ffe mass of nonrelativistic quantum electrodynamics

26
Effective mass of nonrelativistic quantum electrodynamics Fumio Hiroshima * and K. R. Ito February 23, 2015 Abstract The effective mass m eff of the nonrelativistic quantum electrodynamics with spin 1/2 is investigated. Let m eff /m =1+ a 1 /m)e 2 + a 2 /m)e 4 + O(e 6 ), where m denotes the bare mass. a 1 /m) log(Λ/m) as Λ →∞ is well known. Also a 2 /m) Λ/m is established for a spinless case. It is shown that a 2 /m) /m) 2 in the case including spin 1/2. 1 Introduction 1.1 Quantum electrodynamics In this review we study an translation-invariant Hamiltonian minimally coupled to a quantized radiation field in the nonrelativistic quantum electrodynamics. Before going to discuss our problem, we informally derive our Hamiltonian from physical point of view. The conventional quantum electrodynamics is investigated through the Lagrangian density: L QED (x)= ψ(x)(μ μ - m)ψ(x) - 1 4 F μν (x)F μν (x) - e ψ(x)γ μ ψ(x)A μ (x), where x =(x 0 ,x) R × R 3 , γ μ , μ =0, 1, 2, 3, denotes 4 × 4 gamma matrices, ψ the spinor given by ψ =(ψ 0 1 2 3 ) T and ψ =( ¯ ψ 0 , ¯ ψ 1 , ¯ ψ 2 3 )γ 0 , A μ (x) a radiation field with F μν := μ A ν - ν A μ , and m, e are the mass and the charge of an electron, respectively. The effective mass m eff is given through two point function R 4 ,T [ψ(x) ψ(0)]Ψ)e i(x 0 p 0 -x·p) dx and the effective charge through the two point function R 4 ,T [A μ (x)A ν (0)]Ψ)e i(x 0 p 0 -x·p) dx, where Ψ denotes a ground state of the Hamiltonian derived from L QED and T the time ordered product. In the perturbative quantum electrodynamics, Feynman diagrammatically, the e 2 and e 4 terms of the effective mass is computed from the self-energy of electron, e.g., Figure 1: Electron self-energy * Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan. Department of Math. and Phys., Setsunan University, 572-8508, Osaka, Japan 1

Transcript of ffe mass of nonrelativistic quantum electrodynamics

Page 1: ffe mass of nonrelativistic quantum electrodynamics

Effective mass of nonrelativistic quantum electrodynamics

Fumio Hiroshima∗and K. R. Ito†

February 23, 2015

Abstract

The effective mass meff of the nonrelativistic quantum electrodynamics with spin 1/2is investigated. Let meff/m = 1+ a1(Λ/m)e2 + a2(Λ/m)e4 +O(e6), where m denotes thebare mass. a1(Λ/m) ∼ log(Λ/m) as Λ → ∞ is well known. Also a2(Λ/m) ∼

√Λ/m is

established for a spinless case. It is shown that a2(Λ/m) ∼ (Λ/m)2 in the case includingspin 1/2.

1 Introduction

1.1 Quantum electrodynamics

In this review we study an translation-invariant Hamiltonian minimally coupled to a quantized

radiation field in the nonrelativistic quantum electrodynamics. Before going to discuss our

problem, we informally derive our Hamiltonian from physical point of view. The conventional

quantum electrodynamics is investigated through the Lagrangian density:

LQED(x) = ψ(x)(iγµ∂µ −m)ψ(x)− 1

4Fµν(x)F

µν(x)− eψ(x)γµψ(x)Aµ(x),

where x = (x0, x) ∈ R ×R3, γµ, µ = 0, 1, 2, 3, denotes 4 × 4 gamma matrices, ψ the spinor

given by ψ = (ψ0, ψ1, ψ2, ψ3)T and ψ = (ψ0, ψ1, ψ2, ψ3)γ

0, Aµ(x) a radiation field with Fµν :=

∂µAν −∂νAµ, and m, e are the mass and the charge of an electron, respectively. The effective

mass meff is given through two point function∫R4(Ψ, T [ψ(x)ψ(0)]Ψ)ei(x

0p0−x·p)dx and the

effective charge through the two point function∫R4(Ψ, T [Aµ(x)Aν(0)]Ψ)ei(x

0p0−x·p)dx, where

Ψ denotes a ground state of the Hamiltonian derived from LQED and T the time ordered

product. In the perturbative quantum electrodynamics, Feynman diagrammatically, the e2

and e4 terms of the effective mass is computed from the self-energy of electron, e.g.,

Figure 1: Electron self-energy

∗Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan.†Department of Math. and Phys., Setsunan University, 572-8508, Osaka, Japan

1

Page 2: ffe mass of nonrelativistic quantum electrodynamics

and the effective charge from the self-energy of photon, e.g.,

Figure 2: Photon self-energy

One can interpret the photon self-energy diagram as the emission of the pairs of virtual

electrons and positrons. All these argument is successive from the physical point of view, but

perturbative and implicit divergences are included.

1.2 Informal derivation of nonrelativistic quantum electrodynamics

In this note we want to discuss the quantum electrodynamics nonperturbatically, but we

assume that (1) an electron is in low energy, (2) we take the Coulomb gauge, (3)

we introduce a form factor φ of an electron.

(1) implies that no emission of pairs of virtual electrons and positrons, i.e., there is no

loop such as in Fig.2, then in our model the effective charge equals to the bare charge

and the number of electrons is fixed. From (2) the theory is not relatively covariant. From

(3) it follows that the density of the electron charge is smoothly localised around the position

of the electron and the ultraviolet divergence does not exist. Taking into account of (1)-(3),

we modify the quantum electrodynamics as follows. Let E(t, x) and B(t, x), (t, x) ∈ R×R3,

be an electric field and a magnetic field respectively, and q(t) the position of an electron at

time t ∈ R. The Maxwell equation with form factor φ is given by

B = −∇× E,

∇ ·B = 0,

E = ∇×B − eφ(· − q(t))q(t),

∇ · E = eφ(· − q(t)).

Here X = dX/dt. Let (J(t, x), ρ(t, x)) = (eφ(x−q(t))q(t), eφ(x−q(t))). Then the Lagrangian

density of the nonrelativistic quantum electrodynamics under consideration is given by

LNRQED(t, x) =1

2mq(t)2 +

1

2(E(t, x)2 −B(t, x)2) + J(t, x) ·A(t, x)− ρ(t, x)ϕ(t, x),

where A and ϕ are a vector potential and a scalar potential related to E and B such as

E = −A−∇ϕ, B = ∇×A.

Let LNRQED =∫LNRQED(t, x)dx. Then the conjugate momenta are given

p(t) :=∂LNRQED

∂q= mq(t) + e

∫A(t, x)φ(x− q(t))dx, Π(t, x) :=

δLNRQED

δA= A(t, x).

2

Page 3: ffe mass of nonrelativistic quantum electrodynamics

Then the Hamiltonian is given through the Legendre transformation as

HNRQED = p(t) · q(t) +∫A(t, x)Π(t, x)dx− LNRQED

=1

2m

(p(t)− e

∫A(t, x)φ(x− q(t))dx

)2

+ V (q) +1

2

∫ A(t, x)2 + (∇×A(t, x))2

dx

where V is a smeared external potential given by

V (q) :=1

2e2∫φ(q − y)φ(q − y′)

4π|y − y′|dydy′.

In the next subsection we quantize HNRQED with spin 1/2 and total momentum p ∈ R3,

which is denoted by H(p) and is called the Pauli-Fierz Hamiltonian, in the rigorous way from

mathematical point of view.

1.3 Non-relativistic quantum electrodynamics

Let F be the boson Fock space given by F ≡∞⊕n=0

[⊗n

sL2(R3×1, 2)

], where ⊗n

s denotes

the n-fold symmetric tensor product with ⊗0sL

2(R3×1, 2) ≡ C. The Fock vacuum Ω ∈ Fis defined by Ω ≡ 1, 0, 0, ... Let a(f) be the creation operator and a∗(f) the annihilation

operator on F defined by

(a∗(f)Ψ)(n+1) ≡√n+ 1Sn+1(f ⊗Ψ(n)), f ∈ L2(R3 × 1, 2),

and a(f) = [a∗(f)]∗, where Sn denotes the symmetrizer. The scalar product on K is denoted

by (f, g)K which is linear in g and anti-linear in f . a and a∗ satisfy canonical commutation

relations:

[a(f), a∗(g)] = (f , g)L2(R3×1,2), [a(f), a(g)] = 0, [a∗(f), a∗(g)] = 0.

We write as∑j=1,2

∫a♯(k, j)f(k, j)dk for a♯(f) with a formal kernel a♯(k, j). Let T be a self-

adjoint operator on L2(R3). We define Γ(eitT )a∗(f1) · · · a∗(fn)Ω ≡ a∗(eitT f1) · · · a∗(eitT fn)Ω.Thus Γ(eitT ) turns out to be a strongly continuous one-parameter unitary group in t, which

implies that there exists a self-adjoint operator dΓ(T ) on F such that Γ(eitT ) = eitdΓ(T ) for

t ∈ R. We define a Hilbert space H by H ≡ C2 ⊗F . The Pauli-Fierz Hamiltonian with total

momentum p = (p1, p2, p3) ∈ R3 is given by a symmetric operator on H:

H(p) ≡ 1

2m

3∑

µ=1

σµ ⊗ (pµ − Pfµ − eAφµ)

2

+ 1⊗Hf ,

where m > 0 and e ∈ R denote the mass and the charge of an electron, respectively,

σ ≡ (σ1, σ2, σ3) the 2 × 2 Pauli-matrices given by σ1 ≡(

0 11 0

), σ2 ≡

(0 −ii 0

),

3

Page 4: ffe mass of nonrelativistic quantum electrodynamics

σ3 ≡(

1 00 −1

), and the free Hamiltonian Hf , the momentum operator Pf and quantum

radiation field Aφµ are given by

Hf ≡ dΓ(ω), Pfµ ≡ dΓ(kµ),

Aφµ ≡ 1√2

∑j=1,2

∫φ(k)√ω(k)

eµ(k, j)(a∗(k, j) + a(k, j))dk, µ = 1, 2, 3.

Here e(k, j), j = 1, 2, denotes polarization vectors such that |e(k, j)| = 1, e(k, 1)·e(k, 2) = 0,

k ·e(k, j) = 0 and e(k, 1) × e(k, 2) = k/|k|. We omit the tensor notation ⊗ in what follows.

Then

H(p) =1

2m(p− Pf − eAφ)

2 +Hf −e

2mσBφ, p ∈ R3,

where Bφµ denotes the quantum magnetic field given by

Bφµ ≡ i√2

∑j=1,2

∫φ(k)√ω(k)

(k × e(k, j))µ(a∗(k, j)− a(k, j))dk.

Note that [Aφµ, Bφν ] = 0 for µ, ν = 1, 2, 3. The spectrum of H(p) is stuided in e.g., [1, 2]

and see references in [5].

2 Mass renormalization

2.1 Main theorems

Let

Tm(e, p) ≡ 1

2(p− Pf − eAφm)

2 +Hf −e

2σBφm , p ∈ R3,

where

φm(k) ≡ φ(mk) =

0, |k| < κ/m,

1/√(2π)3, κ/m ≤ |k| ≤ Λ/m,

0, |k| > Λ/m.(1)

It is established in [4] that Tm(e, p) is self-adjoint on D(Pf2)∩D(Hf) for arbitrary Λ > 0,m >

0, p ∈ R3, e ∈ R. Since Aφ∼= mAφm , Bφ

∼= mBφm , Hf∼= mHf and Pf

∼= mPf , where X ∼= Y

denotes the unitary equivalence, we have H(p) ∼= mTm(e, (|p|/m)nz), where nz = (0, 0, 1).

Let :X : be the Wick product of X. We define

H(e, ϵ) ≡:Tm(e, ϵnz) :, ϵ ∈ R.

Set E(e, ϵ) ≡ inf σ(H(e, ϵ)). It is established in [5] that there exist constants e0 > 0 and

ϵ0 > 0 such that for (e, ϵ) ∈ Da ≡ (e, ϵ) ∈ R2||e| < e0, |ϵ| < ϵ0, (1) the dimension of

Ker(H(e, ϵ)−E(e, ϵ)) is two, (2) E(e, ϵ) is an analytic function of e2 and ϵ2 on Da, (3) there

exists a strongly analytic ground state of H(e, ϵ). The effective mass meff is defined by

m

meff= ∂2ϵE(e, ϵ)⌈ϵ=0.

4

Page 5: ffe mass of nonrelativistic quantum electrodynamics

From this it immediately follows that effective mass meff is an analytic function of e2 on

e ∈ R3||e| < e∗ with some e∗ > 0. Set

m/meff =∞∑n=0

an(Λ/m)e2n.

The effective mass is investigated in e.g., [3, 5, 6, 8]. It is known and easily derived that

a1(Λ/m) =8

1

4π(

∫ Λ/m

κ/m

1

r + 2dr +

∫ Λ/m

κ/m

r2

(r + 2)3dr).

Our next issue is to study a2(Λ/m).

Theorem 2.1 There exist positive constants c2 < c1 such that −c1 ≤ limΛ→∞

a2(Λ/m)

(Λ/m)2≤ −c2.

2.2 Expansions

We set A ≡ Aφm and B ≡ Bφm . Let us define H, E and φg by

H ≡ H(e, 0) = H0 + eHI +e2

2HII, E ≡ E(e, 0) =

∞∑n=0

en

n!E(n), φg ≡ φg(e, 0) =

∞∑n=0

en

n!φ(n),

where H0 ≡ Hf +1

2Pf

2, HI ≡ H(1)I + H

(2)I , H

(1)I = APf , H

(2)I ≡ −1

2σB, and HII ≡:AA :=

A+A+ + 2A+A− +A−A−. Here we put

A+ ≡ 1√2

∑j=1,2

∫φm(k)√ω(k)

e(k, j)a∗(k, j)dk, A− ≡ 1√2

∑j=1,2

∫φm(k)√ω(k)

e(k, j)a(k, j)dk.

We can see that E(0) = E(2n+1) = 0, n = 0, 1, 2, 3, ..., and

1

2E(2) = (φ(0),H

(2)I φ(1))H = −(φ(0),

(−σB

2

)1

H0

(−σB

2

)φ(0))H = 0. (2)

Note that E(2) ∼ (Λ/m)2 as Λ → ∞. Moreover

φ(0) =

(10

)⊗ Ω,

φ(1) = − 1

H0

(−σB

2

)φ(0),

φ(2) =1

H0(−HII)φ(0) + 2

1

H0(Pf ·A)

1

H0

(−σB

2

)φ(0)

+21

H0

(−σB

2

)1

H0

(−σB

2

)−(−E(2)

2

)φ(0),

φ(3) = −31

H0(−HII)

1

H0

(−σB

2

)φ(0) + 3

1

H0(Pf ·A)

1

H0(−HII)φ(0)

5

Page 6: ffe mass of nonrelativistic quantum electrodynamics

+61

H0(Pf ·A)

1

H0(Pf ·A)

1

H0

(−σB

2

)φ(0)

+61

H0(Pf ·A)

1

H0

(−σB

2

)1

H0

(−σB

2

)−(−E(2)

2

)φ(0)

+31

H0

(−σB

2

)1

H0(−HII)φ(0) + 6

1

H0

(−σB

2

)1

H0(Pf ·A)

1

H0

(−σB

2

)φ(0)

+61

H0

(−σB

2

)1

H0

(−σB

2

)1

H0

(−σB

2

)−(−E(2)

2

)φ(0).

Although formula

m

meff= 1− 2

3

3∑µ=1

((Pf + eA)µφg, (H − E)−1(Pf + eA)µφg)H(φg, φg)H

(3)

is well known, it is not useful for our task, since expansion of (H − E)−1 in e leads us

to a complicated operator domain argument. Then, instead of (3), it is established in [6]

that φ′g ≡ s− ∂φg(e, ϵ)/∂ϵ⌈ϵ=0 satisfies that (Pf + eA)3φg ∈ D((H − E)−1) with φ′

g =

(H − E)−1(Pf + eA)3φg and

m

meff= 1− 2

(φg, (Pf + eA)3φg′)H

(φg, φg)H. (4)

Using (4) in [5] it is proven that the effective mass is expanded as

m

meff= 1− 2

3c1(Λ/m)e2 − 2

3c2(Λ/m)e4 +O(e6), (5)

ormeff

m= 1 +

2

3c1(Λ/m)e2 +

(2

3c2(Λ/m) +

(2

3

)2

c1(Λ/m)2)e4 +O(e6), (6)

where

c1(Λ/m) ≡3∑

µ=1

(Ψµ1 , H0Ψ

µ1 )H,

c2(Λ/m) ≡3∑

µ=1

(Ψµ

1 , H2Ψµ1 )H − (Ψµ

1 , H0Ψµ1 )H(φ(1), φ(1))H + 2ℜ(Ψµ

2 , H1Ψµ1 )H

+(Ψµ2 , H0Ψ

µ2 )H + 2ℜ(Ψµ

3 , H0Ψµ1 )H

. (7)

Here

Ψµn ≡ 1

(n− 1)!Aµφ(n−1) +

1

n!Pfµφ(n), n = 1, 2, 3, µ = 1, 2, 3,

and H0 ≡ H1, H1 ≡ H2 +H3, H2 ≡ H4 +H5 +H6 +H7 +H8, where we put

H1 =1

H0, H2 = − 1

H0(Pf ·A)

1

H0, H3 = − 1

H0

(−σB

2

)1

H0,

6

Page 7: ffe mass of nonrelativistic quantum electrodynamics

H4 =1

2

1

H0(−HII)

1

H0, H5 =

1

H0(Pf ·A)

1

H0(Pf ·A)

1

H0,

H6 =1

H0

(−σB

2

)1

H0(Pf ·A)

1

H0, H7 = H6

∗ =1

H0(Pf ·A)

1

H0

(−σB

2

)1

H0,

H8 =1

H0

(−σB

2

)1

H0

(−σB

2

)−(−E(2)

2

)1

H0.

From above expressions of φ(1), φ(2), φ(3), it follows that for µ = 1, 2, 3,

Ψµ1 ≡ Φµ

1 +Φµ2 , Ψµ

2 ≡6∑

i=2

Φµi , Ψµ

3 ≡16∑i=7

Φµi ,

where

Φµ1 = A+

µφ(0) Φµ2 =

1

2Pfµ

1

H0σB+φ(0) Φµ

3 =1

2Aµ

1

H0σB+φ(0)

Φµ4 = −1

2Pfµ

1

H0A+A+φ(0) Φµ

5 = −1

2Pfµ

1

H0(Pf ·A)

1

H0σB+φ(0)

Φµ6 =

1

4Pfµ

1

H0σB+ 1

H0σB+φ(0) Φµ

7 = −1

2Aµ

1

H0A+A+φ(0)

Φµ8 = −1

2Aµ

1

H0(Pf ·A)

1

H0σB+φ(0) Φµ

9 =1

4Aµ

1

H0σB+ 1

H0σB+φ(0)

Φµ10 = −1

4Pfµ

1

H0:AA :

1

H0σB+φ(0) Φµ

11 = −1

2Pfµ

1

H0(Pf ·A)

1

H0A+A+φ(0)

Φµ12 = −1

2Pfµ

1

H0(Pf ·A)

1

H0(Pf ·A)

1

H0σB+φ(0) Φµ

13 =1

4Pfµ

1

H0(Pf ·A)

1

H0σB+ 1

H0σB+φ(0)

Φµ14 =

1

4Pfµ

1

H0σB

1

H0A+A+φ(0) Φµ

15 =1

4Pfµ

1

H0σB

1

H0(Pf ·A)

1

H0σB+φ(0)

Φµ16 = −1

8Pfµ

1

H0σB

1

H0σB+ 1

H0σB+φ(0)

Substituting H1, ..., H8 and Φµ1 , ...,Φ

µ16 into (7), we see that

c2(Λ/m) =3∑

µ=1

(

2∑i=1

Φµi ,

8∑ℓ=4

Hℓ

2∑i=1

Φµi )H + (

2∑i=1

Φµi , H1

2∑i=1

Φµi )H

(6∑

i=3

Φµi , (H2 +H3)

2∑i=1

Φµi )H + (

6∑i=3

Φµi ,H1

6∑i=3

Φµi )H +(

16∑i=7

Φµi ,H1

2∑i=1

Φµi )H

. (8)

From (8) it follows that c2(Λ/m) is decomposed into 76 terms. Fortunately it is, however,

enough to consider terms containing even number of σB’s, since the terms with odd number

of σB vanishes by a symmetry. See Fig. 3-7.

7

Page 8: ffe mass of nonrelativistic quantum electrodynamics

No. Term σB Pf1H0

Order

(1) −(Φµ1 ,H1Φ

µ1 )(φ(1), φ(1))H 0 0 1 [log(Λ/m)]2

(2) −(Φµ2 ,H1Φ

µ2 )(φ(1), φ(1))H 2 2 3 [log(Λ/m)]2

Figure 3: (∑2

i=1Φµi ,H1

∑2i=1Φ

µi )H

No. Term σB Pf1H0

Order

(3) (Φµ3 , H1Φ

µ3 ) 2 0 3 [log(Λ/m)]2

(4) (Φµ5 , H1Φ

µ3 ) 2 2 4 [log(Λ/m)]2

(5) (Φµ3 , H1Φ

µ5 ) 2 2 4 [log(Λ/m)]2

(6) (Φµ4 , H1Φ

µ4 ) 0 2 3 +

√Λ/m

(7) (Φµ6 , H1Φ

µ4 ) 2 2 4 −

√Λ/m

(8) (Φµ4 , H1Φ

µ6 ) 2 2 4 −

√Λ/m

(9) (Φµ5 , H1Φ

µ5 ) 2 4 5 +

√Λ/m

(10) (Φµ6 , H1Φ

µ6 ) 4 2 5 [log(Λ/m)]2

Figure 4: (∑6

i=3Φµi , H1

∑6i=3Φ

µi )H

No. Term σB Pf1H0

Order

(11) (Φµ1 , H4Φ

µ1 ) 0 0 2 [log(Λ/m)]2

(12) (Φµ2 , H4Φ

µ2 ) 2 2 4 [log(Λ/m)]2

(13) (Φµ1 , H5Φ

µ1 ) 0 2 3 log(Λ/m)

(14) (Φµ2 , H5Φ

µ2 ) 2 4 5 [log(Λ/m)]2

(15) (Φµ2 , H6Φ

µ1 ) 2 2 4 [log(Λ/m)]2

(16) (Φµ1 , H6Φ

µ2 ) 2 2 4 [log(Λ/m)]2

(17) (Φµ2 , H7Φ

µ1 ) 2 2 4 [log(Λ/m)]2

(18) (Φµ1 , H7Φ

µ2 ) 2 2 4 [log(Λ/m)]2

(19) (Φµ1 , H8Φ

µ1 ) 2 0 3 [log(Λ/m)]2

(20) (Φµ2 , H8Φ

µ2 ) 4 2 5 [log(Λ/m)]2

Figure 5: (∑2

i=1Φµi ,∑8

ℓ=4Hℓ∑2

i=1Φµi )H

8

Page 9: ffe mass of nonrelativistic quantum electrodynamics

No. Term σB Pf1H0

Order

(21) (Φµ4 , H2Φ

µ1 ) 0 2 3 log(Λ/m)

(22) (Φµ6 , H2Φ

µ1 ) 2 2 4 [log(Λ/m)]2

(23) (Φµ3 , H2Φ

µ2 ) 2 2 4 [log(Λ/m)]2

(24) (Φµ5 , H2Φ

µ2 ) 2 4 5

√Λ/m

(25) (Φµ3 , H3Φ

µ1 ) 2 0 4 [log(Λ/m)]2

(26) (Φµ5 , H3Φ

µ1 ) 2 2 4 [log(Λ/m)]2

(27) (Φµ4 , H3Φ

µ2 ) 2 2 4

√Λ/m

(28) (Φµ6 , H3Φ

µ2 ) 4 2 5 −Λ/m

Figure 6: (∑6

i=3Φµi , (H2 +H3)(

∑2i=1Φ

µi ))H

No. Term σB Pf1H0

Order

(29) (Φµ7 , H1Φ

µ1 ) 0 0 2 [log(Λ/m)]2

(30) (Φµ9 , H1Φ

µ1 ) 2 0 3 [log(Λ/m)]2

(31) (Φµ11,H1Φ

µ1 ) 0 2 3 = 0

(32) (Φµ13,H1Φ

µ1 ) 2 2 4 = 0

(33) (Φµ15,H1Φ

µ1 ) 2 2 4 = 0

(34) (Φµ8 , H1Φ

µ2 ) 2 2 4 [log(Λ/m)]2

(35) (Φµ10,H1Φ

µ2 ) 2 2 4

√Λ/m

(36) (Φµ12,H1Φ

µ2 ) 2 4 5 [log(Λ/m)]2

(37) (Φµ14,H1Φ

µ2 ) 2 2 4 [log(Λ/m)]2

(38) (Φµ16,H1Φ

µ2 ) 4 2 5 −(Λ/m)2

Figure 7: (∑16

i=7Φµi , H1

∑2i=1Φ

µi )H

9

Page 10: ffe mass of nonrelativistic quantum electrodynamics

2.3 Feynman diagrams

.

spin = σB+ = σ(k, j) = σ ·(k × e(k, j)),

polarization = Aµ = eµ(k, j),

propagator(1) =1

2

1

(2π)3ω(k), propagator(2) =

1

H0=

1

ω(ki) + |ki|2/2≡ 1

Ei,

propagator(3) =1

H0=

1

ω(k1) + ω(k2) + |k1 + k2|2/2≡ 1

E12,

propagator(4) = (1

H0)2 = (

1

ω(k) + |k|2/2)2,

(Pf ·A+) = k ·e(p, j), Pfµ = kµ.

Figure 8: Items of diagrams

The 38 terms in Fig. 3-7 can be represented by Feynman diagrams. The items of diagrams

are in Fig. 8.

Example 2.2 We compute (Φµ5 ,H1Φ

µ5 ) as an example. Since

(Φµ5 ,H1Φ

µ5 ) =

1

4(Pfµ

1

H0(Pf ·A+)

1

H0σB+φ(0),

1

H0Pfµ

1

H0(Pf ·A+)

1

H0σB+φ(0)),

its diagram is given as in Fig. 9.

.

Figure 9: (Φµ5 ,H1Φ

µ5 )

10

Page 11: ffe mass of nonrelativistic quantum electrodynamics

Then

(Φµ5 ,H1Φ

µ5 ) =

1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

×⟨σ11

E1(k1 ·e2)

1

E12

(k1 + k2)µ1

E12

(k1 + k2)µ1

E12

((k1 + k2)·e2

1

E1σ1 + (k1 + k2)·e1

1

E2σ2

)⟩

=

∫D

d3k1d3k2

4(2π)6ω1ω2

|k1 + k2|2

E312

(⟨σ1σ1⟩(k1 ·e2)(k1 ·e2)

E21

+⟨σ1σ2⟩(k1 ·e2)(k2 ·e1)

E1E2)

Here and in what follows we set e1 = e(k1, j), e2 = e(k2, j′), σ1 = σ(k1, j), σ2 = σ(k2, j

′) and

⟨X⟩ denotes the expectation value of X: ⟨X⟩ = (

(10

), X

(10

))C2.

The diagrams consists of three kinds of diagrams; AA type, Aσ type and σσ type. In

particular AA type corresponds to the spinless model discussed in [6].

(Φµ4 ,H1Φ

µ4 ) = O(

√Λ/m) (Φµ

1 ,H4Φµ1 ) = O([log(Λ/m)]2) (Φµ

1 ,H5Φµ1 ) = O(log Λ/m)

(Φµ4 ,H2Φ

µ1 ) = O(log Λ/m) (Φµ

7 ,H1Φµ1 ) = O([log(Λ/m)]2) (Φµ

11,H1Φµ1 ) = 0

Figure 10: AA type Feynman diagrams

11

Page 12: ffe mass of nonrelativistic quantum electrodynamics

(Φµ3 ,H1Φ

µ3 ) = O([log(Λ/m)]2) (Φµ

5 ,H1Φµ3 ) = O([log(Λ/m)]2) (Φµ

3 ,H1Φµ5 ) = O([log(Λ/m)]2)

(Φµ5 ,H1Φ

µ5 ) = O(

√Λ/m) (Φµ

2 ,H4Φµ2 ) = O([log(Λ/m)]2) (Φµ

2 ,H5Φµ2 ) = O([log(Λ/m)]2)

(Φµ2 ,H7Φ

µ1 ) = O([log(Λ/m)]2) (Φµ

1 ,H7Φµ2 ) = O([log(Λ/m)]2)

(Φµ1 ,H8Φ

µ1 ) = O([log(Λ/m)]2)

Figure 11: Aσ type Feynman diagrams

12

Page 13: ffe mass of nonrelativistic quantum electrodynamics

(Φµ6 ,H2Φ

µ1 ) = O([log(Λ/m)]2) (Φµ

3 ,H2Φµ2 ) = O([log(Λ/m)]2) (Φµ

5 ,H2Φµ2 ) = O(

√Λ/m)

(Φµ3 ,H3Φ

µ1 ) = O([log(Λ/m)]2) (Φµ

5 ,H3Φµ1 ) = O([log(Λ/m)]2) (Φµ

4 ,H3Φµ2 ) = O(

√Λ/m)

(Φµ9 ,H1Φ

µ1 ) = O([log(Λ/m)]2) (Φµ

13,H1Φµ1 ) = 0 (Φµ

15,H1Φµ1 ) = 0

Figure 12: Aσ type Feynman diagrams

13

Page 14: ffe mass of nonrelativistic quantum electrodynamics

(Φµ8 ,H1Φ

µ2 ) = O([log(Λ/m)]2) (Φµ

10,H1Φµ2 ) = O(

√Λ/m) (Φµ

12, H1Φµ2 ) = O([log(Λ/m)]2)

(Φµ14,H1Φ

µ2 ) = O([log(Λ/m)]2) (Φµ

6 ,H1Φµ4 ) = O(

√Λ/m) (Φµ

4 ,H1Φµ6 ) = O(

√Λ/m)

(Φµ2 ,H6Φ

µ1 ) = O([log(Λ/m)]2) (Φµ

1 ,H6Φµ2 ) = O([log(Λ/m)]2) (Φµ

1 ,H1Φµ1 ) = O([log(Λ/m)]2)

Figure 13: Aσ type Feynman diagrams

14

Page 15: ffe mass of nonrelativistic quantum electrodynamics

(Φµ6 ,H1Φ

µ6 ) = O([log(Λ/m)]2) (Φµ

2 ,H1Φµ2 ) = O([log(Λ/m)]2) (Φµ

6 ,H3Φµ2 ) = O(Λ/m)

(Φµ16,H1Φ

µ2 ) = O((Λ/m)2) (Φµ

2 ,H8Φµ2 ) = O([log(Λ/m)]2)

Figure 14: σσ type Feynman diagrams

2.4 Proof of Theorem 2.1

We shall prove Theorem 2.1. Note that the following formulas are useful.

Lemma 2.3 It follows that

ei ·ei = 2, i = 1, 2, (9)

(e1 ·e2)(e1 ·e2) = 1 + (k1 ·k2)2, (10)

(k2 ·e1)(k2 ·e1) = |k2|2(1− (k1 ·k2)2), (11)

(k1 ·e2)(e2 ·e1)(e1 ·k2) = −(k1, k2)(1− (k1 ·k2)2), (12)

⟨σiσi⟩ = 2|ki|2, i = 1, 2, (13)

ℜ⟨σ1σ2⟩(e1 ·k2)(k1 ·e2) = |k1|2|k2|2((k1 ·k2)2 − 1), (14)

15

Page 16: ffe mass of nonrelativistic quantum electrodynamics

ℜ⟨σ1σ2⟩(e1 ·e2) = 2|k1||k2|(k1 ·k2), (15)

⟨σ1σ2σ2σ1⟩ = 4|k1|2|k2|2, (16)

ℜ⟨σ1σ2σ1σ2⟩ = −2|k1|2|k2|2(1− (k1 ·k2)2). (17)

Proof: Note that

eµ(k,j)eν(k,j) = (δµν −kµkν|k|2

), (k×e(k, j))µeν(k,j) = −ϵµναkα, ℜ⟨σµσν⟩ = δµν .

Here ϵαβγ denotes the antisymmetric tensor with ϵ123 = +1. In what follows, the summation

over repeated index is understood. We see that

(1) ei ·ei = eµ(ki, j)eµ(ki, j) = 2, i = 1, 2,

(2) (e1 ·e2)(e1 ·e2) = eµ(k1, j)eµ(k2, j′)eν(k1, j)eν(k2, j

′)

= (δµν −k1µk1ν|k1|2

)(δµν −k2µk2ν|k2|2

) = (3− 1− 1 +(k1 ·k2)2

|k1|2|k2|2) = 1 + (k1 ·k2)2,

(3) (k2 ·e1)(k2 ·e1) = k2µeµ(k1, j)k2νeν(k1, j) = k2µk2ν(δµν −k1µk1ν|k1|2

) = |k2|2(1− (k1 ·k2)2),

(4) (k1 ·e2)(e2 ·e1)(e1 ·k2) = k2µeµ(k1, j)eλ(k1, j)eλ(k2, j′)k1νeν(k2, j

′)

= k2µ(δµλ − k1µk1λ|k1|2

)k1ν(δλν −k2λk2ν|k2|2

) = −(k1, k2)(1− (k1 ·k2)2),

(5) ℜ⟨σ1σ1⟩ = ℜ⟨σµσν⟩(k1×e(k1, j))µ(k1×e(k1, j))ν = δµν(k1×e(k1, j))µ(k1×e(k1, j))ν= (k1×e(k1, j))µ(k1×e(k1, j))µ = |k1|2(|e(k1, 1)|2 + |e(k1, 2)|2) = 2|k1|2,

(6) ℜ⟨σ1σ2⟩(e1 ·k2)(k1 ·e2) = ℜ⟨σµσν⟩(k1×e(k1, j))µ(k2×e(k2, j′))νeα(k1, j)k2αeβ(k2, j′)k1β= (k1×e(k1, j))µ(k2×e(k2, j′))µeα(k1, j)k2αeβ(k2, j′)k1β= (−ϵµαγk1γ)(−ϵµβδk2δ)k2αk1β = −|k1 × k2|2 = −|k1|2|k2|2(1− (k1 ·k2)2),

(7) ℜ⟨σ1σ2⟩(e1 ·e2) = ℜ⟨σµσν⟩(k1×e(k1, j))µ(k2×e(k2, j′))νeα(k1, j)eα(k2, j′)= (−ϵµαβk1β)(−ϵµαγk2γ) = 2(k1 ·k2),

(8) ⟨σ1σ2σ2σ1⟩ = ⟨σ1σµσνσ1⟩(k2×e(k2, j′))µ(k2×e(k2, j′))ν= ⟨σ1σ1⟩(k2×e(k2, j′))µ(k2×e(k2, j′))µ= |(k2×e(k2, j′))|2|(k1×e(k1, j))|2 = 2|k1|22|k2|2 = 4|k1|2|k2|2,

(9) ℜ⟨σ1σ2σ1σ2⟩ = −⟨σ1σ2σ2σ1⟩+ 2(k1×e(k1, j))µ(k2×e(k2, j′))µℜ⟨σ1σ2⟩= −4|k1|2|k2|2 + 2(k1×e(k1, j))µ(k2×e(k2, j′))µ(k1×e(k1, j))ν(k2×e(k2, j′))ν

= −4|k1|2|k2|2 + 2(δµν −k1µk1ν|k1|2

)(δµν −k2µk2ν|k2|2

)

= −4|k1|2|k2|2 + 2|k1|2|k2|2(1 + (k1 ·k2)2) = −2|k1|2|k2|2(1− (k1 ·k2)2).

2

Using the diagrams presented in Fig.10-14 and (9)-(17), we can easily expressed 38 terms

as integrals on

D = (k1, k2) ∈ R3 ×R3|κ/m ≤ k1 ≤ Λ/m, κ/m ≤ k2 ≤ Λ/m.

16

Page 17: ffe mass of nonrelativistic quantum electrodynamics

Note that imaginary part of ⟨σaσb⟩ does not contribute integrals. We show the results:

1.

(Φµ1 ,H1Φ

µ1 )(φ(1), φ(1)) =

1

4(A+

µφ(0),1

H0A+

µφ(0))(1

H0σB+φ(0),

1

H0σB+φ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E1

1

E2

1

E2e1 ·e1⟨σ2σ2⟩

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

4|k2|2

E1E22

2.

(Φµ2 ,H1Φ

µ2 )(φ(1), φ(1))

=1

4(Pfµ

1

H0σB+φ(0),

1

H0Pfµ

1

H0σB+φ(0))(

1

H0σB+φ(0),

1

H0σB+φ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E1

1

E1

1

E1

1

E2

1

E2|k1|2⟨σ1σ1⟩⟨σ2σ2⟩

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

4|k1|4|k2|2

E31E

22

3.

(Φµ3 ,H1Φ

µ3 ) =

1

4(A+

µ

1

H0σB+φ(0),

1

H0A+

µ

1

H0σB+φ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E2

1

E12

(⟨σ2σ2⟩(e1 ·e1)1

E2+ ⟨σ2σ1⟩(e1 ·e2)

1

E1)

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E2

1

E12

(4|k2|2

E2+

2|k1||k2|(k1 ·k2)E1

)

4.

(Φµ5 , H1Φ

µ3 ) = −1

4(Pfµ

1

H0(Pf ·A+)

1

H0σB+φ(0),

1

H0A+

µ

1

H0σB+φ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2((k2 ·e1)(k2 ·e1)⟨σ2σ2⟩

1

E2+ (k2 ·e1)(k1 ·e2)⟨σ2σ1⟩

1

E1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2(2|k2|4(1− (k1 ·k2)2)

E2+

−|k1|2|k2|2(1− (k1 ·k2)2)E1

)

5.

(Φµ3 ,H1Φ

µ5 ) = (Φµ

5 ,H1Φµ3 )

17

Page 18: ffe mass of nonrelativistic quantum electrodynamics

6.

(Φµ4 ,H1Φ

µ4 ) = [6, (3.32)] =

1

4(Pfµ

1

H0(A+A+)φ(0),

1

H0Pfµ

1

H0(A+A+)φ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E312

|k1 + k2|2(e1 ·e2)(e1 ·e2 + e2 ·e1)

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E312

|k1 + k2|22(1 + (k1 ·k2)2)

7.

(Φµ6 , H1Φ

µ4 ) = −1

8(Pfµ

1

H0σB+ 1

H0σB+φ(0),

1

H0Pfµ

1

H0(A+A+)φ(0))

= −1

8

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E312

|k1 + k2|2(⟨σ1σ2⟩e1 ·e2

E2+

⟨σ2σ1⟩e2 ·e1E1

)

= −1

8

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E312

|k1 + k2|22|k1||k2|(k1 ·k2)(1

E2+

1

E1)

8.

(Φµ4 ,H1Φ

µ6 ) = (Φµ

6 ,H1Φµ4 )

9.

(Φµ5 ,H1Φ

µ5 ) =

1

4(Pfµ

1

H0(Pf ·A+)

1

H0σB+φ(0),

1

H0Pfµ

1

H0(Pf ·A+)

1

H0σB+φ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E312

1

E2|k1 + k2|2(k2 ·e1)((k2 ·e1)⟨σ2σ2⟩

1

E2+ (k1 ·e2)⟨σ2σ1⟩

1

E1)

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E312

1

E2|k1 + k2|2(

2|k2|4(1− (k1 ·k2)2)E2

+−|k1|2|k2|2(1− (k1 ·k2)2)

E1)

10.

(Φµ6 , H1Φ

µ6 ) = E2 =

1

16(Pfµ

1

H0σB+ 1

H0σB+φ(0),

1

H0Pfµ

1

H0σB+ 1

H0σB+φ(0))

=1

16

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E312

1

E2|k1 + k2|2(⟨σ2σ1σ1σ2⟩

1

E2+ ⟨σ2σ1σ2σ1⟩

1

E1)

=1

16

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E312

1

E2|k1 + k2|2(

4|k1|2|k2|2

E2+

−2|k1|2|k2|2(1− (k1 ·k2)2)E1

)

11.

(Φµ1 , H4Φ

µ1 ) = [6, (3.34)] = −(A−

ν

1

H0A+

µφ(0), A−ν

1

H0A+

µφ(0))

= −∫D

d3k1d3k2

4(2π)6ω1ω2

1

E1

1

E2(e1 ·e2)(e1 ·e2)

= −∫D

d3k1d3k2

4(2π)6ω1ω2

1

E1

1

E2(1 + (k1 ·k2)2)

18

Page 19: ffe mass of nonrelativistic quantum electrodynamics

12.

(Φµ2 ,H4Φ

µ2 ) = −1

8(Pfµ

1

H0σB+φ(0),

1

H0(A+A+ + 2A+A− +A−A−)

1

H0Pfµ

1

H0σB+φ(0))

= −1

4(A−

ν

1

H0Pfµ

1

H0σB+φ(0), A

−ν

1

H0Pfµ

1

H0σB+φ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E1

1

E1

1

E2

1

E2⟨σ2σ1⟩(k1 ·k2)(e1 ·e2)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

2|k1|2|k2|2(k1 ·k2)2

E21E

22

13.

(Φµ1 ,H5Φ

µ1 ) = [6, (3.36)] = (A+

µφ(0),1

H0(Pf ·A+)

1

H0(Pf ·A+)

1

H0A+

µφ(0))

=

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2(k2 ·e1)((k2 ·e1)(e2 ·e2)

1

E2+ (k1 ·e2)(e1 ·e2)

1

E1)

=

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2(2|k2|2(1− (k1 ·k2)2)

E2+

−(k1 ·k2)(1− (k1 ·k2)2)E1

)

14.

(Φµ2 ,H5Φ

µ2 ) =

1

4(1

H0(Pf ·A+)

1

H0Pfµ

1

H0σB+φ(0), (Pf ·A+)

1

H0Pfµ

1

H0σB+φ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E22

(k2 ·e1)((k2 ·e1)|k2|2⟨σ2σ2⟩1

E22

+ (k1 ·e2)(k1 ·k2)⟨σ2σ1⟩1

E21

)

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E22

(2|k2|6(1− (k1 ·k2)2)

E22

+(k1 ·k2)(−|k1|2|k2|2(1− (k1 ·k2)2))

E21

)

15.

(Φµ2 ,H6Φ

µ1 ) = −1

4(1

H0σB

1

H0Pfµ

1

H0σB+φ(0), (Pf ·A+)

1

H0A+

µφ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2(k2 ·e1)((k2 ·e2)⟨σ1σ2⟩

1

E2

1

E2+ (k1 ·e2)⟨σ2σ1⟩

1

E1

1

E1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

−|k1|2|k2|2(1− (k1 ·k2)2)E2

1

16.

(Φµ1 ,H6Φ

µ2 ) = −1

4(σB+ 1

H0A+

µφ(0),1

H0(Pf ·A+)

1

H0Pfµ

1

H0σB+φ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

1

E2((k2 ·e1)(k2 ·e2)⟨σ2σ1⟩

1

E2+ (k2 ·e1)(k2 ·e1)⟨σ2σ2⟩

1

E1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E22

2|k2|4(1− (k1 ·k2)2)E1

19

Page 20: ffe mass of nonrelativistic quantum electrodynamics

17.

(Φµ2 ,H7Φ

µ1 ) = −1

4(1

H0(Pf ·A+)

1

H0Pfµ

1

H0σB+φ(0), σB

+ 1

H0A+

µφ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2((k2 ·e1)(k2 ·e2)⟨σ1σ2⟩

1

E2

1

E2+ (k1 ·e2)(k1 ·e2)⟨σ1σ1⟩

1

E1

1

E1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

2|k1|4(1− (k1 ·k2)2)E2

1

18.

(Φµ1 , H7Φ

µ2 ) = −1

4(σB+ 1

H0(Pf ·A+)

1

H0A+

µφ(0),1

H0Pfµ

1

H0σB+φ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

1

E2⟨σ2σ1⟩((k2 ·e1)(k2 ·e2)

1

E2+ (k1 ·e2)(k2 ·e1)

1

E1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E22

−|k1|2|k2|2(1− (k1 ·k2)2)E1

19.

(Φµ1 ,H8Φ

µ1 ) = E0 =

1

4(σB+ 1

H0A+

µφ(0),1

H0σB+ 1

H0A+

µφ(0))

−1

4(σB+φ(0),

1

H0σB+φ(0))(A

+µφ(0),

1

H0

1

H0A+

µφ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2((e2 ·e2)⟨σ1σ1⟩

1

E2+ (e2 ·e1)⟨σ1σ2⟩

1

E1)

−1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E1

1

E2

1

E2⟨σ1σ1⟩(e2 ·e2)

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

(4|k1|2

E22

+2|k1||k2|(k1 ·k2)

E1E2)− 1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E1

1

E22

4|k1|2

20.

(Φµ2 ,H8Φ

µ2 ) = E3 =

1

16(σB+ 1

H0Pfµ

1

H0σB+φ(0),

1

H0σB+ 1

H0Pfµ

1

H0σB+φ(0))

− 1

16(σB+φ(0),

1

H0σB+φ(0))(σB

+φ(0),1

H0

1

H0Pfµ

1

H0Pfµ

1

H0σB+φ(0))

=1

16

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E22

(⟨σ2σ1σ1σ2⟩|k2|21

E2

1

E2+ (k1 ·k2)⟨σ2σ1σ2σ1⟩

1

E1

1

E1)

− 1

16

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E1

1

E2

1

E2

1

E2

1

E2|k2|2⟨σ1σ1⟩⟨σ2σ2⟩

=1

16

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E22

(4|k1|2|k2|4

E22

+(k1 ·k2)(−2|k1|2|k2|2(1− (k1 ·k2)2))

E21

)

− 1

16

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E1

1

E42

4|k1|2|k2|4

20

Page 21: ffe mass of nonrelativistic quantum electrodynamics

21.

(Φµ4 ,H2Φ

µ1 ) = [6, (3.33)] =

1

2(Pfµ

1

H0A+A+φ(0),

1

H0(Pf ·A+)

1

H0A+

µφ(0))

=1

2

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2(k2 ·e1)(k1 ·e2)((e1 ·e2) + (e2 ·e1))

=1

2

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2(−2)(k1 ·k2)(1− (k1 ·k2)2)

22.

(Φµ6 , H2Φ

µ1 ) = −1

4(Pfµ

1

H0σB+ 1

H0σB+φ(0),

1

H0(Pf ·A+)

1

H0A+

µφ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2((k2 ·e1)(k1 ·e2)⟨σ1σ2⟩

1

E2+ (k1 ·e2)(k2 ·e1)⟨σ2σ1⟩

1

E1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2(−|k1|2|k2|2(1− (k1 ·k2)2))(

1

E1+

1

E2)

23.

(Φµ3 ,H2Φ

µ2 ) = −1

4(A+

µ

1

H0σB+φ(0),

1

H0(Pf ·A+)

1

H0Pfµ

1

H0σB+φ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E22

((k2 ·e1)(k2 ·e1)⟨σ2σ2⟩1

E2+ (k2 ·e1)(k2 ·e2)⟨σ2σ1⟩

1

E1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E32

2|k2|4(1− (k1 ·k2)2)

24.

(Φµ5 ,H2Φ

µ2 ) =

1

4(Pfµ

1

H0(Pf ·A+)

1

H0σB+φ(0),

1

H0(Pf ·A+)

1

H0Pfµ

1

H0σB+φ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2

1

E2(k2 ·e1)(k1 + k2)·k2((k2 ·e1)⟨σ2σ2⟩

1

E2+ (k1 ·e2)⟨σ2σ1⟩

1

E1)

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E22

k2 ·(k1 + k2)(2|k2|4(1− (k1 ·k2)2)

E2+

−|k1|2|k2|2(1− (k1 ·k2)2)E1

)

25.

(Φµ3 ,H3Φ

µ1 ) =

1

4(A+

µ

1

H0σB+φ(0),

1

H0σB+ 1

H0A+

µφ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2(⟨σ2σ1⟩(e1 ·e2)

1

E2+ ⟨σ1σ1⟩(e2 ·e2)

1

E1)

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2(2|k1||k2|(k1 ·k2)

E2+

4|k1|2

E1)

21

Page 22: ffe mass of nonrelativistic quantum electrodynamics

26.

(Φµ5 ,H3Φ

µ1 ) = −1

4(Pfµ

1

H0(Pf ·A+)

1

H0σB+φ(0),

1

H0σB+ 1

H0A+

µφ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2(k1 ·e2)(⟨σ1σ2⟩(k2 ·e1)

1

E2+ ⟨σ1σ1⟩(k1 ·e2)

1

E1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2(−|k1|2|k2|2(1− (k1 ·k2)2)

E2+

2|k1|4(1− (k1 ·k2)2)E1

)

27.

(Φµ4 ,H3Φ

µ2 ) = −1

8(Pfµ

1

H0A+A+φ(0),

1

H0σB

1

H0Pfµ

1

H0σB+φ(0))

= −1

8

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

⟨σ2σ1⟩(k1 + k2)·k21

E2

1

E2(e1 ·e2 + e2 ·e1)

= −1

8

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E22

4k2 ·(k1 + k2)|k1||k2|(k1 ·k2)

28.

(Φµ6 ,H3Φ

µ2 ) =

1

16(Pfµ

1

H0σB+ 1

H0σB+φ(0),

1

H0σB

1

H0Pfµ

1

H0σB+φ(0))

=1

16

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E2

1

E2(k1 + k2)·k2(⟨σ2σ1σ1σ2⟩

1

E2+ ⟨σ2σ1σ2σ1⟩

1

E1)

=1

16

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E212

1

E22

(k1 + k2)·k2(4|k1|2|k2|2

E2+

−2|k1|2|k2|2(1− (k1 ·k2)2)E1

)

29.

(Φµ7 ,H1Φ

µ1 ) = [6, (3.31)] = −1

2(1

H0A+A+φ(0), A

1

H0A+

µφ(0))

= −1

2

∫D

d3k1d3k2

4(2π)6ω1ω2(e1 ·e2)((e1 ·e2) + (e2 ·e1))

= −1

2

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E22(1 + (k1 ·k2)2)

30.

(Φµ9 ,H1Φ

µ1 ) =

1

4(1

H0σB+ 1

H0σB+φ(0), A

1

H0A+

µφ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2(e1 ·e2)(⟨σ1σ2⟩

1

E2+ ⟨σ2σ1⟩

1

E1)

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E22|k1||k2|(k1 ·k2)(

1

E1+

1

E2)

22

Page 23: ffe mass of nonrelativistic quantum electrodynamics

31.

(Φµ11,H1Φ

µ1 ) = [6,RHS of(3.30)] = −1

2(1

H0A+A+φ(0), (Pf ·A+)

1

H0Pfµ

1

H0A+

µφ(0))

= −1

2

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

1

E2(e2 ·k2)(e1 ·k2)(e1 ·e2 + e2 ·e1) = 0

32.

(Φµ13,H1Φ

µ1 ) =

1

4(Pfµ

1

H0(Pf ·A+)

1

H0σB+ 1

H0σB+φ(0),

1

H0A+

µφ(0))

=1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

1

E2(e2 ·k2)(k2 ·e1)(⟨σ1σ2⟩

1

E2+ ⟨σ2σ1⟩

1

E1) = 0

33.

(Φµ15,H1Φ

µ1 ) =

1

4(Pfµ

1

H0σB+ 1

H0(Pf ·A+)

1

H0σB+φ(0),

1

H0A+

µφ(0))

=

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

1

E2(e2 ·k2)((k2 ·e1)⟨σ1σ2⟩

1

E2+ (k1 ·e2)⟨σ1σ1⟩

1

E1) = 0

34.

(Φµ8 ,H1Φ

µ2 ) = −1

4(1

H0(Pf ·A+)

1

H0σB+φ(0), A

1

H0Pfµ

1

H0σB+φ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

1

E2(k2 ·e1)((k2 ·e1)⟨σ2σ2⟩

1

E2+ (k1 ·e2)⟨σ2σ1⟩

1

E1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E22

(2|k2|4(1− (k1 ·k2)2)

E2+

−|k1|2|k2|2(1− (k1 ·k2)2)E1

)

35.

(Φµ10,H1Φ

µ2 ) = −1

8(Pfµ

1

H02A+A− 1

H0σB+φ(0),

1

H0Pfµ

1

H0σB+φ(0))

= −1

4(A−

µ

1

H0σB+φ(0), A

−µ

1

H0Pfν

1

H0Pfν

1

H0σB+φ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E2

1

E2

1

E2

1

E1|k2|2⟨σ2σ1⟩(e2 ·e1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E32

1

E12|k1||k2|3(k1 ·k2)

36.

(Φµ12,H1Φ

µ2 ) = −1

4(1

H0(Pf ·A+)

1

H0σB+φ(0), (Pf ·A+)

1

H0Pfµ

1

H0Pfµ

1

H0σB+φ(0))

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

1

E2

1

E2(k2 ·e1)|k2|2((k2 ·e1)⟨σ2σ2⟩

1

E2+ (k1 ·e2)⟨σ2σ1⟩

1

E1)

= −1

4

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E32

|k2|2(2|k2|4(1− (k1 ·k2)2)

E2+

−|k1|2|k2|2(1− (k1 ·k2)2)E1

)

23

Page 24: ffe mass of nonrelativistic quantum electrodynamics

37.

(Φµ14,H1Φ

µ2 ) =

1

8(1

H0A+A+φ(0), σB

+ 1

H0Pfµ

1

H0Pfµ

1

H0σB+φ(0))

=1

8

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

1

E2

1

E2|k2|2⟨σ2σ1⟩(e1 ·e2 + e2 ·e1)

=1

8

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

4|k1||k2|3(k1 ·k2)E3

2

38.

(Φµ16,H1Φ

µ2 ) = E4 = − 1

16(1

H0σB+ 1

H0σB+φ(0), σB

+ 1

H0Pfµ

1

H0Pfµ

1

H0σB+φ(0))

= − 1

16

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E2

1

E2

1

E2|k2|2(⟨σ2σ1σ2σ1⟩

1

E1+ ⟨σ2σ1σ1σ2⟩

1

E2)

= − 1

16

∫D

d3k1d3k2

4(2π)6ω1ω2

1

E12

1

E32

|k2|2(−2|k1|2|k2|2(1− (k1 ·k2)2)

E1+

4|k1|2|k2|2

E2)

As is seen above, integrands in each terms are functions of |k1|, |k2|, (k1 · k2). Changing

variables |k1|, |k2|, (k1·k2) to r1 ≥ 0, r2 ≥ 0, X = cos θ, 0 ≤ θ < π, respectively, it is seen that

F (Λ/m) =

∫D

d3k1d3k2

4(2π)6ω1ω2f(|k1|, |k2|, (k1 ·k2))

=2π2

(2π)6

∫ 1

−1dX

∫ Λ/m

κ/mdr1

∫ Λ/m

κ/mdr2r1r2f(r1, r2, X).

We see that

dF (Λ/m)

d(Λ/m)=

2π2

(2π)6(Λ/m)

∫ 1

−1dX

∫ Λ/m

κ/mdrr[f(Λ/m, r,X) + f(r,Λ/m,X)]. (18)

To see the asymptotic behavior of F (Λ/m), we estimate the right hand side of (18). Then

we can see that

limΛ→∞

|(Φµi ,HjΦ

µk)|√

Λ/m<∞, µ = 1, 2, 3,

where (i, j, k) = (1, 8, 1), (2, 8, 2), (16, 1, 2). In the case of (i, j, k) = (1, 8, 1), (2, 8, 2), each

term is divided into two integrals. Although each integral diverges as (Λ/m)2 as Λ → ∞,

cancelation happens. See Fig. 15 and 16.

Then the terms (i, j, k) = (1, 8, 1), (2, 8, 2) diverge as [log(Λ/m)]2. Finally we can directly

see that the term (Φµ16,H1Φ

µ2 ) diverges as (Λ/m)2. Then the proof is complete. 2

24

Page 25: ffe mass of nonrelativistic quantum electrodynamics

Remark 2.4 Informally we can see that the diagram behaves as (Λ/m)2.

Figure 15: (Φµ1 ,H8Φ

µ1 )

Figure 16: (Φµ1 ,H8Φ

µ1 )

Figure 17: (Φµ16, H1Φ

µ2 )

Terms (Φµ1 ,H8Φ

µ1 ), (Φ

µ2 ,H8Φ

µ2 ) and (Φµ

16,H1Φµ2 ) include diagram . Although, as

is seen in Fig. 15, 16 and 17, (Φµ1 ,H8Φ

µ1 ) and (Φµ

2 ,H8Φµ2 ) have counter terms, (Φµ

16,H1Φµ2 )

does not.

25

Page 26: ffe mass of nonrelativistic quantum electrodynamics

Acknowledgements. We thank Tetsuya Hattori and Takashi Hara for helpful comments. K. R. I.

thanks Grant-in-Aid for Science Research (C) 15540222 from MEXT and F. H. thanks Grant-in-Aid for

Science Research (C) 15540191 from MEXT.

References

[1] T. Chen, Operator-theoretic infrared renormalization and construction of dressed 1-particle states innon-relativistic QED, mp-arc 01-301, preprint, 2001.

[2] J. Frohlich, Existence of dressed one electron states in a class of persistent models, Fortschritte der Physik22 (1974), 159–198.

[3] C. Hainzl and R. Seiringer, Mass renormalization and energy level shift in non-relativistic QED, Adv.Theor. Math. Phys. 6 (2002), 847-871.

[4] F. Hiroshima, Fiber Hamiltonians in nonrelativistic quantum electrodynamics, in preparation.

[5] F. Hiroshima and K. R. Ito, Mass renormalization in non-relativistic quantum electrodynamics with spin1/2, mp-arc 04-406, preprint 2004.

[6] F. Hiroshima and H. Spohn, Mass renormalization in nonrelativistic QED, J. Math. Phys. 46 (2005)042302.

[7] E. Lieb and M. Loss, A bound on binding energies and mass renormalization in models of quantumelectrodynamics, J. Stat. Phys. 108, (2002) 1057–1069.

[8] H. Spohn, Effective mass of the polaron: A functional integral approach, Ann. Phys. 175 (1987), 278–318.

26