Code

w = j*1;fs = 500; % Sample rate (Hz)t = -10:1/fs:10; % Time index (s)y = exp(w*t);N = length(t);subplot(2,1,1);

h = plot(t,real(y));box off;grid on;ylim([-1.1 1.1]);ylabel(’Real Part’);

subplot(2,1,2);h = plot(t,imag(y));box off;grid on;ylim([-1.1 1.1]);xlabel(’Time (s)’);ylabel(’Imaginary Part’);

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 20

Page 21: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 2: MATLAB Code Continued

figure;h = plot3(t,zeros(1,N),zeros(1,N),’k’);hold on;

h = plot3(t,imag(y),real(y),’b’);h = plot3(t,1.1*ones(size(t)),real(y),’r’);h = plot3(t,imag(y),-1.1*ones(size(t)),’g’);hold off;

grid on;ylabel(’Imaginary Part’);zlabel(’Real Part’);title(’Complex:Blue Real:Red Imaginary:Green’);axis([min(t) max(t) -1.1 1.1 -1.1 1.1]);view(27.5,22);

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 21

Page 22: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Discrete-Time Signal Intuition

x[n] =∑

k

akejΩkn → y[n] =∑

k

akH(ejΩk

)ejΩkn

• It is similarly worthwhile to understand discrete-time complexexponentials as thoroughly as possible

x[n] = zn||z|=1 = ejωn = cos(ωn) + j sin(ωn)

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 22

Page 23: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 3: x[n] = ej0.2n

−10 −5 0 5 10 15 20 25 30 35 40−1

−0.5

0

0.5

1

Rea

l Par

t

−10 −5 0 5 10 15 20 25 30 35 40−1

−0.5

0

0.5

1

Time (n)

Imag

inar

y Pa

rt

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 23

Page 24: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 3: x[n] = ej0.2n

−100

1020

3040

−1−0.5

00.5

1

−1

−0.5

0

0.5

1

Time (samples)

Complex:Blue Real:Green Imaginary:Red Complex Plane: Yellow

Real Part

Imag

inar

y Pa

rt

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 24

Page 25: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 3: MATLAB Code

n = -10:40; % Time indexN = length(n);w = 0.2;y = exp(j*w*n);subplot(2,1,1);

h = stem(n,real(y));set(h(1),’Marker’,’.’);box off;grid on;ylim([-1.1 1.1]);ylabel(’Real Part’);

subplot(2,1,2);h = stem(n,imag(y));set(h(1),’Marker’,’.’);box off;grid on;ylim([-1.1 1.1]);xlabel(’Time (n)’);ylabel(’Imaginary Part’);

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 25

Page 26: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 3: MATLAB Code Continued

h = plot3(n,zeros(1,N),zeros(1,N),’k’);hold on;

h = plot3(ones(2,1)*n,[zeros(1,N);imag(y)],[zeros(1,N);real(y)],’b’);h = plot3(n,imag(y),real(y),’b.’);h = plot3(ones(2,1)*n,1.1*ones(2,N),[zeros(1,N);real(y)],’r’);h = plot3(n,1.1*ones(1,N),real(y),’r.’);h = plot3(ones(2,1)*n,[zeros(1,N);imag(y)],-1.1*ones(2,N),’g’);h = plot3(n,imag(y),-1.1*ones(size(n)),’g.’);hold off;

grid on;ylabel(’Imaginary Part’);zlabel(’Real Part’);title(’Complex:Blue Real:Red Imaginary:Green’);axis([min(n) max(n) -1.1 1.1 -1.1 1.1]);view(27.5,22);

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 26

Page 27: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Signal Classes

• There are four classes of signals

• There is a different transform for each class

• Periodic

– Continuous-time: CT Fourier series

– Discrete-time: DT Fourier series

• Nonperiodic

– Continuous-time: CT Fourier transform

– Discrete-time: DT Fourier transform

• Fourier series can only be applied to periodic signals

• The Fourier transforms are best applied to signals that arenonperiodic

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 27

Page 28: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Definition of Continuous-Time Periodic Signals

1 20

1

-1-2t(s)

x(t)

• A signal x(t) is periodic if there exists a T > 0 such that

x(t + T ) = x(t) for all t

• Fundamental period: the minimum value of T for which theabove holds. Often denoted as T0.

• Fundamental frequency:

– f0 � 1T0

= ω02π Hz

– ω0 � 2πT0

= 2πf0 rad/s

• Will frequently drop the 0 subscript to simplify notation

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 28

Page 29: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Continuous-Time Exponential Harmonics

• Last term we discussed harmonically-related periodic signals

• For complex sinusoids

ejkωt k = 0,±1,±2, . . .

• ejωt is called the fundamental component

• ej2ωt is called the 2nd harmonic component

• ej3ωt is called the 3rd harmonic component

• Key idea: A sum of harmonically related exponentials still has thefundamental frequency ω

x(t) =∑

k

akejkωt

• Each term in the sum has one or more complete cycles every Tseconds

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 29

Page 30: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 4: x(t) = ejt

−10 −8 −6 −4 −2 0 2 4 6 8 10−1

0

1

Fund

amen

tal Real Part of Complex Sinusoidal Harmonics

−10 −8 −6 −4 −2 0 2 4 6 8 10−1

0

1

2nd

Har

mon

ic

−10 −8 −6 −4 −2 0 2 4 6 8 10−1

0

1

3rd

Har

mon

ic

Time (s)

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 30

Page 31: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 4: MATLAB Code

w = j*1;fs = 500; % Sample rate (Hz)t = -10:1/fs:10; % Time index (s)N = length(t);subplot(3,1,1);

h = plot(t,real(exp(1*w*t)));box off;grid on;ylim([-1.1 1.1]);ylabel(’Fundamental’);

subplot(3,1,2);h = plot(t,real(exp(2*w*t)));box off;grid on;ylim([-1.1 1.1]);ylabel(’2nd Harmonic’);

subplot(3,1,3);h = plot(t,real(exp(3*w*t)));box off;grid on;ylim([-1.1 1.1]);ylabel(’3rd Harmonic’);xlabel(’Time (s)’);

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 31

Page 32: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Definition of Discrete-Time Periodic Signals

1 20

1

n-1

x[n]

-2-3-4 3 4

• A signal x[n] is periodic if there exists an integer N > 0 such that

x[n + N ] = x[n] for all n

• The fundamental period N0 is the minimum value of N forwhich the above holds

• The fundamental frequency is

– f0 � 1N0

= ω02π cycles/sample

– ω0 � 2πN0

= 2πf0 rad/sample

• Will frequency drop the 0 subscript to simplify notation

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 32

Page 33: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 5: Discrete-Time Periodic Signals

Determine which of the following discrete-time signals are periodic:sin(n), cos(5n), cos(2πn), cos(2π 17

39n + 1.238424). If the signal isperiodic, find the fundamental period. If not, explain why the signal isnot periodic.

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 33

Page 34: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 5: Workspace

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 34

Page 35: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Periodic Signals: Sinusoids

By Euler’s identity, sinusoids can be expressed as a sum of complexsinusoids

ejωt = cos(ωt) + j sin(ωt)

cos(ωt) = 12

(ejωt + e−jωt

)sin(ωt) = 1

2j

(ejωt − e−jωt

)

• Any sum of sinusoids can be expressed as a sum of complexexponentials

• Any sum of complex sinusoids can be expressed as a sum ofsinusoids

• Conceptually, this is a good way to think of complex sinusoids

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 35

Page 36: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Periodic Signals as Sums of Sinusoids

x̂(t) =∑

k

akejkωt → y(t) =∑

k

akH(jkω)ejkωt

x̂[n] =∑

k

akejkΩn → y[n] =∑

k

akH(ejkΩ)ejkΩn

• Suppose we wish to represent periodic signals as sums of complexsinusoids to easily calculate and understand the outputs of LTIsystems

• Note that if the input signal to an LTI system is periodic, theoutput signal will also be periodic with the same fundamentalperiod

• If the signals are periodic, the complex sinusoids must beharmonically related (all must repeat during the fundamentalperiod)

• We’ll consider discrete-time (DT) periodic signals first

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 36

Page 37: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Discrete-Time Exponential Harmonics

• The set of all discrete-time complex sinusoidal signals that areperiodic with period N can be expressed as

ejkΩn = ejk2πN n, k = 0,±1,±2, . . .

• ejΩn is called the fundamental component

• ej2Ωn is called the 2nd harmonic component

• ejkΩn is called the kth harmonic component

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 37

Page 38: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Discrete-Time Exponential Harmonics Redundancy

Unlike continuous-time exponentials, there are only N distinctharmonics

ejkΩn = ejk2πN n

ej(k+�N)Ωn = ej(k+�N)2πN n

= ejk2πN n+j�2πn

= ejk2πN nej�2πn

= ejk2πN n

ej(k+�N)Ωn = ejkΩn

This is an very important difference between the DT and CT signals.This will be especially important when we discuss sampling.

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 38

Page 39: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 6: Discrete-Time Harmonics (N = 3)

−2 0 2−1

0

1

φ 1

Real Part

−2 0 2−1

0

1

φ 1

Imaginary Part

−2 0 2−1

0

1

φ 2

−2 0 2−1

0

1

φ 2−2 0 2

−1

0

1

φ 3

−2 0 2−1

0

1

φ 3

−2 0 2−1

0

1

φ 4

−2 0 2−1

0

1φ 4

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 39

Page 40: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 6: MATLAB Code

N = 3;w = 2*pi/N;fs = 500; % Real-Time Sample rate (Hz)t = -3:1/fs:3; % Time index (s)n = -3:1:3; % Sample indexfor cnt = 1:4,

subplot(4,2,cnt*2-1);h = plot(t,real(exp(j*cnt*w*t)),’r’);set(h,’LineWidth’,0.1);hold on;

h = stem(n,real(exp(j*cnt*w*n)),’.’);hold off;

box off;grid on;xlim([min(t) max(t)]);ylim([-1.1 1.1]);ylabel(sprintf(’\\phi_%d’,cnt));

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 40

Page 41: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Example 6: MATLAB Code Continued

subplot(4,2,cnt*2);h = plot(t,imag(exp(j*cnt*w*t)),’r’);set(h,’LineWidth’,0.1);hold on;

h = stem(n,imag(exp(j*cnt*w*n)),’.’);hold off;

box off;grid on;xlim([min(t) max(t)]);ylim([-1.1 1.1]);ylabel(sprintf(’\\phi_%d’,cnt));

end;

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 41

Page 42: Eigenfunction & eigenvalues of LTI systems Understanding ...web.cecs.pdx.edu/~ece2xx/ECE223/Slides/ComplexSinusoids.pdf · • Eigenfunction & eigenvalues of LTI systems • Understanding

Summary

• We are interested in complex sinusoids because they areeigenfunctions of LTI systems

– This makes it easy to compute the output of LTI systems

– This gives us insight into what LTI systems do

• There are many similarities between CT and DT signals

• There are also some critical differences

– DT signals are only periodic if x[n + N ] = x[n] for someinteger N

– There are only N distinct DT complex sinusoidal harmonicsthat have a period N

• This last idea is crucial to this class

J. McNames Portland State University ECE 223 Complex Sinusoids Ver. 1.07 42