DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

92
DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac

Transcript of DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Page 1: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

DTL, S(F)DTL & CCL

KEK Fujio Naito

  Cavity fundamental & technology of J-PARC linac

Page 2: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Contents

•I. Introduction to the RF cavity.

•II. Short story of beam motion

•III. DTL & SDTL for J-PARC.

•IV. ACS

Page 3: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Block diagram of the linac for J-PARC

Page 4: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Current Average 675 μA Peak 50 mAPulse Pulse width 500 μsec Repetition 50 Hz Chopping ratio 56 % RF duty (600μsec) 3 % Beam Energy 400 MeV Momentum width Δp/p = ±0.1 % (100 %) Emittance 3~5 πmm-mrad (99 %)

Requirements for the linac of J-PARC

Page 5: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Microwave in the cylindrical waveguide

Microwave in the pill box cavity

Multi cell cavity

I. RF field in the cavity

Page 6: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Cylindrical coordinates (r,θ,z)

Wave equations for Ez & Hz.

Page 7: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

i) Ez = 0, Hz = 0 (TEM)ii) Ez = 0, Hz≠0 (TE)iii) Ez≠0, Hz = 0 (TM)

TM mode: Standard mode for RF accelerating cavity since Ez≠0.

Mode of the traveling wavefor z-direction

Page 8: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Solution for Ez ( TM mode )

Page 9: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Boundary conditions:•R is finite at r=0.•Ez, Eθ is zero at r=a. ( a: cylinder radius )

A2=0,Jm(kca)=0, n-th root:Pmn=kca then kc=Pmn/a

Solution for R

Page 10: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Bessel functions

Page 11: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

( P01=2.405, λc=2πa/P01=2.61a )

Electric field pattern of the TM 01 mode

Page 12: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

(Tangent of the dispersion curve)= vg/c

(Tilt of the line) = vp/c

Dispersion curve

Page 13: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

(Forward wave) + (Backward wave) = (Standing wave)

TM010

TM011

TM012

Boundaries for z-direction (cavity)

Page 14: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

TM modes in the cylindrical cavity

Page 15: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Principle of the DTL

Page 16: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

TE modes in the cylindrical cavity

Page 17: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

( EPAC2000, Kesler, et al. )

*Advantages High Q High Z

*Disadvantages Et≠0 Ez: non-uniform

TE111

Inter-digital H (IH) structure linac

Page 18: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Dispersion curve for the cylindrical cavity

Page 19: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

DTL-1 for J-PARC

Page 20: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

QuickTime˛ Ç∆TIFFÅià≥èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Ez distribution for DTL-1

Page 21: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

(Forward wave) + (Backward wave) = (Standing wave)

TM010

TM011

TM012

Boundaries for z-direction (cavity)

Page 22: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

QuickTime˛ Ç∆TIFFÅià≥èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Ez distribution for DTL-1

Page 23: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Pill box cavity (TM010)

Transit time factor

If E(z,0)=constant,

Energy gain & Transit time factor

Page 24: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Z: shunt impedanceZTT: effective shunt impedance

Q-value

Other mportant parameters

Page 25: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

ZTT

Page 26: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

QuickTime˛ Ç∆TIFFÅià≥èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Measured Ez of the first 3 cells of DTL-1

Page 27: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Ez distribution of SDTL-3

QuickTime˛ Ç∆TIFFÅià≥èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 28: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Example) 2 cells case

Freq( 0-mode) < Freq.( π-mode )

Multi-cells cavity

Page 29: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

EM field in the magnetically coupled 2 cell cvity

f(0) > f(π)

Page 30: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Dispersion curve (Brillouin zone)

Vg=0

Vg=0

Vg=(max)

Infinitely long cavity-chain structure

Page 31: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

APS

ACS

SCS

π/2 mode cavities

Page 32: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

EM field in SCC 0 π/2 π

f(0) < f(π/2) < f(π)

Et≠0

Page 33: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Bridge coupler

Page 34: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

TM010 mode ( +TM014 )

TM012 mode ( +TM010 )

TM010 π/2 mode

Bridge coupler for ACS

Page 35: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

•Longitudinal oscillation•rf defocusing • ( Transverse oscillation )

II. Beam motion in the DTL

Page 36: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Velocity of particles

Page 37: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Phase stability principle

Page 38: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

øs ≠ 0      〜30

Phase acceptance ~ 3 |øs|

Page 39: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

RF defocusing

Page 40: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

III. DTL & SDTL for J-PARC.

•RF power source: Klystron

•Tunable & compact quadrupole magnet in the DT

•Precise alignment of DTs in the tank.

•Higher Q-value of the tank

•Uniform & stable accelerating field

Requirements for DTL & SDTL:

Page 41: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

R&D subjects

•Periodic Reverse (PR) Cu electro-forming method

•Thick Cu plating on the tank inside

•Compact quadrupole electro-magnet in the DT

•Shield of ceramic vacuum chamber (by Vac. Gr. )

•DT alignment ( Results )

•Post-coupler tuning

•( Input coupler )

Page 42: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Layout of the DTL for J-PARC

Page 43: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Inside view of the DTL-1

Page 44: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

A smooth deposit is obtained by periodically reversed current using a low copper-content acid copper sulfate bath containing no organic additives.

Advantages of the PR process;(1) It produces thick deposit with smooth surface.(2) Deposit by this process has high electrical conductivity,       low outgassing and sufficient thermal stability.(3) Mechanical properties of deposit is controllable.

+

-t

Electroforming

Electropolishing

( Test cavity : (-) 20 sec (+) 4 sec )

Periodic Revers

Page 45: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.
Page 46: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.
Page 47: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.
Page 48: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.
Page 49: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

e (PR) Electroforming without brightning agent ~ OFC

Page 50: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

(1) pre-processing on the inner surface of the iron cylinder for the followed electroforming;(2) first PR copper electroforming (+0.5 mm); (3) lathing the copper surface (-0.2 mm);(4) 2nd electroforming(+0.5mm);(5) lathing(-0.2mm);(6) finishing by the electropolishing (-50μm), of which the depth has been chosen in order to get the better surface condition.

Standard fabrication process of PR elctroforming of Cu for the cavity:

Page 51: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Types of electroforming applied to specimens and IACS [%]reference material

Acid sulfate bath without brightener ( PR process) 101.9Acid sulfate bath with brightener 76.8Pyrophosphate bath with brightener 80.1 Annealed copper standard 100.7Oxygen free copper (OFC) 102.0

IACS: International Annealed Copper Standard

Electrical conductivity of electroformed copper specimens

Page 52: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Materials The 1st breakdown field (MV/m)EF (PR, Pure copper sulfate) 41EF (Copper sulfate with brightener) 13EF (Pyrophosphate) 10OFC (Lathe finishing) 20OFC (Electro polishing) 16OFC (Diamond bite) 70

(EF : Electro-Forming, PR : Periodic-Reverse OFC: Oxygen Free Cooper)

S. Kobayashi, K. Sekikawa, M. Shibukawa (Saitama University)

Y. Saito (KEK)

Breakdown experiment

Page 53: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

f [MHz]E [MV/m]

Kilpatrick’s sparking criterion

17.8 MV/m for 324 MHz

Page 54: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Anode for PR Cu formingSetting of the long test tank (~3m) in the bath

Page 55: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Long test tank after PR Cu electro-forming

Inside of the tank Check of the inside surface

Page 56: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Test cavity (length:3321 mm, diameter:560 mm)

(a) (b)

Tank

Stem

Vac.

Copper

SUS spring

Vacuum and rf test of the test cavity

Page 57: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250 300 350 400 450 500

3m_Test_cavity

TM010(409MHz)_Q

0

Q0(exp)/Q

0(calc)

Torque  [kgfÅEcm]

Q0 (measured) :77000 = 97 % of Q0(calc.)

RF property of the test tank

Page 58: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Vacuum property of the test tank

Page 59: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

PR electro-forming hollow coil

Page 60: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

(1)

Oxygen-free copper block Grooves and through holes for water channel

(2)

Filling wax into grooves and through holes to protect from a solution.

Remove unnecessary wax and alkali cleaning with sandpaper.

The surface coating with silver powder to give electrical conductivity.

The surface is electroformed by PR process. Hollow structure is obtained when the wax filled inside the grooves and through holes is removed by heating.

Forming the coil by cutting between the grooves and through holes.

Cutting out unnecessary parts of the block.

(3) (4)

(5) (6) (7) (8)

Page 61: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Oxygen-free copper block Grooves and through holes for water channel

(1) (2)

Q-process 1

Page 62: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Filling wax into grooves and through holes to protect from a solution.

Remove unnecessary wax and alkali cleaning with sandpaper.

(3) (4)

Q-process 2

Page 63: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

The surface coating with silver powder to give electrical conductivity.

The surface is electroformed by PR process. Hollow structure is obtained when the wax filled inside the grooves and through holes is removed by heating.

(5) (6)

Q-process 3

Page 64: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Forming the coil by cutting between the grooves and through holes.

Cutting out unnecessary parts of the block.

(7) (8)

Q-process 4

Page 65: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Q-mag in DT

Page 66: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

-100

-50

0

50

100

-100 -50 0 50 100

estimated

∆Y

∆X

(µm)

(µm)

Discrepancy between the magnetic field center

and the beam axis.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

DTs for DTL-1

YÉ∆Å@Å@Å@(mrad)

ÇwÉ∆Å@Å@(mrad)

Tilt of the assembled DTs

DT alignment in the DTL-1

Page 67: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Vacuum / 3 GeV RCS■Ceramic duct with a thin TiN film inside, copper rf shield outside (rf

leakage & coupling impedance)

■Pressure < 10-6 Pa

■Inner surface: TiN film 1-2 nm

■suppress secondary electron smissions

■wall current to flow copper rf shield outside

■coupling impedance to be measured

for the bending mag.

for the Q-mag.

Page 68: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Post-coupler tuning

Page 69: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Vg=0.006c

Measured dispersion curve for DTL-1

Page 70: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Uniform adjustment Fine adjustment

TM011 TM011

PC-1 PC-1

Ez distribution of the nearest neighbor mode

Page 71: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Fine tuning of the post-coupler

Page 72: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

QuickTime˛ Ç∆TIFFÅià≥èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Ez distribution of DTL-1

Page 73: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

QuickTime˛ Ç∆TIFFÅià≥èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Ez distribution of DTL-1

Page 74: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

*32 SDTL tanks*Two SDTLs/one Klystron*Doublet focusing*Optimised DT shape

SDTL for J-PARC.

Page 75: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Inside view of the SDTL

Page 76: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

1st DT of SDTL-1

Page 77: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

High-power test of the SDTL-2

Page 78: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

* Inside surface of the SDTL tank: The periodic reverse (PR) copper electro-forming method.*The basic properties the PR electro-forming have been confirmed by the high-power model tank successfully. *The number of the copper layers of the electroforming for the Alvarez DTL is two. The high performance of the double layered surface has been already proved by the high-power test of the DTL model tank.

Single layered electroforming has been applied to the SDTL-2 for decreasing the fabrication cost of the tank, while the SDTL-1 has double layers of the PR copper electroforming for comparison.

Double or single ?

Page 79: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

0

100

200

300

400

500

600

0

3

6

9

12

15

18

0 10 20 30 40 50

Apr. 2000   DTL high-power model

Peak Power

average power

Average power

kW kW

peak power

Conditioning time (hour)

0

100

200

300

400

500

600

0

3

6

9

12

15

18

0 10 20 30 40 50

SDTL-2peak power

average power

kW kW

Conditioning time

Average powerpeak power

(hour)

0

100

200

300

400

500

600

0

3

6

9

12

15

18

0 10 20 30 40 50

SDTL-1peak power

average power

peak power

Average power

Conditioning time

kW kW

(hour)

Doublelayers

Mono layer

High-power conditioning history

Doublelayers

Page 80: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

IV. ACS

•Side coupled structure (SCS)

•Disk and washer strcture (DAW)

•Annular coupled structure (ACS)

Candidates of the CCL

Page 81: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

ACS (972MHz) for J-PARC

Page 82: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Cell of ACS

Page 83: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

RF-Thermal-Structural Coupled Analysis of ACS Model

Accelerating Cell Side

Coupling Cell Side

( done by S. C. Joshi / CAT )

Page 84: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

HF Modal Analysis of ACS cavity model for the TM010 π/2 mode.

The magnetic field vector H Plot.

Page 85: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

HF Modal Analysis of ACS cavity model for TM010 mode.

The vector plot of Electric Field E

Page 86: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Steady state Thermal Analysis of ACS Cavity Structure Temperature

distribution for the 3.5% duty factor

Page 87: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Deformation Plot in longitudinal direction for 3.5% DF

Page 88: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Total deformation plot of the ACS cavity Structure for 3.5% DF

Page 89: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

ACS status

Basic design has been done.High-power model of short tank is under construction.

Page 90: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

References

• “Microwave electronics”, J. C. Slater (1950)

• “Accelerators”, P. M. Lapostolle & A. L. Septier (1970)

Page 91: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Summary

•Microwave in a cavity

TM mode, Pill-box cavity, Multi-cell cavity, Bridge cavity

•Energy gain & transit time factor

•R&D results of DTL, SDTL & ACS for J-PARC.

Page 92: DTL, S(F)DTL & CCL KEK Fujio Naito Cavity fundamental & technology of J-PARC linac.

Thank you for your attention !!

ありがとう