Dunkle Energie – Ein kosmisches Raetsel Quintessence.

60
Dunkle Energie – Ein kosmisches Raetsel Quintessence
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    229
  • download

    1

Transcript of Dunkle Energie – Ein kosmisches Raetsel Quintessence.

Dunkle Energie –Ein kosmisches Raetsel

Quintessence

Quintessence Quintessence

C.WetterichC.Wetterich

A.Hebecker,M.Doran,M.Lilley,J.Schwindt,A.Hebecker,M.Doran,M.Lilley,J.Schwindt,C.MC.Müüller,G.Schller,G.Schääfer,E.Thommes,fer,E.Thommes,R.CaldwellR.Caldwell

What is our What is our UniverseUniversemade of ?made of ?

fire , air, water, soil !

Quintessence !

critical densitycritical density ρρcc =3 H² M² =3 H² M² critical energy density of the critical energy density of the

universe universe ( M : reduced Planck-mass , H : Hubble ( M : reduced Planck-mass , H : Hubble

parameter )parameter )

ΩΩbb==ρρbb//ρρcc

fraction in baryons fraction in baryons energy density in baryons over energy density in baryons over

critical energy densitycritical energy density

Composition of the Composition of the universeuniverse

ΩΩb b = 0.045= 0.045

ΩΩdmdm= 0.225= 0.225

ΩΩh h = 0.73= 0.73

gravitational lens , HST

spatially flat universespatially flat universe

theory (inflationary universe )theory (inflationary universe )

ΩΩtottot =1.0000……….x =1.0000……….x

observation ( WMAP )observation ( WMAP )

ΩΩtottot =1.02 (0.02) =1.02 (0.02)

ΩΩtottot = = 11

picture of the big bangpicture of the big bang

NASA/GSFCChuck Bennett (PI)Michael GreasonBob Hill Gary Hinshaw Al KogutMichele LimonNils OdegardJanet WeilandEd Wollack

PrincetonChris Barnes Norm Jarosik Eiichiro KomatsuMichael Nolta

UBCMark Halpern

ChicagoStephan Meyer

BrownGreg Tucker

UCLANed Wright

Science Team:

Wilkinson Microwave Anisotropy ProbeA partnership between NASA/GSFC and Princeton

Lyman PageHiranya PeirisDavid SpergelLicia Verde

mean values

Ωtot =1.02

Ωm =0.27

Ωb =0.045

Ωdm =0.225

ΩΩtottot=1=1

Dark EnergyDark Energy

ΩΩmm + X = 1 + X = 1

ΩΩmm : 30% : 30%

ΩΩhh : 70% : 70% Dark Dark

EnergyEnergyh : homogenous , often ΩΛ instead of Ωh

Dark Energy :

homogeneously distributed

Dark Energy :

prediction:

The expansion of the Universe accelerates today !

Perlmutter 2003

Supernova cosmologySupernova cosmology

Riess et al. 2004Riess et al. 2004

Structure formation : Structure formation : fluctuation spectrumfluctuation spectrum

Waerbeke

CMB agrees with

galaxy distribution

Lyman – α forest

and

gravitational lensingeffect !

consistent cosmological model !

Composition of the Composition of the UniverseUniverse

ΩΩb b = 0.045 = 0.045 visible visible clumpingclumping

ΩΩdmdm= 0.225 = 0.225 invisibleinvisible clumpingclumping

ΩΩh h = 0.73 = 0.73 invisibleinvisible homogeneoushomogeneous

What is Dark Energy ?

Cosmological Constant or Quintessence ?

Dynamics of Dynamics of Dark EnergyDark Energy

Cosmological ConstantCosmological Constant

Constant Constant λλ compatible with all compatible with all symmetriessymmetries

No time variation in contribution to No time variation in contribution to energy densityenergy density

Why so small ? Why so small ? λλ/M/M44 = 10 = 10-120-120

Why important just today ?Why important just today ?

( ρ + λ)

λ ≠ 0

asymptotic solution for asymptotic solution for cosmological constant cosmological constant

(k=0)(k=0)

problems with small problems with small λλ

no symmetry explanation for no symmetry explanation for λλ/M/M4 4

=10=10 -120 -120

quantum fluctuations contributequantum fluctuations contribute

BanksWeinbergLinde

Anthropic principleAnthropic principle

Cosmological ConstantCosmological Constant

Constant Constant λλ compatible with all compatible with all symmetriessymmetries

No time variation in contribution to No time variation in contribution to energy densityenergy density

Why so small ? Why so small ? λλ/M/M44 = 10 = 10-120-120

Why important just today ?Why important just today ?

Cosm. Const. | Quintessence static | dynamical

Cosmological mass scalesCosmological mass scales Energy densityEnergy density

ρρ ~ ( 2.4×10 ~ ( 2.4×10 -3-3 eV )eV )- 4- 4

Reduced Planck Reduced Planck massmass

M=2.44M=2.44×10×101818GeVGeV Newton’s constantNewton’s constant

GGNN=(8=(8ππM²)M²)

Only ratios of mass scales are observableOnly ratios of mass scales are observable ! !

homogeneous dark energy: homogeneous dark energy: ρρhh/M/M44 = 6.5 = 6.5 10ˉ¹²¹10ˉ¹²¹

matter: matter: ρρmm/M/M4= 3.5 10ˉ¹²¹= 3.5 10ˉ¹²¹

Time evolutionTime evolution

ρρmm/M/M4 4 ~ aˉ~ aˉ³ ³ ~~

ρρrr/M/M4 4 ~ aˉ~ aˉ44 ~ ~ t t -2-2 radiation dominated universeradiation dominated universe

Huge age small ratioHuge age small ratio

Same explanation for small dark Same explanation for small dark energy?energy?

tˉ² matter dominated universe

tˉ3/2 radiation dominated universe

QuintessenceQuintessenceDynamical dark energy ,Dynamical dark energy ,

generated by scalar generated by scalar fieldfield

(cosmon)(cosmon)C.Wetterich,Nucl.Phys.B302(1988)668, C.Wetterich,Nucl.Phys.B302(1988)668, 24.9.87 24.9.87P.J.E.Peebles,B.Ratra,ApJ.Lett.325(1988)LP.J.E.Peebles,B.Ratra,ApJ.Lett.325(1988)L17, 20.10.8717, 20.10.87

CosmonCosmon Scalar field changes its value even Scalar field changes its value even

in the in the presentpresent cosmological epoch cosmological epoch Potential und kinetic energy of Potential und kinetic energy of

cosmon contribute to the energy cosmon contribute to the energy density of the Universedensity of the Universe

Time - variable dark energy : Time - variable dark energy :

ρρhh(t) decreases with time ! (t) decreases with time !

CosmonCosmon Tiny massTiny mass

mmcc ~ H ~ H

New long - range interactionNew long - range interaction

““Fundamental” Fundamental” InteractionsInteractions

Strong, electromagnetic, weakinteractions

gravitation cosmodynamics

On astronomical length scales:

graviton

+

cosmon

Evolution of cosmon fieldEvolution of cosmon field

Field equationsField equations

Potential V(Potential V(φφ) determines details of ) determines details of the modelthe model

e.g. e.g. V(V(φφ) =M) =M4 4 exp( - exp( - φφ/M )/M )

for increasing for increasing φφ the potential the potential decreases towards zero !decreases towards zero !

Cosmological equationsCosmological equations

matter

^

^

Cosmological equationsCosmological equations

M → ^M

asymptotic solution for asymptotic solution for large timelarge time

exponential potentialexponential potentialconstant fraction in dark constant fraction in dark

energyenergy

General mechanism for General mechanism for cosmic attractorcosmic attractor

Cosmic Attractors Cosmic Attractors

Solutions independent of initial conditions

typically V~t -2

φ ~ ln ( t )

Ωh ~ const.

details depend on V(φ)or kinetic term

early cosmology

A few referencesA few references

C.Wetterich , Nucl.Phys.B302,668(1988) , received 24.9.1987C.Wetterich , Nucl.Phys.B302,668(1988) , received 24.9.1987

P.J.E.Peebles,B.Ratra , Astrophys.J.Lett.325,L17(1988) , received 20.10.1987P.J.E.Peebles,B.Ratra , Astrophys.J.Lett.325,L17(1988) , received 20.10.1987

B.Ratra,P.J.E.Peebles , Phys.Rev.D37,3406(1988) , received 16.2.1988B.Ratra,P.J.E.Peebles , Phys.Rev.D37,3406(1988) , received 16.2.1988

J.Frieman,C.T.Hill,A.Stebbins,I.Waga , Phys.Rev.Lett.75,2077(1995)J.Frieman,C.T.Hill,A.Stebbins,I.Waga , Phys.Rev.Lett.75,2077(1995)

P.Ferreira, M.Joyce , Phys.Rev.Lett.79,4740(1997)P.Ferreira, M.Joyce , Phys.Rev.Lett.79,4740(1997)

C.Wetterich , Astron.Astrophys.301,321(1995)C.Wetterich , Astron.Astrophys.301,321(1995)

P.Viana, A.Liddle , Phys.Rev.D57,674(1998)P.Viana, A.Liddle , Phys.Rev.D57,674(1998)

E.Copeland,A.Liddle,D.Wands , Phys.Rev.D57,4686(1998)E.Copeland,A.Liddle,D.Wands , Phys.Rev.D57,4686(1998)

R.Caldwell,R.Dave,P.Steinhardt , Phys.Rev.Lett.80,1582(1998)R.Caldwell,R.Dave,P.Steinhardt , Phys.Rev.Lett.80,1582(1998)

P.Steinhardt,L.Wang,I.Zlatev , Phys.Rev.Lett.82,896(1999)P.Steinhardt,L.Wang,I.Zlatev , Phys.Rev.Lett.82,896(1999)

many models …many models …

““kinetial”kinetial”choose field variable such that potential has standard units

advantage:φ acts as dark energy clock in cosmology

A.Hebecker,…

M=1

Dynamics of Dynamics of quintessencequintessence

CosmonCosmon : scalar singlet field: scalar singlet field

Lagrange density L = V + Lagrange density L = V + ½ ½ k(k(φφ)) (units: reduced Planck mass M=1)(units: reduced Planck mass M=1)

Potential : V=exp[-Potential : V=exp[-

““Natural initial value” in Planck era Natural initial value” in Planck era

today: today: =276=276

QuintessenceQuintessence modelsmodels Kinetic function Kinetic function k(k(φφ)) : parameterizes the : parameterizes the details of the model - “kinetial”details of the model - “kinetial”

k(k(φφ) = k=const. Exponential Q.) = k=const. Exponential Q. k(k(φφ ) = exp (( ) = exp ((φφ – – φφ11)/)/αα) Inverse power law Q.) Inverse power law Q. kk²²((φφ )= “1/(2E( )= “1/(2E(φφcc – – φφ))” Crossover Q.))” Crossover Q.

possible naturalness criterion:possible naturalness criterion:

k(k(φφ=0) : not tiny or huge !=0) : not tiny or huge !

- else: explanation needed - - else: explanation needed -

crossover quintessencecrossover quintessence

k(φ) increase strongly for φ corresponding to present epoch

example:

exponential quintessence:

Quintessence becomes Quintessence becomes important “today”important “today”

scale factor as “time”-scale factor as “time”-variablevariable

determine kinetial k(determine kinetial k(φφ))by observation !by observation !

end

cosmological equationscosmological equations