EE40 Lecture 14 Venkat...

22
Slide 1 EE40 Spring 2008 Venkat Anantharam EE40 Lecture 14 Venkat Anantharam 2/27/08 Reading: Chap. 5: phasors

Transcript of EE40 Lecture 14 Venkat...

Page 1: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 1EE40 Spring 2008 Venkat Anantharam

EE40Lecture 14

Venkat Anantharam

2/27/08 Reading: Chap. 5: phasors

Page 2: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 2EE40 Spring 2008 Venkat Anantharam

Complex Numbers (1)• x is the real part• y is the imaginary part• z is the magnitude• θ is the phase

( 1)j = −

θ

z

x

y

real axis

imaginary axis

• Rectangular Coordinates Z = x + jy

• Polar Coordinates: Z = z ∠ θ

• Exponential Form:

θcoszx = θsinzy =

22 yxz +=xy1tan−=θ

(cos sin )z jθ θ= +Z

j je zeθ θ= =Z Z

0

2

1 1 1 0

1 1 90

j

j

e

j eπ

= = ∠ °

= = ∠ °

Page 3: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 3EE40 Spring 2008 Venkat Anantharam

Complex Numbers (2)

2 2

cos2

sin2

cos sin

cos sin 1

j j

j j

j

j

e e

e ej

e j

e

θ θ

θ θ

θ

θ

θ

θ

θ θ

θ θ

+=

−=

= +

= + =

Euler’s Identities

Exponential Form of a complex numberj je ze zθ θ θ= = = ∠Z Z

Page 4: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 4EE40 Spring 2008 Venkat Anantharam

Arithmetic With Complex Numbers• To compute phasor voltages and currents, we

need to be able to perform computations with complex numbers.– Addition– Subtraction– Multiplication– Division

Page 5: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 5EE40 Spring 2008 Venkat Anantharam

Addition

• Addition is most easily performed in rectangular coordinates:

A = x + jyB = z + jw

A + B = (x + z) + j(y + w)

Page 6: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 6EE40 Spring 2008 Venkat Anantharam

Addition

Real Axis

Imaginary Axis

AB

A + B

Page 7: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 7EE40 Spring 2008 Venkat Anantharam

Subtraction

• Subtraction is most easily performed in rectangular coordinates:

A = x + jyB = z + jw

A - B = (x - z) + j(y - w)

Page 8: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 8EE40 Spring 2008 Venkat Anantharam

Subtraction

Real Axis

Imaginary Axis

AB

A - B

Page 9: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 9EE40 Spring 2008 Venkat Anantharam

Multiplication

• Multiplication is most easily performed in polar coordinates:

A = AM ∠ θB = BM ∠ φ

A × B = (AM × BM) ∠ (θ + φ)

Page 10: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 10EE40 Spring 2008 Venkat Anantharam

Multiplication

Imaginary Axis

Real Axis

A

A × BB

Page 11: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 11EE40 Spring 2008 Venkat Anantharam

Division

• Division is most easily performed in polar coordinates:

A = AM ∠ θB = BM ∠ φ

A / B = (AM / BM) ∠ (θ − φ)

Page 12: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 12EE40 Spring 2008 Venkat Anantharam

Division

Imaginary Axis

A

B

Real Axis

A / B

Page 13: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 13EE40 Spring 2008 Venkat Anantharam

Phasors• Assuming a source voltage is a sinusoidal time-

varying functionv(t) = V cos (ωt + θ)

• We can write:

• Similarly, if the function is v(t) = V sin (ωt + θ)

( ) ( )( ) cos( ) Re Rej t j t

j

v t V t V e Ve

Define Phasor as Ve V

ω θ ω θ

θ

ω θ

θ

+ +⎡ ⎤ ⎡ ⎤= + = =⎣ ⎦ ⎣ ⎦= ∠

( )

( )2

2

( ) sin( ) cos( ) Re2

j tv t V t V t Ve

Phasor V

πω θ

πθ

πω θ ω θ+ −

⎡ ⎤= + = + − = ⎢ ⎥

⎣ ⎦

= ∠

Page 14: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 14EE40 Spring 2008 Venkat Anantharam

Phasor from rotating Complex Vector

{ } )( tjjwtj eeVetVtv ωφφω VReRe)cos()( ==+=

Imaginary Axis

VReal Axis

Rotates at uniform angular velocity ωt

cos(ωt+φ)

The head start angle is φ.

Page 15: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 15EE40 Spring 2008 Venkat Anantharam

Complex Exponentials• We represent a real-valued sinusoid as the real

part of a complex exponential after multiplying by .

• Complex exponentials – provide the link between time functions and phasors.– Allow derivatives and integrals to be replaced by

multiplying or dividing by jω– make solving for AC steady state simple algebra with

complex numbers.• Phasors allow us to express current-voltage

relationships for inductors and capacitors much like we express the current-voltage relationship for a resistor.

tje ω

Page 16: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 16EE40 Spring 2008 Venkat Anantharam

I-V Relationship for a Capacitor

C v(t)

+

-

i(t)

dttdvCti )()( =

Suppose that v(t) is a sinusoid:v(t) = Re{VM ej(ωt+θ)}

Find i(t).

Page 17: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 17EE40 Spring 2008 Venkat Anantharam

Capacitor Impedance (1)

C v(t)

+

-

i(t)dttdvCti )()( =

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) cos( )2

( )( )2 2

sin( ) cos( )2 2

(

2

j t j t

j t j t j t j t

j t j t

c

Vv t V t e e

dv t CV d CVi t C e e j e edt dt

CV e e CV t CV tj

V VZCVI

ω θ ω θ

ω θ ω θ ω θ ω θ

ω θ ω θ

ω θ

ω

ω πω ω θ ω ω θ

θ θ θπ ωθ

+ − +

+ − + + − +

+ − +

⎡ ⎤= + = +⎣ ⎦

⎡ ⎤ ⎡ ⎤= = + = −⎣ ⎦ ⎣ ⎦

− ⎡ ⎤= − = − + = + +⎣ ⎦

∠= = = ∠ −

⎛ ⎞∠ +⎜ ⎟⎝ ⎠

VI

1 1 1) ( )2 2

jC C j C

π πω ω ω

− = ∠ − = − =

Page 18: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 18EE40 Spring 2008 Venkat Anantharam

Capacitor Impedance (2)

C v(t)

+

-

i(t)dttdvCti )()( =

Phasor definition

( )

( )( )

( ) cos( ) Re

( )( ) Re Re

1( )

j t

j tj t

c

v t V t Ve V

dv t dei t C CV j CVe Idt dtV VZI j CV j C

ω θ

ω θω θ

ω θ θ

ω θ

θ θ θθ ω ω

+

++

⎡ ⎤= + = = ∠⎣ ⎦⎡ ⎤

⎡ ⎤= = = = ∠⎢ ⎥ ⎣ ⎦⎣ ⎦

∠= = = ∠ − =

V

I

VI

Page 19: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 19EE40 Spring 2008 Venkat Anantharam

Example

v(t) = 120V cos(377t + 30°)C = 2µF

• What is V?• What is I?

• What is i(t)?

Page 20: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 20EE40 Spring 2008 Venkat Anantharam

Computing the Current

Note: The differentiation and integration operations become algebraic operations

ωjdt 1

⇒∫ωjdtd

Page 21: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 21EE40 Spring 2008 Venkat Anantharam

Inductor Impedance

V = jωL I

L

+

-

i(t)

dttdiLtv )()( =v(t)

Page 22: EE40 Lecture 14 Venkat Anantharaminst.cs.berkeley.edu/~ee40/sp08/lectures/EE40_Spring08_Lecture14.pdfEE40 Spring 2008 Venkat AnantharamSlide 2 Complex Numbers (1) • x is the real

Slide 22EE40 Spring 2008 Venkat Anantharam

Example

i(t) = 1µA cos(2π 9.15 107t + 30°)L = 1µH

• What is I?• What is V?

• What is v(t)?