ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class...

24
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 15 ECE 6341 1

Transcript of ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class...

Page 1: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Prof. David R. Jackson ECE Dept.

Spring 2016

Notes 15

ECE 6341

1

Page 2: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Arbitrary Line Current

TMz: ( , )ρzA z

Introduce Fourier Transform:

1( ) ( )2

zjk zz zI z I k e dk

π

+∞−

−∞

= ∫

( )( ) zjk zzI k I z e dz

+∞+

−∞

= ∫

2

y

z

x

( )I z

Page 3: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Arbitrary Line Current (cont.) View this as a collection of phased line currents::

Then

0( ) zjk zdI z I e−=

01 ( )

2π=

z zI I k dk

( ) ( )

( ) ( )

20 00

200

41 ( )

4 2

z

z

jk zz

jk zz z

IdA H k ej

I k dk H k ej

ρ

ρ

µ ρ

µ ρπ

=

=

(from Notes 11)

3

1( ) ( )2

zjk zz zI z I k e dk

π

+∞−

−∞

= ∫

Page 4: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Hence, from superposition, the total magnetic vector potential is

( ) ( )200( )

8zjk z

z z zA I k H k e dkj ρ

µ ρπ

+∞−

−∞

= ∫

Arbitrary Line Current (cont.)

4

( )1/22 2zk k kρ = −

2 2

2 2

,

,z z

z z

k k k kk

j k k k kρ

− ≤= − − ≥

Page 5: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example

Uniform phased line current

00( ) zjk zI z I e−=

0

0

0

( )0

0 0

( )

2 ( )

z z

z z

jk z jk zz

j k k z

z z

I k I e e dz

I e dz

I k kπδ

+∞− +

−∞

+∞−

−∞

=

=

= −

( ) 12

12

x

x

jk xx

jk xx

x e dk

e dk

δπ

π

∞−

−∞

∞+

−∞

=

=

5

y

z

x

( )I z

Note:

Page 6: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.) Hence

( ) ( )

[ ] ( ) ( )

( ) ( )( ) ( )

0

0

200

200 0 0

200 0 0

20 00 0

( )8

2 ( )8

28

4

z

z

z

z

jk zz z z

jk zz z z

jk z

jk z

A I k H k e dkj

I k k H k e dkj

I H k ej

I H k ej

ρ

ρ

ρ

ρ

µ ρπ

µ πδ ρπµ π ρπµ ρ

+∞−

−∞

+∞−

−∞

=

= −

=

=

( )1/22 20 0zk k kρ = −where

6

Page 7: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.) Hence

( )1/22 20 0zk k kρ = −

where

0(2)00 0( )

4zjk z

zIA H k ej ρ

µ ρ − =

7

If kz0 is real, then

2 20 0

0 2 20 0

,

,z z

z z

k k k kk

j k k k kρ

− ≤= − − ≥

This is the correct choice of the wavenumber.

y

z

x

( )I z

Page 8: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.)

( )1/22 20 0zk k kρ = −

8

If kz0 is complex:

( )( )

0 0

0 0

0 : Im 0 ( )

: Im 0 ( )

z

z

k k

k kρ

ρ

β

β

< < >

> <

improper

proper

0 0 0z z zk jβ α= −

This is the “physical” choice of the wavenumber.

Note that the radiation condition at infinity is violated (z → - ∞), so we lose uniqueness. However, we can still talk about what choice of the square root is “physical.”

y

z

x

( )I z

Page 9: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.)

9

( )0 00 : Im 0 ( )z k kρβ< < > improper

A semi-infinite leaky-wave line source produces a cone of radiation in the near field.

y

z

x

( )I z

Cone of leakage Region of exponential growth

Page 10: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example

Dipole

( ) ( )I z Il zδ=

( )zI k Il=

10

y

z

x

Il

Page 11: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.)

Also,

( ) ( )200 ( )

8zjk z

z zA I H k e dkj ρ

µ ρπ

+∞ −

−∞= ∫

( ) 0

4

jkr

zeA I

rµπ

=

(from ECE 6340)

( ) ( )200( )

8zjk z

z z zA I k H k e dkj ρ

µ ρπ

+∞−

−∞

= ∫

Hence

11

2 2

2 2

,

,z z

z z

k k k kk

j k k k kρ

− ≤= − − ≥

Page 12: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.) Hence,

A spherical wave is thus expressed as a collection of cylindrical waves.

( )20

1 ( )2

z

jkrjk z

ze H k e dk

r j ρ ρ− +∞ −

−∞= ∫

12

Page 13: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.) Use a change of variables:

( ) ( )

( )

2 20 0

20

1 1( ) ( )2 2

1 ( )2

z z

CCW

z

CW

jk z jk zz

zC

jk z

zC

kH k e dk H k e dk

j j k

kH k e dk

j k

ρρ ρ ρ

ρρ ρ

ρ ρ

ρ

+∞ − −

−∞

−=

=

∫ ∫

13

( )

( )

1/22 20

1/22 20

z

zz

k k k

k kdk dk dk

kk k

ρ

ρ ρρ ρ

ρ

= −

= − = −−

( )20

1 ( )2

z

jkrjk z

z

ke H k e dkr j k

ρρ ρρ

− +∞ −

−∞

=

We then have

or

(The path has been deformed back to the real axis, please see the next two slides)

Page 14: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.)

14

( )1/22 20zk k kρ= −

Branch cut

( )Re kρ

CCCW

( )Im kρ

0k

Mapping equation for C:

Note: The value of kz is opposite across the branch cut.

CCCW: counterclockwise around branch cut

0k−

( ),CCW

z

k C

kρ ∈

∈ −∞ ∞

The square root is defined so that when kρ is on the real axis we have:

2 20 0,zk j k k k kρ ρ= − − >

Page 15: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.)

15

( )Re kρ

CCW

( )Im kρ

0k

CCW: clockwise around branch cut

Deform path

0k−

( )Re kρ

( )Im kρ

0k

Branch cut

0k−

“Sommerfeld path”

Page 16: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.)

16

Alternative form:

( )

( ) ( )

( ) ( )

20

0 2 20 00

0 2 20 00

0

( )2

( ) ( )2 2

( ) ( )2 2

2

z

z z

z z

jkrjk z

z

jk z jk z

z z

jk z jk z

z z

z

ke j H k e dkr k

k kj jH k e dk H k e dkk k

k kj jH k e dk H k e dkk k

kj Hk

ρρ ρ

ρ ρρ ρ ρ ρ

ρ ρρ ρ ρ ρ

ρ

ρ

ρ ρ

ρ ρ

− +∞ −

−∞

+∞− −

−∞

+∞− −

= −

= − − ′

′ ′= − − −

′ = +

∫ ∫

∫ ∫

( ) ( )

( ) ( )

( )

0 1 200

1 20 00 0

00

( ) ( )2

( ) ( )2 2

z z

z z

z

jk z jk z

z

jk z jk z

z z

jk z

z

kjk e dk H k e dkk

k kj jH k e dk H k e dkk k

kj J k e dk

k

ρρ ρ ρ ρ

ρ ρρ ρ ρ ρ

ρρ ρ

ρ ρ

ρ ρ

ρ

+∞− −

∞ +∞− −

∞ −

′ ′ −

′ ′= − −

= −

∫ ∫

∫ ∫

k kρ ρ′ = −

( ) ( ) ( ) ( )2 10 0H z H z− = − +

( ) ( ) ( ) ( ) ( )( )1 20 0 0

12

J z H z H z= +

Page 17: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Example (cont.)

17

00

1 ( ) z

jkrjk z

z

ke J k e dkr j k

ρρ ρρ

− +∞ − =

Sommerfeld Identities

Hence we have:

( )20

1 ( )2

z

jkrjk z

z

ke H k e dkr j k

ρρ ρρ

− +∞ −

−∞

=

The integrals are along a “Sommerfeld path” that stays slightly above or below the branch cuts.

Page 18: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Far-Field Identity This identity is useful for calculating the far-field of finite (3-D) sources in cylindrical coordinates.

Note: We assume that the current decays at z = ± ∞ fast enough so that a 3-D far field exists.

18

y

z

x

( )I zr θ

Page 19: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Far-Field Identity (cont.)

( )200( ) ( )

8zjk z

z z zA I k H k e dkj ρ

µ ρπ

+∞ −

−∞= ∫

Exact solution:

19

y

z

x

( )I zr θ

Page 20: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Far-Field Identity (cont.) From ECE 6340, as →∞r

0~ ( , )4

jkreA ar

µ θ φπ

( ) ( )sin cos sin sin cos

cos0

( , )

ˆ ( )4

jk x y z

V

jkrj kz

a J r e dx dy dz

ez I z e dzr

θ φ θ φ θ

θ

θ φ

µπ

′ ′ ′+ +

− +∞ ′

−∞

′ ′ ′ ′=

′ ′=

Hence

0~ ( cos )4

jkr

zeA I k

rµ θπ

20

Page 21: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Far-Field Identity (cont.)

Hence, comparing these two,

( )20 00( ) ( ) ~ ( cos )

8 4z

jkrjk z

z zeI k H k e dk I k

j rρµ µρ θπ π

−+∞ −

−∞

r →∞as

( )20( ) ( ) ~ 2 ( cos )z

jkrjk z

z zeI k H k e dk j I k

rρ ρ θ−+∞ −

−∞

or

21

Page 22: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Far-Field Identity (cont.)

To generalize this identity, use

( ) ( )2 2 42( ) ~nj x

nH x ex

π π

π− − −

Hence

( ) ( )2 20( ) ~ ( )n

nH x j H x

22

Page 23: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Far-Field Identity (cont.)

Therefore, we have

( )2 1( ) ( ) ~ 2 ( cos )z

jkrjk z n

z n zeI k H k e dk j I k

rρ ρ θ−+∞ − +

−∞

Note: This is valid for ρ →∞

, 0, 180r θ→∞ ≠ Hence, this is valid for

23

Page 24: ECE 1100 Introduction to Electrical and Computer Engineeringcourses.egr.uh.edu/ECE/ECE6341/Class Notes/Topic 3...Prof. David R. Jackson . ECE Dept. Spring 2016. Notes 15 . ECE 6341

Far-Field Identity (cont.)

Since the current function is arbitrary, we can write

( )2 1( ) ( ) ~ 2 ( cos )z

jkrjk z n

z n zef k H k e dk j f k

rρ ρ θ−+∞ − +

−∞

for , 0, 180r θ→∞ ≠

24