EEM calculations in FRED

19
EEM calculations in FRED Mikkel Brydegaard Applied Molecular Spectroscopy & Remote Sensing Atomic Physics, LTH

description

EEM calculations in FRED. Mikkel Brydegaard Applied Molecular Spectroscopy & Remote Sensing Atomic Physics, LTH. Project. Components. Fiber tip source Off axis parabolic mirror Quartz prism Achromat Sample window Chassis. Source. Ocean Optics ø230 μ m circular fiber tip - PowerPoint PPT Presentation

Transcript of EEM calculations in FRED

Page 1: EEM calculations in FRED

EEM calculations in FRED

Mikkel BrydegaardApplied Molecular Spectroscopy & Remote Sensing

Atomic Physics, LTH

Page 2: EEM calculations in FRED

Project

Page 3: EEM calculations in FRED

Components

• Fiber tip source

• Off axis parabolic mirror

• Quartz prism

• Achromat

• Sample window

• Chassis

Page 4: EEM calculations in FRED

Source

• Ocean Optics ø230 μm circular fiber tip

• 24° acceptance angle

• Apperture to 6° for collimating mirror

• Simulated spectral content: 300, 350, 400, 500 and 900 nm

Page 6: EEM calculations in FRED

Prism

• Esco products

• Equilatheral fused silica

• 40mm sides

• 35° mean dispersion 300-900nm

• 40*cos(30+35/2)=27mm apperture

• Displacement of optical axis from center of circumcicle of prism 8.93 mm

Page 7: EEM calculations in FRED

Achromat

• Edmund optics

• Uncoated triplet

• CaF2 Fused Silica CaF2

• Provided raytracing object from edmund upon signed request

Page 8: EEM calculations in FRED

Sample slit

• Quartz microscope cover slide

• Mirror coating

• Nano church

Page 9: EEM calculations in FRED

Chassis

• Imported from Alibre design

• Anodized aluminum

• Black lambertian 4%

• Contribution

Page 10: EEM calculations in FRED

Setup

Fiber tip

Newportv Off-axis paraboloid

EscoQuartzprismQuartz

window

Edmund achromatCaF2-QS

Page 11: EEM calculations in FRED

Properties of interest

• Throughput

• Spectral resolution

• Signal to background

Simulation variables

• Ray numbers

• Allow reflections

• Allow surface scatters

Page 12: EEM calculations in FRED

Resulting rays

End rays C1 C2 C3

R1 175 3855 24710

R2 2405 66122 430448

R3 14560 418750 2693084

Page 13: EEM calculations in FRED

Simulation time

Calculation time C1 C2 C3

R1 0.933 sec 5.94 secs 31.2 secs

R2 6.25 secs 50.2 secs 8.76 mins

R3 35.6 secs 5.23 mins 54.2 mins

Page 14: EEM calculations in FRED

Throughput

Throughput C1 C2 C3

R1 56,62% 56,85% 56,85%

R2 60,95% 61,23% 61,23%

R3 61,55% 61,85% 61,85%

Page 15: EEM calculations in FRED

FWHM

FWHM mm C1 C2 C3

R1 0.115 0.147 0.147

R2 0.146 0.146 0.146

R3 0.136 0.136 0.136

FWHM nm C1 C2 C3

R1 14.30 18.33 18.33

R2 18.14 18.14 18.14

R3 16.91 16.93 16.93

Page 16: EEM calculations in FRED

Added background

Background C1 C2 C3

R1 0,00E+00 4,70E-03 2,16E-04

R2 0,00E+00 1,40E-03 1,65E-05

R3 0,00E+00 9,09E-04 2,73E-06

Page 17: EEM calculations in FRED

Signal and back ground contributions

3.5E0 1E-3

3E-6

Page 18: EEM calculations in FRED

Spatial profile of background contributions

Page 19: EEM calculations in FRED

Experiences

• Prism displacement

• Ommitment of achromat, in accordance with ”Spectrograph design fundamentals / J.F. James.”

• More stray light along slit than perpendicular to it

• Parabolic mirrors in FRED