Econometria Semestre 2010 - mbarros.com 21 Gujarati Resumo p… · intuitivamente, se a...
-
Author
nguyentram -
Category
Documents
-
view
215 -
download
0
Embed Size (px)
Transcript of Econometria Semestre 2010 - mbarros.com 21 Gujarati Resumo p… · intuitivamente, se a...
-
181EconometriaSemestre2010.01 181
P r o f e s s o r a M n i c a B a r r o s ENCE
21.7.TESTESDERAIZUNITRIA
Considereomodelo:
Esteprocessoserumprocessoderaizunitria(umpasseioaleatrio)se=+1.Omodelodado
porestaequaoumAR(1)estacionriose| |
-
182EconometriaSemestre2010.01 182
P r o f e s s o r a M n i c a B a r r o s ENCE
Porrazestericas,ostestesDickeyFuller (DF)trabalhamcomaequao (21.4.1)na formade
diferenas,ouseja:
Estaexpressopodeserescritademaneiraalternativacomo:
Onde=1.
Ento, ao invs de estimar a equao (21.4.1) (a equao em nvel), estimamos (21.9.2), a
equaoem1a.diferenaetestamosahiptesenula=0,queequivalentehiptesenula =
1(omodeloumpasseioaleatrio,asrienoestacionria).
Ostestesdehiptesepodemserescritosemtermosdecomo:
H0: =0(omodeloumpasseioaleatrio)versus
H1: < 0(omodeloumAR(1)estacionrio)
Noteque, se=0em (21.9.2),aexpressose torna: tttt uYYY == 1 ,ouseja,asriede1a.
diferenaestacionriaeasrieoriginalumpasseioaleatrio.
Comoestimaraequao(21.9.2)?
Crieasriedeprimeirasdiferenas tY efaasuaregresso(semconstante)emrelaosrie
original defasada de 1 instante, isto , Yt1. Verifique se o coeficiente angular estimado desta
regressozero.Seforestatisticamenteigualazero,conclumosque =1eYtumprocessono
estacionrio.Se
-
183EconometriaSemestre2010.01 183
P r o f e s s o r a M n i c a B a r r o s ENCE
seguir.OtestebaseadonestaestatsticachamadodetesteDickeyFuller,ousimplesmenteteste
DF.
Note tambmque, se rejeitamosahiptesenulano testeDF,entoa srieestacionria,eo
testetusualvoltaaservlido.
Jvimosqueexistemdiversostiposdeprocessosderaizunitria.OtesteDFdeveseraplicado
levando em conta cada uma destas possibilidades, ou seja, deve considerar as seguintes
(DIFERENTES)hiptesesnulas:
ttt
ttt
ttt
uYtYuYY
uYY
+++=++=
+=
121t
11t
1t
..:ticadetermins tendnciade tornoem todeslocamen com aleatrio passeio um Y.:todeslocamen com aleatrio passeio um Y
.:aleatrio passeio um Y
Equaes(21.9.2,21.9.4e21.9.5)
Ametodologiaempregadano testeamesmaemqualquerumadasespecificaesanteriores,
masosvalorescrticosdotesteserodiferentes.
Emtodososcasosahiptesenula=0(srienoestacionria)eahiptesealternativa
-
184EconometriaSemestre2010.01 184
P r o f e s s o r a M n i c a B a r r o s ENCE
Noteque,emqualquerdos casos,o testeunilateral.A rejeiodahiptesenulaocorrer,
intuitivamente,seaestatsticaTau formuitopequena (abaixodovalorcrtico),poisoteste
para=0contraahiptesedenegativo.
OsvalorescrticosdaestatsticaTaudotesteDFsodiferentesdependendodahiptesenulaque
estsendotestada.
ComofazerotesteDickeyFuller?
Estime(21.9.2),(21.9.4)ou(21.9.5)porMQO.
Encontre o coeficiente estimado de Yt1 na equao e dividao por seu desvio padro,
obtendoaestatsticaTau.
ConsulteastabelasdeDickeyeFuller.SeMENORqueovalorcrticotabelado,rejeitara
hiptese nula H0: = 0, o que indica que a srie NO POSSUI RAIZ UNITRIA (
ESTACIONRIA).
Se MAIORqueovalorcrticotabelado,NOREJEITAMOSAHIPTESENULAH0: =0,
oquesignificaqueasrieNOESTACIONRIA.
Exemplosriedeexportaesbrasileiras
Suponha que desejamos analisar a srie trimestral de exportaes em milhes de dlares
mostradanoinciodestecaptulo.
Ocorrelogramamostradoaseguir:
-
185EconometriaSemestre2010.01 185
P r o f e s s o r a M n i c a B a r r o s ENCE
Jobservamosnoinciodocaptuloqueolentodecaimentodaautocorrelaosugerequeasrie
noestacionria.VamostestarestaconjeturaatravsdotesteDFemsuastrsespecificaes
(21.9.2),(21.9.4)e(21.9.5).OtestefoirealizadonosoftwareEviewsverso4.1.
1)TesteDFhiptesedepasseioaleatrioEquao(21.9.2)
Null Hypothesis: EXPORTS has a unit root Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic 0.180364 0.7352 Test critical values: 1% level -2.603423
5% level -1.946253 10% level -1.613346
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(EXPORTS) Method: Least Squares Date: 06/24/10 Time: 16:53 Sample(adjusted): 1995:1 2010:1 Included observations: 61 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. EXPORTS(-1) 0.003849 0.021341 0.180364 0.8575
R-squared -0.011226 Mean dependent var 458.4845Adjusted R-squared -0.011226 S.D. dependent var 4260.402S.E. of regression 4284.248 Akaike info criterion 19.57954Sum squared resid 1.10E+09 Schwarz criterion 19.61414Log likelihood -596.1758 Durbin-Watson stat 1.907662
Aequaoestimada:
Yt=+0,003849.Yt1
Analogamente ao exposto em Gujarati (p.655), este modelo deve ser descartado, pois o
coeficiente de Yt1 positivo, ou seja, = 1 > 0, o que indicaria que > 1, e a srie de
exportaesseriaexplosiva.
Ovalordaestatstica,nestecaso,+0.1803.Ovalorcrticoaonvel5%1,946.Como > valor
crtico,norejeitamosahiptesenuladeraizunitria, indicandoqueasrienoestacionria
(naverdade,dasconsideraesanteriores,omodeloindicaumcomportamentoexplosivo).
-
186EconometriaSemestre2010.01 186
P r o f e s s o r a M n i c a B a r r o s ENCE
2)TesteDFhiptesedepasseioaleatriocomdeslocamentoEquao(21.9.4)
Null Hypothesis: EXPORTS has a unit root Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -1.134474 0.6967 Test critical values: 1% level -3.542097
5% level -2.910019 10% level -2.592645
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(EXPORTS) Method: Least Squares Date: 06/24/10 Time: 17:38 Sample(adjusted): 1995:1 2010:1 Included observations: 61 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. EXPORTS(-1) -0.049221 0.043387 -1.134474 0.2612
C 1562.810 1115.212 1.401357 0.1663R-squared 0.021348 Mean dependent var 458.4845Adjusted R-squared 0.004761 S.D. dependent var 4260.402S.E. of regression 4250.248 Akaike info criterion 19.57958Sum squared resid 1.07E+09 Schwarz criterion 19.64879Log likelihood -595.1772 F-statistic 1.287031Durbin-Watson stat 1.869506 Prob(F-statistic) 0.261184
Aequaoestimada:
Yt=1568,810,0492.Yt1
OvalordaestatsticaTau1,13,eovalorcrticodaestatsticaDickeyFulleraonvel5%2,91.
Assim,no rejeitamosahiptesenulade raizunitria,ou seja,a srienoestacionria. Isso
ocorretambmaonvel1%,poisaestatsticaDickeyFulleraonvel1%3,54.
Nestemodelo,ovalorestimadode10,043387=0,9566.
-
187EconometriaSemestre2010.01 187
P r o f e s s o r a M n i c a B a r r o s ENCE
3)TesteDFhiptesedepasseioaleatriocomdeslocamentoetendnciaEquao(21.9.4)
Null Hypothesis: EXPORTS has a unit root Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -3.025398 0.1340 Test critical values: 1% level -4.115684
5% level -3.485218 10% level -3.170793
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(EXPORTS) Method: Least Squares Date: 06/24/10 Time: 17:57 Sample(adjusted): 1995:1 2010:1 Included observations: 61 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. EXPORTS(-1) -0.259732 0.085851 -3.025398 0.0037
C 991.3335 1075.672 0.921595 [email protected](1994:4) 170.7898 61.15799 2.792599 0.0071
R-squared 0.137341 Mean dependent var 458.4845Adjusted R-squared 0.107594 S.D. dependent var 4260.402S.E. of regression 4024.685 Akaike info criterion 19.48621Sum squared resid 9.39E+08 Schwarz criterion 19.59002Log likelihood -591.3294 F-statistic 4.616973Durbin-Watson stat 1.727489 Prob(F-statistic) 0.013783
Aequaoestimada:
Yt=991,33+170,79.t0,2597.Yt1
OvalordaestatsticaTau3,025,eosvalorescrticosdaestatsticaDickeyFulleraosnveis1%e
5%so,respectivamente, 4,12e3,48.Logo,aestatsticaTaumaiorqueosvalorescrticose
norejeitamosahiptesenuladeraizunitria,ouseja,asrienoestacionria.Nestemodelo,
ovalorestimadode10,2597=0,7403,bemdiferentedoencontradonomodeloanterior.
NotetambmqueoscoeficientesdatendnciaedeYt1sosignificantes,masaconstanteno.
Assim,talvezaespecificaomaiscorretadomodelonestecasoseja:Yt=.t+.Yt1
importantetambmverificarseasriediferenciadaestacionriaouno,poisissoindicariaque
oprocessoI(2),enoI(1),ouseja,queaordemdeintegraodasriemaisalta.
Repetimosaanlisecomasriede1a.diferenadasexportaes.
-
188EconometriaSemestre2010.01 188
P r o f e s s o r a M n i c a B a r r o s ENCE
4)TesteDFhiptesedepasseioaleatrioparaasriede1a.diferenadasexportaes
VejaabaixocomofazerotestenoEviews.
Na especificaomostradaacimatestamosahipteseda1a.diferenadasrieserumprocesso
I(2),ouseja, ttt uYY += 1t .:aleatrio passeio um Y ondeagoraYtasrieda1a.diferena.
Null Hypothesis: D(EXPORTS) has a unit root Exogenous: None Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -7.318054 0.0000 Test critical values: 1% level -2.604073
5% level -1.946348 10% level -1.613293
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(EXPORTS,2) Method: Least Squares Date: 06/24/10 Time: 19:42 Sample(adjusted): 1995:2 2010:1 Included observations: 60 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. D(EXPORTS(-1)) -0.952307 0.130131 -7.318054 0.0000
R-squared 0.475806 Mean dependent var -7.262133Adjusted R-squared 0.475806 S.D. dependent var 5955.789S.E. of regression 4312.065 Akaike info criterion 19.59275Sum squared resid 1.10E+09 Schwarz criterion 19.62765Log likelihood -586.7824 Durbin-Watson stat 1.925618
OvalordaestatsticaTau7,31,eosvalorescrticosdaestatsticaDickeyFulleraosnveis1%e
5%so,respectivamente,2,60e1,95.Logo,aestatsticaTauMENORqueosvalorescrticose
REJEITAMOSahiptesenuladeraizunitria,ouseja,asrieda1a.diferenaestacionria.
Indicaqueotesteestsendofeitona1a.diferenadasrie
IndicaqueestamosfazendootesteDF(enooADF),ouseja,nmerodelags=0nasdiferenasdoladodireitodaequao
-
189EconometriaSemestre2010.01 189
P r o f e s s o r a M n i c a B a r r o s ENCE
5)TesteDFhiptesedepasseioaleatriocomdeslocamentoparaasriede1a.diferenadas
exportaes
VejaoquadroaseguirparaverificarcomoseimplementaotestenoEviews:
Null Hypothesis: D(EXPORTS) has a unit root Exogenous: Constant Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -7.348840 0.0000 Test critical values: 1% level -3.544063
5% level -2.910860 10% level -2.593090
*MacKinnon (1996) one-sided p-values.
Novamente, a estatstica Tau (7,35) inferior aos valores crticos a 1 e 5%, e rejeitamos a
hiptesenula.Assimasrieda1a.diferenaestacionria.
6)TesteDFhiptesedepasseioaleatriocomdeslocamentoetendnciaparaasriede1a.
diferenadasexportaes
Null Hypothesis: D(EXPORTS) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -7.284629 0.0000 Test critical values: 1% level -4.118444
5% level -3.486509 10% level -3.171541
*MacKinnon (1996) one-sided p-values.
Novamente, a estatstica Tau (7,28) inferior aos valores crticos a 1 e 5%, e rejeitamos a
hiptesenula.Assimasrieda1a.diferenaestacionria.
-
190EconometriaSemestre2010.01 190
P r o f e s s o r a M n i c a B a r r o s ENCE
TesteDickeyFulleraumentado(testeADF)
OtesteoriginaldeDickeyeFullersupequeoprocessoytumAR(1)epodeserestendidopara
incorporaraomodeloapresenadenovoslagsdavarivelYt.IssolevaaoschamadostestesADF
(AugmentedDickeyFullerTests),cujaaplicaosegue,emlinhasgerais,omesmomecanismoque
otesteDickeyFulleroriginal.
O grande problema na aplicao dos testes ADF talvez seja, exatamente, a especificao de
quantas defasagens incluir na equao a ser testada,ou seja, aordemdomodeloAR(p) a ser
estimadoparaYt.
OtesteADFconsisteemestimararegresso:
OndetumrudobrancoeYt1=Yt1Yt2(analogamenteparaoutrasdefasagens).
Onmerodedefasagensaincluirnaequao(21.9.9),emgeral,determinadoempiricamente.A
idia incluirumnmerosuficientedetermosparaqueoerronoapresentecorrelaoserial.
Umaestratgiaescolherumnmerosuficientementegrandededefasagens,eusaros termos
atadefasagemmaisaltasignificante.Porexemplo,nocasodedadosmensais,ajusteomodelo
com um nmero de defasagensm > 12. Uma outra idia minimizar algum um critrio de
informao, como AIC ou BIC, para a escolha do nmero de defasagens. O Eviews usa esta
estratgia.
Uma regra emprica sugerida por Schwert (1989) escolher m igual parte inteira de
4/1
10012 N ondeNotamanhodasrie.Porexemplo,seN=100observaes,issonosdariam
=12lags,seN=200,teramosm=int(14,27)=14lags.
No testeADF, ahiptesenula aindaH0: = 0 eos valores crticos soosmesmosdo teste
DickeyFulleroriginal.
-
191EconometriaSemestre2010.01 191
P r o f e s s o r a M n i c a B a r r o s ENCE
Exemplosriedeexportaesbrasileirascontinuao
J vimos que a srie de exportaes I(1) e omodelo que parecemais adequado o com
tendnciaedeslocamento,dadopelaequao(21.9.5).Apartirdestemodeloadicionamosnovos
lagseexecutamosotesteADF.Aespecificaodonmerodelagsserfeitaautomaticamente
peloEviews(vejaafiguraaseguir).
Null Hypothesis: EXPORTS has a unit root Exogenous: Constant, Linear Trend Lag Length: 2 (Automatic based on SIC, MAXLAG=10)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -1.820128 0.6824 Test critical values: 1% level -4.121303
5% level -3.487845 10% level -3.172314
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(EXPORTS) Method: Least Squares Date: 06/24/10 Time: 20:01 Sample(adjusted): 1995:3 2010:1 Included observations: 59 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. EXPORTS(-1) -0.147365 0.080964 -1.820128 0.0743
D(EXPORTS(-1)) 0.125435 0.105485 1.189124 0.2396D(EXPORTS(-2)) -0.597411 0.106063 -5.632601 0.0000
C 493.5868 909.3323 0.542801 [email protected](1994:4) 111.9188 57.17440 1.957499 0.0555
R-squared 0.479804 Mean dependent var 466.2914Adjusted R-squared 0.441271 S.D. dependent var 4320.675S.E. of regression 3229.626 Akaike info criterion 19.07906Sum squared resid 5.63E+08 Schwarz criterion 19.25512Log likelihood -557.8322 F-statistic 12.45176Durbin-Watson stat 1.986022 Prob(F-statistic) 0.000000
-
192EconometriaSemestre2010.01 192
P r o f e s s o r a M n i c a B a r r o s ENCE
Aequaoestimada:
Yt=493,59+111,92.t0,1474.Yt1+0,1254. Yt10,5974. Yt2
OvalordaestatsticaTau1,82,eosvalorescrticosdaestatsticaDickeyFulleraosnveis1%e
5%so,respectivamente, 4,12e3,48.Logo,aestatsticaTaumaiorqueosvalorescrticose
norejeitamosahiptesenuladeraizunitria,ouseja,asrienoestacionria.
Neste modelo, o valor estimado de 1 0,1474 = 0,8526, bem diferente dos modelos
anteriores.
Crticasaostestesderaizunitria
Antesdediscutirosproblemas relativosaestes testes, lembresedasdefiniesde tamanhoe
potnciadeumteste.
Tamanhodeumteste()
Otamanhodeumteste(ounveldesignificnciadoteste)asuaprobabilidadedeerrodo
tipoI,ouseja,aprobabilidadederejeitarahiptesenulaquandoelaverdadeira.Nocaso
dostestesADF,aprobabilidadededizerqueasrieestacionriaquando,naverdade,
elanoestacionria.
Potnciadeumteste
Paraumtestedehiptesesgenricoarespeitodeumparmetro,afunopotnciaa
probabilidadederejeitarahiptesenulaquandoovalordoparmetro, escritaK().Um
errodo tipo II cometidoquando rejeitamosahiptesenulaeela falsa,ou seja,o
mximovalorda funopotnciaquandoH0 falsa.Apotnciadoteste,porsuavez,
definida como um menos o erro do tipo II. Assim, idealmente, gostaramos que a
potnciadotestefosseamaiorpossvel,poiselasignificarejeitarH0quandoH0falsa.
No casodos testesADF,altapotncia significaaltaprobabilidadededizerquea srie
estacionria (i.e, rejeitar H0) quando H0 falsa, isto , quando a srie realmente
estacionria.
-
193EconometriaSemestre2010.01 193
P r o f e s s o r a M n i c a B a r r o s ENCE
AmaioriadostestesDickeyFullertembaixapotncia,isto,tendeaaceitarahiptesede
raiz unitria quando ela falsa.Ou seja,os testes encontramuma raizunitriamesmo
quandoasrienoatem.
21.8.COINTEGRAO
Em geral, a regresso de uma srie no estacionria em outra produz uma regresso espria.
EngleeGranger (1987)mostraramqueexistem situaesemqueduas (oumais)variveisno
estacionrias do tipo random walk podem ser empregadas diretamente num modelo de
regresso.Elesnotaramqueumacombinao lineardeduasoumaissriesnoestacionrias
podeserestacionria.Setalcombinao linearestacionriaexiste,assriesnoestacionrias
so ditas cointegradas, e esta combinao linear chamada de equao de cointegrao,
podendoserinterpretadacomoumarelaodeequilbriodelongoprazoentreasvariveis.
Porexemplo,sejamYteXtdoispasseiosaleatrios,esuponhaqueexistaut=Yt.Xtestacionria.
Nestecaso,YteXtsochamadasdecointegradase oparmetrodecointegrao,quepode
ser estimado por uma regresso por mnimos quadrados ordinrios de Yt em Xt. Um ponto
importante : duas sries cointegradas requerem, obrigatoriamente, a mesma ordem de
diferenciaoparaalcanaraestacionariedade.Porexemplo,seYt I(2)eXtumcandidatoa
cointegrarcomYt,entoobrigatoriamenteXtdeveserI(2).
Opropsitodostestesdecointegraodeterminarseumconjuntodesriesnoestacionrias
ounocointegrado.Emlinhasgerais,cointegraosignificaqueexisteumcomovimentoentre
variveis que exibem tendncia. Duas variveis cointegradas apresentam uma relao de
equilbriodelongoprazo.
Considere uma srie temporal Yt no estacionria, que se torna estacionria aps a aplicao
sucessivadeddiferenas.NestecasodizemosqueYt integradadeordemd,edenotamosYt~
I(d). Sries integradas possuem uma componente de tendncia estocstica, e a aplicao de
choquesaestassriesresultaemalteraespermanentesnasmesmas.
-
194EconometriaSemestre2010.01 194
P r o f e s s o r a M n i c a B a r r o s ENCE
A identificao do grau apropriado de diferenciao (d) normalmente feita atravs da FAC
(funo de autocorrelao) de Yt. Aplicamse diferenas sucessivas at que a FAC decaia com
suficienterapidez.Esteprocedimentotem,noentanto,certograudesubjetividade,poisoanalista
deve determinar se o decaimento da FAC, aps um dado nmero de diferenas, j
suficientemente rpido para que a srie diferenciada seja considerada estacionria. Um
procedimentoalternativotestaraordemdeintegraodeYt,oqueconstituioschamadostestes
deraizunitria,comooDickeyFullereoADF.Onomedostestesderivado fatodonmerode
razessobreocrculounitrio(razesunitrias)corresponderaonmerodediferenasnecessrio
paratornarumasrieI(d)estacionria.
Segundo Tsay (2002), um procedimento adequado na modelagem de sries temporais no
estacionriasreconheceraordemdeintegraodassriesdeinteresseeidentificarummodelo
ARMA para os resduos. Estes, naturalmente, devem ser estacionrios, portanto sua
autocorrelaodevedecairrapidamente.AmodelagemARMAdosresduosnecessriapoisao
ajustarmos ummodelo de regresso a duas sries temporais, freqentemente os resduos do
modelo original ainda apresentam correlao serial. Esta correo posterior assegura que os
resduoscorrigidosserodescorrelatados.
Cointegraonaprtica
SuponhaquevocobservouqueduassriesYteXtsoI(1).FaaaregressoporMQOdeYtemXt
eobtenhaosresduos.Isto:
ttt uXY ++= .
Teste a estacionariedade dos resduos. Se eles forem I(0), ou seja, estacionrios, Yt e Xt
cointegram,aequaoobtidaporMQOarelaodecointegraoeostestesteFusuaispodem
ser aplicados sem problemas. A equao acima chamada de regresso cointegrante e o
parmetrooparmetrodecointegrao.
Exemploimportaeseexportaesbrasileiras
JvimosqueasriedeexportaesI(1),epossivelmenteamelhoreespecificaoparaelatem
driftetendnciadeterminstica.Vamosverificarseasriede importaestambmI(1),pois
issoabreapossibilidadedasduassriescointegrarem(lembresequeseelastiveremordensde
integraodiferentes,noirocointegrar).
-
195EconometriaSemestre2010.01 195
P r o f e s s o r a M n i c a B a r r o s ENCE
OstestesDickeyFullerparaasriedeimportaessomostradosaseguir:
1)TesteDFhiptesedepasseioaleatrioEquao(21.9.2)
Null Hypothesis: IMPORTS has a unit root Exogenous: None Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic 0.648838 0.8537 Test critical values: 1% level -2.603423
5% level -1.946253 10% level -1.613346
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(IMPORTS) Method: Least Squares Date: 06/24/10 Time: 21:05 Sample(adjusted): 1995:1 2010:1 Included observations: 61 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. IMPORTS(-1) 0.012995 0.020028 0.648838 0.5189
R-squared -0.011190 Mean dependent var 434.6432Adjusted R-squared -0.011190 S.D. dependent var 3240.956S.E. of regression 3259.039 Akaike info criterion 19.03251Sum squared resid 6.37E+08 Schwarz criterion 19.06711Log likelihood -579.4916 Durbin-Watson stat 1.535624
Norejeitamosahiptesenula,asrieNOESTACIONRIA.Notetambmocoeficientepositivo
deYt1,queindicariaqueasrietemcomportamentoexplosivo.
2)TesteDFhiptesedepasseioaleatriocomdeslocamentoEquao(21.9.4)
Null Hypothesis: IMPORTS has a unit root Exogenous: Constant Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -0.637525 0.8539 Test critical values: 1% level -3.542097
5% level -2.910019 10% level -2.592645
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(IMPORTS) Method: Least Squares Date: 06/24/10 Time: 21:14 Sample(adjusted): 1995:1 2010:1 Included observations: 61 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. IMPORTS(-1) -0.028652 0.044942 -0.637525 0.5262
C 969.1208 936.3589 1.034989 0.3049
-
196EconometriaSemestre2010.01 196
P r o f e s s o r a M n i c a B a r r o s ENCE
R-squared 0.006842 Mean dependent var 434.6432Adjusted R-squared -0.009992 S.D. dependent var 3240.956S.E. of regression 3257.107 Akaike info criterion 19.04730Sum squared resid 6.26E+08 Schwarz criterion 19.11651Log likelihood -578.9428 F-statistic 0.406438Durbin-Watson stat 1.499999 Prob(F-statistic) 0.526250
Norejeitamosahiptesenula,asrieNOESTACIONRIA.
3)TesteDFhiptesedepasseioaleatriocomdeslocamentoetendnciaEquao(21.9.5)
Null Hypothesis: IMPORTS has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -1.954147 0.6140 Test critical values: 1% level -4.115684
5% level -3.485218 10% level -3.170793
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(IMPORTS) Method: Least Squares Date: 06/24/10 Time: 21:16 Sample(adjusted): 1995:1 2010:1 Included observations: 61 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. IMPORTS(-1) -0.128472 0.065743 -1.954147 0.0555
C 644.7266 926.1794 0.696114 [email protected](1994:4) 70.53214 34.64881 2.035630 0.0464
R-squared 0.073066 Mean dependent var 434.6432Adjusted R-squared 0.041103 S.D. dependent var 3240.956S.E. of regression 3173.651 Akaike info criterion 19.01108Sum squared resid 5.84E+08 Schwarz criterion 19.11490Log likelihood -576.8380 F-statistic 2.285942Durbin-Watson stat 1.459026 Prob(F-statistic) 0.110768
Novamente,norejeitamosahiptesenula,asrieNOESTACIONRIA.
Assim,comoassriessoambasI(1),podemostentarfazeraregressodeumavarivelnoutra.
Nestecasotentaremosexplicarexportaesatravsdeimportaes.
-
197EconometriaSemestre2010.01 197
P r o f e s s o r a M n i c a B a r r o s ENCE
Omodeloajustado:
Dependent Variable: EXPORTS Method: Least Squares Date: 06/24/10 Time: 21:03 Sample: 1994:4 2010:1 Included observations: 62
Variable Coefficient Std. Error t-Statistic Prob. C -773.9056 1288.245 -0.600744 0.5503
IMPORTS 1.237658 0.060675 20.39826 0.0000R-squared 0.873973 Mean dependent var 22706.81Adjusted R-squared 0.871873 S.D. dependent var 12722.75S.E. of regression 4554.092 Akaike info criterion 19.71717Sum squared resid 1.24E+09 Schwarz criterion 19.78578Log likelihood -609.2322 F-statistic 416.0889Durbin-Watson stat 0.286903 Prob(F-statistic) 0.000000
Nota: vide Gujarati (pp.660661) nas regresses cointegrantes o valor da DurbinWatson
tende a ser pequeno e ele prope um teste baseado na hiptese d = 0 para verificar se as
variveissocointegradas.
Note o altssimo valor do R2 e o baixssimo valor daDurbinWatson. Isso poderia indicar uma
regressoespria.Mas, jsabemosqueasduassriesso I(1),eassimexisteapossibilidadede
queestaregressosejaverdadeira.Precisamosexaminarosresduosdestaregressoeverificar
sesoestacionrios.
Null Hypothesis: RESID_REGR_EXPORT_IMPOR has a unit root Exogenous: None Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -1.886520 0.0570 Test critical values: 1% level -2.603423
5% level -1.946253 10% level -1.613346
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID_REGR_EXPORT_IMPOR) Method: Least Squares Date: 06/24/10 Time: 21:28 Sample(adjusted): 1995:1 2010:1 Included observations: 61 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. RESID_REGR_EXPO
RT_IMPOR(-1) -0.129668 0.068734 -1.886520 0.0641
R-squared 0.054975 Mean dependent var -79.45504Adjusted R-squared 0.054975 S.D. dependent var 2438.006S.E. of regression 2370.043 Akaike info criterion 18.39546Sum squared resid 3.37E+08 Schwarz criterion 18.43007Log likelihood -560.0616 Durbin-Watson stat 2.056164
-
198EconometriaSemestre2010.01 198
P r o f e s s o r a M n i c a B a r r o s ENCE
Rejeitaseahiptesenuladeque=0aonvel5,7%,eportantopodemossuporque,paraeste
nvela srieestacionria.Notequeno rejeitamosahiptesenulanosnveis1%e5% (mas
rejeitamosnonvel10% onvelde significnciado teste5,7% comomostradono incioda
tabela).
Assim,podemosconcluirquearegressoentreexportaeseimportaesnoespria,e
podemosescrever:
EXPORTt=773,9056+1,2377*IMPORTt
Exemplo2IPCAeSELIC
NesteexemploanalisamosaexistnciaderazesunitriasnassriesmensaisdoIPCA(inflao)e
SELIC(taxabsicadejuros)noperodoentrejaneirode1995emaiode2010.Ogrficodasduas
sriesmostradoaseguir.
-1
0
1
2
3
4
5
96 98 00 02 04 06 08
SELIC IPCA
SELIC E IPCA (VARIAO % MENSAL)
Oscorrelogramasdasduassriesestonasprximasfiguras.
-
199EconometriaSemestre2010.01 199
P r o f e s s o r a M n i c a B a r r o s ENCE
1)CorrelogramadeIPCA(variaopercentualmensal)
2)CorrelogramadeSELIC(variaopercentualmensal)
Oscorrelogramassugeremqueambasassriesnosoestacionrias.
-
200EconometriaSemestre2010.01 200
P r o f e s s o r a M n i c a B a r r o s ENCE
3)TestederaizunitriaparaSELIC
3.1)TesteDFparaaSELICusandoaespecificaodepasseioaleatrio
Null Hypothesis: SELIC has a unit root Exogenous: None Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -1.895728 0.0555 Test critical values: 1% level -2.577590
5% level -1.942564 10% level -1.615553
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(SELIC) Method: Least Squares Date: 06/25/10 Time: 17:32 Sample(adjusted): 1995:02 2010:05 Included observations: 184 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. SELIC(-1) -0.018833 0.009934 -1.895728 0.0596
R-squared 0.015702 Mean dependent var -0.014264Adjusted R-squared 0.015702 S.D. dependent var 0.237448S.E. of regression 0.235577 Akaike info criterion -0.048142Sum squared resid 10.15582 Schwarz criterion -0.030669Log likelihood 5.429048 Durbin-Watson stat 2.185729
EstatsticaTau= 1,896,queestentreosvalores crticos5%e10%.Naverdade (vide tabela),
rejeitaseahiptesenula=0comnvel5,7%.Ouseja,comnvel5,7%(emaior)podesedizer
queasrieestacionria(masnocomnveismenoresque5,7%).
3.2)TesteDFparaaSELICusandoaespecificaodepasseioaleatriocomdeslocamento
Null Hypothesis: SELIC has a unit root Exogenous: Constant Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -2.770365 0.0646 Test critical values: 1% level -3.465977
5% level -2.877099 10% level -2.575143
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(SELIC) Method: Least Squares Date: 06/25/10 Time: 17:38 Sample(adjusted): 1995:02 2010:05 Included observations: 184 after adjusting endpoints
-
201EconometriaSemestre2010.01 201
P r o f e s s o r a M n i c a B a r r o s ENCE
Variable Coefficient Std. Error t-Statistic Prob.
SELIC(-1) -0.064982 0.023456 -2.770365 0.0062C 0.088866 0.041005 2.167193 0.0315
R-squared 0.040464 Mean dependent var -0.014264Adjusted R-squared 0.035191 S.D. dependent var 0.237448S.E. of regression 0.233233 Akaike info criterion -0.062751Sum squared resid 9.900334 Schwarz criterion -0.027806Log likelihood 7.773099 F-statistic 7.674924Durbin-Watson stat 2.140704 Prob(F-statistic) 0.006180
Estatstica Tau = 2,77, que est entre os valores crticos 5% e 10%.Na verdade (vide tabela),
rejeitaseahiptesenula=0comnvel6,5%.Ouseja,comnvel6,5%(emaior)podesedizer
queasrieestacionria.
3.3) Teste DF para a SELIC usando a especificao de passeio aleatrio com deslocamento e
tendncia
Null Hypothesis: SELIC has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -3.739908 0.0221 Test critical values: 1% level -4.008706
5% level -3.434433 10% level -3.141157
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(SELIC) Method: Least Squares Date: 06/25/10 Time: 17:41 Sample(adjusted): 1995:02 2010:05 Included observations: 184 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. SELIC(-1) -0.134727 0.036024 -3.739908 0.0002
C 0.315645 0.098506 3.204309 [email protected](1995:01) -0.001255 0.000497 -2.524400 0.0124
R-squared 0.073098 Mean dependent var -0.014264Adjusted R-squared 0.062856 S.D. dependent var 0.237448S.E. of regression 0.229864 Akaike info criterion -0.086484Sum squared resid 9.563621 Schwarz criterion -0.034066Log likelihood 10.95649 F-statistic 7.137040Durbin-Watson stat 2.066120 Prob(F-statistic) 0.001039
Rejeitaseahiptesenulaanvel2,2%.
-
202EconometriaSemestre2010.01 202
P r o f e s s o r a M n i c a B a r r o s ENCE
Em todos as especificaes, ahiptesenula foi rejeitada comnvel abaixode10%,eportanto
conclumosqueasrieestacionria,ouseja,noapresentaraizunitria.
4)TestederaizunitriaparaIPCA
4.1)TesteDFparaaIPCAusandoaespecificaodepasseioaleatrio
Null Hypothesis: IPCA has a unit root Exogenous: None Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -3.664179 0.0003 Test critical values: 1% level -2.577590
5% level -1.942564 10% level -1.615553
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(IPCA) Method: Least Squares Date: 06/25/10 Time: 17:44 Sample(adjusted): 1995:02 2010:05 Included observations: 184 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. IPCA(-1) -0.124316 0.033927 -3.664179 0.0003
R-squared 0.068051 Mean dependent var -0.006902Adjusted R-squared 0.068051 S.D. dependent var 0.385079S.E. of regression 0.371745 Akaike info criterion 0.864205Sum squared resid 25.28962 Schwarz criterion 0.881677Log likelihood -78.50685 Durbin-Watson stat 2.077836
Ahiptesenulaclaramenterejeitadaasrieestacionria.
4.2)TesteDFparaoIPCAusandoaespecificaodepasseioaleatriocomdeslocamento
Null Hypothesis: IPCA has a unit root Exogenous: Constant Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -5.495379 0.0000 Test critical values: 1% level -3.465977
5% level -2.877099 10% level -2.575143
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(IPCA) Method: Least Squares Date: 06/25/10 Time: 17:46 Sample(adjusted): 1995:02 2010:05
-
203EconometriaSemestre2010.01 203
P r o f e s s o r a M n i c a B a r r o s ENCE
Included observations: 184 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. IPCA(-1) -0.272889 0.049658 -5.495379 0.0000
C 0.159234 0.040112 3.969725 0.0001R-squared 0.142315 Mean dependent var -0.006902Adjusted R-squared 0.137603 S.D. dependent var 0.385079S.E. of regression 0.357605 Akaike info criterion 0.792033Sum squared resid 23.27438 Schwarz criterion 0.826978Log likelihood -70.86708 F-statistic 30.19919Durbin-Watson stat 1.943289 Prob(F-statistic) 0.000000
Novamente,nestaespecificaoconclumosquenohraizunitriaeasrieI(0).
4.3) Teste DF para o IPCA usando a especificao de passeio aleatrio com deslocamento e
tendncia
Null Hypothesis: IPCA has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -5.706429 0.0000 Test critical values: 1% level -4.008706
5% level -3.434433 10% level -3.141157
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(IPCA) Method: Least Squares Date: 06/25/10 Time: 17:47 Sample(adjusted): 1995:02 2010:05 Included observations: 184 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. IPCA(-1) -0.297889 0.052202 -5.706429 0.0000
C 0.247059 0.070754 3.491780 [email protected](1995:01) -0.000785 0.000522 -1.504349 0.1342
R-squared 0.152907 Mean dependent var -0.006902Adjusted R-squared 0.143546 S.D. dependent var 0.385079S.E. of regression 0.356370 Akaike info criterion 0.790477Sum squared resid 22.98697 Schwarz criterion 0.842895Log likelihood -69.72392 F-statistic 16.33592Durbin-Watson stat 1.919151 Prob(F-statistic) 0.000000
NovamenterejeitamosahiptesenulaeconclumosqueasrieI(0).
-
204EconometriaSemestre2010.01 204
P r o f e s s o r a M n i c a B a r r o s ENCE
5)ModeloparaSELICcomofunodoIPCA
OfatodasduassriesseremestacionriasnospermiteentofazeraregressodeSELICemIPCA
semqueestaregressosejaespria.
Dependent Variable: SELIC Method: Least Squares Date: 06/25/10 Time: 17:50 Sample: 1995:01 2010:05 Included observations: 185
Variable Coefficient Std. Error t-Statistic Prob. C 1.158634 0.071328 16.24383 0.0000
IPCA 0.697375 0.088474 7.882287 0.0000R-squared 0.253459 Mean dependent var 1.582525Adjusted R-squared 0.249379 S.D. dependent var 0.735616S.E. of regression 0.637326 Akaike info criterion 1.947681Sum squared resid 74.33173 Schwarz criterion 1.982495Log likelihood -178.1605 F-statistic 62.13045Durbin-Watson stat 0.275397 Prob(F-statistic) 0.000000
Osresduosdestaregressosoestacionrios,comomostraotestederaizunitriaabaixo(fizo
testeapenasparaaespecificaodepasseioaleatrio).
Null Hypothesis: RESID_1 has a unit root Exogenous: None Lag Length: 0 (Fixed)
t-Statistic Prob.* Augmented Dickey-Fuller test statistic -3.800640 0.0002 Test critical values: 1% level -2.577590
5% level -1.942564 10% level -1.615553
*MacKinnon (1996) one-sided p-values.
Augmented Dickey-Fuller Test Equation Dependent Variable: D(RESID_1) Method: Least Squares Date: 06/25/10 Time: 18:38 Sample(adjusted): 1995:02 2010:05 Included observations: 184 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. RESID_1(-1) -0.142425 0.037474 -3.800640 0.0002
R-squared 0.072414 Mean dependent var -0.009450Adjusted R-squared 0.072414 S.D. dependent var 0.334323S.E. of regression 0.321991 Akaike info criterion 0.576834Sum squared resid 18.97311 Schwarz criterion 0.594306Log likelihood -52.06871 Durbin-Watson stat 2.102549
Assim, concluisequepodemosusar a variaomensaldo IPCApara tentarexplicara variao
mensaldaSELIC.
-
205EconometriaSemestre2010.01 205
P r o f e s s o r a M n i c a B a r r o s ENCE
A regresso no espria, mas a estatstica de DurbinWatson muito baixa, indicando a
existnciade correlao serialde1aordemnos resduos.Vamos tentarmelhorar isso incluindo
algunslagsdeIPCAnaespecificaodomodelo.
Estemodelofoiajustado,masnogarantireiquetimo,ouomelhor,sobqualquercritrio.Os
resduos parecem ter um comportamento bastante bom, e oO ajuste da regressomelhorou
sensivelmente(emtermosdeR2, logverossimilhana,somadequadradosdosresduos,critrios
AICeSchwarz).
Dependent Variable: SELIC Method: Least Squares Date: 06/25/10 Time: 20:12 Sample(adjusted): 1996:01 2010:05 Included observations: 173 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. C 1.176641 0.011374 103.4467 0.0000
IPCA 0.022309 0.017261 1.292420 0.1980IPCA(-1) 0.064427 0.020364 3.163795 0.0019IPCA(-2) 0.059989 0.016710 3.590057 0.0004IPCA(-9) 0.207167 0.011750 17.63117 0.0000IPCA(-12) 0.096422 0.011696 8.244047 0.0000
R-squared 0.836087 Mean dependent var 1.439994Adjusted R-squared 0.831179 S.D. dependent var 0.178938S.E. of regression 0.073522 Akaike info criterion -2.348403Sum squared resid 0.902711 Schwarz criterion -2.239040Log likelihood 209.1369 F-statistic 170.3664Durbin-Watson stat 2.087612 Prob(F-statistic) 0.000000
Notequeo IPCAnomesmo instantenofoiconsideradosignificante,eentodecidiexcluilodo
modelo,resultandonomodeloaseguir:
Dependent Variable: SELIC Method: Least Squares Date: 06/25/10 Time: 20:15 Sample(adjusted): 1996:01 2010:05 Included observations: 173 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob. C 1.179554 0.011171 105.5905 0.0000
IPCA(-1) 0.079107 0.016935 4.671122 0.0000IPCA(-2) 0.058429 0.016699 3.498877 0.0006IPCA(-9) 0.208055 0.011753 17.70182 0.0000IPCA(-12) 0.098622 0.011595 8.505857 0.0000
R-squared 0.834447 Mean dependent var 1.439994Adjusted R-squared 0.830506 S.D. dependent var 0.178938S.E. of regression 0.073668 Akaike info criterion -2.350011Sum squared resid 0.911740 Schwarz criterion -2.258876Log likelihood 208.2760 F-statistic 211.6957Durbin-Watson stat 2.072298 Prob(F-statistic) 0.000000
-
206EconometriaSemestre2010.01 206
P r o f e s s o r a M n i c a B a r r o s ENCE
Houveuma ligeiramelhoraem termosdoBICeAIC (quepenalizamonmerode variveisno
modelo)euma ligeirapioraem termosda logverossimilhana.Agrandevantagemqueeste
modelopodeserusadoparaprevisoumpassofrenteseconhecermosavariaodoIPCAno
mstpodemospreveravariaodaSELICnomst+1.
O prximo grfico mostra a evoluo temporal dos resduos e o grfico seguinte o seu
correlogramaelesparecemestacionariedadedosresduos!
Resduos,SELICrealeSELICajustadapelomodelo
-.2
-.1
.0
.1
.2
.3
.4
1.0
1.2
1.4
1.6
1.8
2.0
2.2
1996 1998 2000 2002 2004 2006 2008
Residual Actual Fitted
CorrelogramadosResduos
-
207EconometriaSemestre2010.01 207
P r o f e s s o r a M n i c a B a r r o s ENCE
Eisalgunscomentrios.
ExistemdiversasquebrasestruturaisnasriedavariaodaSELIC,pontosemqueataxa
subiu abruptamente a incluso de variveis dummy para levar em conta estas
mudanasradicaisseriaumaboaidia;
AsduassriessoestacionriasdeacordocomostestesDF,maspodehaverproblemas
nassuasvarincias.
Naverdade,eraatesperadoqueestassries(IPCAeSELIC)noapresentassemtendncia
claraparacimaouparabaixo,poiselassoasvariaesmensais,tantoadSELICquantodo
IPCA, ou seja, como se pegssemos um nmero ndice e fizssemos a srie das
diferenas.
Seriatentadormodelarasduassriesnasescalasdolog,masoIPCAtevevariaonegativa
empelomenosummsnoperodo,oqueimpedeousodolog.Semprepoderamostentar
ummodelodotipolog(k+SELIC)emlog(k+IPCA)ondeksuficienteparaqueIPCAnoseja
negativoemqualquerms,masachoqueissodificultaacompreensodomodelo.
Finalmente, se fosse fcil modelar isso, EU seria milionria (e vocs tambm, a esta
altura...),eoBACENnosofreriatantascrticasporelevarataxade juros,supostamente
nahoraerrada...
Cointegraoeomecanismodecorreodeerro
Considerenovamenteomodeloparaexportaescomofunodasimportaes.Jvimosqueas
duassriessoI(1)eexisteumaregressocointegrante.
Considereagoraoseguintemodelonasprimeirasdiferenas:
EXPORTt=0+1*IMPORTt+2*ut1+t
Ondetumerroaleatrioeut1oerrodaequaocointegranteDEFASADOemuminstante,
ouseja,oerrodaequaoemnvelDEFASADOemuminstante,isto:
12111 = ttt IMPORTEXPORTu
Aequaoemdiferenasacimachamadadeequaodomecanismodecorreodeerro.Ela
dizque:
-
208EconometriaSemestre2010.01 208
P r o f e s s o r a M n i c a B a r r o s ENCE
Esperasequeocoeficiente2dotermodecorreodeerrosejaNEGATIVOparagarantir
o retorno ao ponto de equilbrio.O valor deste coeficiente indica a rapidez com queo
equilbrioalcanado.
EXPORTdependedeIMPORTedotermodeerrodeequilbrio;
Seut1>0e IMPORT=0.EntoEXPORTt1estarACIMAdo seu valordeequilbrioe
comearacairnoperodoseguinteparacorrigiroerrodeequilbrio;
Analogamente, se ut1