DRV13x Audio-Balanced Line Drivers · 2020. 12. 31. · V IN Gnd A2 +V O 10k! 50! 50! All resistors...

33
V IN Gnd +V O A2 10kΩ 50Ω 50Ω All resistors 30kΩ unless otherwise indicated. V+ +Sense –Sense –V O V– A3 A1 10kΩ Product Folder Sample & Buy Technical Documents Tools & Software Support & Community DRV134, DRV135 SBOS094B – JANUARY 1998 – REVISED DECEMBER 2014 DRV13x Audio-Balanced Line Drivers 1 Features 3 Description The DRV134 and DRV135 are differential output 1Balanced Output amplifiers that convert a single-ended input to a Low Distortion: 0.0005% at f = 1 kHz balanced output pair. These balanced audio drivers Wide Output Swing: 17Vrms into 600 Ω consist of high performance op amps with on-chip precision resistors. They are fully specified for high High Capacitive Load Drive performance audio applications and have excellent ac High Slew Rate: 15 V/μs specifications, including low distortion (0.0005% at 1 Wide Supply Range: ±4.5 V to ±18 V kHz) and high slew rate (15 V/μs). Low Quiescent Current: ±5.2 mA The on-chip resistors are laser-trimmed for accurate 8-Pin DIP, SO-8, and SOL-16 Packages gain and optimum output common-mode rejection. Wide output voltage swing and high output drive Companion to Audio Differential Line Receivers: capability allow use in a wide variety of demanding INA134 and INA137 applications. They easily drive the large capacitive Improved Replacement for SSM2142 loads associated with long audio cables. Used in combination with the INA134 or INA137 differential 2 Applications receivers, they offer a complete solution for transmitting analog audio signals without degradation. Audio Differential Line Drivers Audio Mix Consoles The DRV134 is available in 8-pin DIP and SOL-16 surface-mount packages. The DRV135 comes in a Distribution Amplifiers space-saving SO-8 surface-mount package. Both are Graphic and Parametric Equalizers specified for operation over the extended industrial Dynamic Range Processors temperature range, –40°C to +85°C and operate from –55°C to +125°C. Digital Effects Processors Telecom Systems Device Information (1) Hi-Fi Equipment PART NUMBER PACKAGE BODY SIZE (NOM) Industrial Instrumentation DRV134 SOIC (16) 10.30 mm × 7.50 mm DRV135 SOIC (8) 4.90 mm × 3.91 mm (1) For all available packages, see the orderable addendum at the end of the datasheet. 4 Simplified Schematic 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Transcript of DRV13x Audio-Balanced Line Drivers · 2020. 12. 31. · V IN Gnd A2 +V O 10k! 50! 50! All resistors...

  • VIN

    Gnd

    +VOA2

    10kΩ

    50Ω

    50Ω

    All resistors 30kΩ unless otherwise indicated.

    V+

    +Sense

    –Sense

    –VO

    V–

    A3

    A1

    10kΩ

    Product

    Folder

    Sample &Buy

    Technical

    Documents

    Tools &

    Software

    Support &Community

    DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014

    DRV13x Audio-Balanced Line Drivers1 Features 3 Description

    The DRV134 and DRV135 are differential output1• Balanced Output

    amplifiers that convert a single-ended input to a• Low Distortion: 0.0005% at f = 1 kHz balanced output pair. These balanced audio drivers• Wide Output Swing: 17Vrms into 600 Ω consist of high performance op amps with on-chip

    precision resistors. They are fully specified for high• High Capacitive Load Driveperformance audio applications and have excellent ac• High Slew Rate: 15 V/µs specifications, including low distortion (0.0005% at 1

    • Wide Supply Range: ±4.5 V to ±18 V kHz) and high slew rate (15 V/µs).• Low Quiescent Current: ±5.2 mA The on-chip resistors are laser-trimmed for accurate• 8-Pin DIP, SO-8, and SOL-16 Packages gain and optimum output common-mode rejection.

    Wide output voltage swing and high output drive• Companion to Audio Differential Line Receivers:capability allow use in a wide variety of demandingINA134 and INA137applications. They easily drive the large capacitive• Improved Replacement for SSM2142 loads associated with long audio cables. Used incombination with the INA134 or INA137 differential2 Applications receivers, they offer a complete solution fortransmitting analog audio signals without degradation.• Audio Differential Line Drivers

    • Audio Mix Consoles The DRV134 is available in 8-pin DIP and SOL-16surface-mount packages. The DRV135 comes in a• Distribution Amplifiersspace-saving SO-8 surface-mount package. Both are• Graphic and Parametric Equalizers specified for operation over the extended industrial

    • Dynamic Range Processors temperature range, –40°C to +85°C and operate from–55°C to +125°C.• Digital Effects Processors

    • Telecom SystemsDevice Information(1)• Hi-Fi Equipment

    PART NUMBER PACKAGE BODY SIZE (NOM)• Industrial Instrumentation

    DRV134 SOIC (16) 10.30 mm × 7.50 mmDRV135 SOIC (8) 4.90 mm × 3.91 mm

    (1) For all available packages, see the orderable addendum atthe end of the datasheet.

    4 Simplified Schematic

    1

    An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,intellectual property matters and other important disclaimers. PRODUCTION DATA.

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014 www.ti.com

    Table of Contents8.4 Device Functional Modes........................................ 131 Features .................................................................. 1

    9 Application and Implementation ........................ 152 Applications ........................................................... 19.1 Application Information............................................ 153 Description ............................................................. 19.2 Typical Application ................................................. 154 Simplified Schematic............................................. 1

    10 Power Supply Recommendations ..................... 175 Revision History..................................................... 211 Layout................................................................... 176 Pin Configuration and Functions ......................... 3

    11.1 Layout Guidelines ................................................. 177 Specifications......................................................... 411.2 Layout Examples................................................... 187.1 Absolute Maximum Ratings ...................................... 411.3 Thermal Performance ........................................... 197.2 Handling Ratings....................................................... 4

    12 Device and Documentation Support ................. 197.3 Recommended Operating Conditions ...................... 412.1 Documentation Support ........................................ 197.4 Electrical Characteristics........................................... 512.2 Related Links ........................................................ 197.5 Typical Characteristics .............................................. 612.3 Trademarks ........................................................... 198 Detailed Description ............................................ 1112.4 Electrostatic Discharge Caution............................ 198.1 Overview ................................................................. 1112.5 Glossary ................................................................ 198.2 Functional Block Diagram ....................................... 11

    13 Mechanical, Packaging, and Orderable8.3 Feature Description................................................. 11Information ........................................................... 20

    5 Revision History

    Changes from Revision A (April 2007) to Revision B Page

    • Added Handling Rating table, Feature Description section, Device Functional Modes, Application andImplementation section, Power Supply Recommendations section, Layout section, Device and DocumentationSupport section, and Mechanical, Packaging, and Orderable Information section ............................................................... 1

    2 Submit Documentation Feedback Copyright © 1998–2014, Texas Instruments Incorporated

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • Top View 8-Pin DIP/SO-8 Top View SOL-16

    1

    2

    3

    4

    5

    6

    7

    8

    16

    15

    14

    13

    12

    11

    10

    9

    NC

    NC

    +VO

    +Sense

    V+

    V–

    NC

    NC

    NC

    NC

    –VO

    –Sense

    Gnd

    VIN

    NC

    NC

    1

    2

    3

    4

    8

    7

    6

    5

    +VO

    +Sense

    V+

    V–

    –VO

    –Sense

    Gnd

    VIN

    DRV134, DRV135www.ti.com SBOS094B –JANUARY 1998–REVISED DECEMBER 2014

    6 Pin Configuration and Functions

    NOTE: NC - No internal connection

    Pin FunctionsPIN

    I/O DESCRIPTIONNAME DIP-8 and SO-8 SOL-16Gnd 3 5 – Ground+Sense 7 13 I Sensing, non-inverting input–Sense 2 4 I Sensing, inverting inputV+ 6 12 – Positive supplyV– 5 11 – Negative supplyVIN 4 6 I Input–Vo 1 3 O Inverted, balanced differential output+Vo 8 14 O Balanced differential outputNC – 1,2,7,8,9,10,15,16 – These pins should be left unconnected

    Copyright © 1998–2014, Texas Instruments Incorporated Submit Documentation Feedback 3

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014 www.ti.com

    7 Specifications

    7.1 Absolute Maximum Ratingsover operating free-air temperature range (unless otherwise noted) (1)

    MIN MAX UNITSupply voltage, V+ to V– 40 VInput voltage range V– V+Output short-circuit (to ground) ContinuousOperating temperature –55 125 °CJunction temperature 150 °C

    (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratingsonly, which do not imply functional operation of the device at these or any other conditions beyond those indicated under RecommendedOperating Conditions . Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

    7.2 Handling RatingsMIN MAX UNIT

    Tstg Storage temperature range –55 125 °CHuman body model (HBM), per ANSI/ESDA/JEDEC JS-001, all –2000 2000pins (1)

    V(ESD) Electrostatic discharge VCharged device model (CDM), per JEDEC specification –500 500JESD22-C101, all pins (2)

    (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

    7.3 Recommended Operating Conditionsover operating free-air temperature range (unless otherwise noted)

    MIN NOM MAX UNITTspe Specification temperature range –40 85 °CTA Operation temperature range –55 125 °CV+ Positive supply 4.5 18 18 VV– Negative supply –4.5 –18 –18 V

    4 Submit Documentation Feedback Copyright © 1998–2014, Texas Instruments Incorporated

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • DRV134, DRV135www.ti.com SBOS094B –JANUARY 1998–REVISED DECEMBER 2014

    7.4 Electrical CharacteristicsAt TA = +25°C, VS = ±18 V, RL = 600 Ω differential connected between +VO and –VO, unless otherwise noted.

    PARAMETER TEST CONDITIONS MIN TYP MAX UNITAUDIO PERFORMANCETHD+N Total Harmonic Distortion + Noise 0.001%f = 20Hz to 20kHz, VO = 10Vrms

    0.0005%f = 1kHz, VO = 10Vrms20 kHz BWRTO (1) Noise Floor –98 dBuTHD+N < 1%RTO (1) Headroom 27 dBu

    INPUTZIN Input Impedance (2) 10 kΩIIN Input Current VIN = ±7.07 V –1000 ±700 1000 µAGAIN

    DifferentialInitial 5.8 6 dB[(+VO) – (–VO)]/VIN

    VIN = ±10VError –2% ±0.1% 2%Error vs Temperature ±10 ppm/°CSingle-Ended VIN = ±5VInitial 5.8 6 dBError –2% ±0.7% 2%Error vs Temperature ±10 ppm/°CNonlinearity 0.0003 % of FS

    OUTPUTOCMR Common-Mode Rejection, f = 1kHz See Figure 25 46 68 dBSBR Signal Balance Ratio, f = 1kHz See Figure 26 35 54 dB

    Output Offset VoltageVOCM(3) Offset Voltage, Common-Mode VIN = 0 –250 ±50 250 mV

    Offset Voltage, Common-Mode vs ±150 µV/°CTemperature

    VOD(4) Offset Voltage, Differential VIN = 0 –10 ±1 10 mVOffset Voltage, Differential vs Temperature ±5 µV/°C

    PSRR Offset Voltage, Differential vs Power Supply VS = ±4.5V to ±18V 80 110 dBPositive (V+) – 3 (V+) – 2.5

    Output Voltage Swing, No Load (5) VNegative (V–) + 2 (V–) + 1.5

    Impedance 50 ΩCL Load Capacitance, Stable Operation CL Tied to Ground (each output) 1 µFISC Short-Circuit Current ±85 mAFREQUENCY RESPONSE

    Small-Signal Bandwidth 1.5 MHzSR Slew Rate 15 V/µs

    Settling Time: 0.01% VOUT = 10V Step 2.5 µsOverload Recovery Output Overdriven 10% 3 µs

    POWER SUPPLYVS Rated Voltage ±18 V

    Voltage Range ±4.5 ±18 VIQ Quiescent Current IO = 0 –5.5 ±5.2 5.5 mA

    (1) dBu = 20log (Vrms /0.7746); RTO = Referred-to-Output.(2) Resistors are ratio matched but have ±20% absolute value.(3) VOCM = [(+VO) + (–VO)] / 2.(4) VOD = (+VO) – (–VO).(5) Ensures linear operation. Includes common-mode offset.

    Copyright © 1998–2014, Texas Instruments Incorporated Submit Documentation Feedback 5

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • Frequency (Hz)

    TH

    D+

    N(%

    )

    20 100 1k 10k 20k

    0.1

    0.01

    0.001

    0.0001

    –VO or +VO Grounded

    A: R1 = 600Ω (250 ft cable)

    B: R1 = ∞ (no cable)

    Single-Ended Mode

    VO = 10Vrms

    DRV134 Output

    B

    A

    Frequency (Hz)

    TH

    D+

    N (

    %)

    20 100 1k 10k 20k

    0.01

    0.001

    0.0001

    Differential Mode

    VO = 10Vrms

    See Figure 3 for Test Circuit

    A: R1 = R2 = RL = ∞ (no load)

    B: R1 = R2 = ∞ RL = 600Ω

    INA137 Output

    A (no cable)

    B (500ft cable)

    Frequency (Hz)

    TH

    D+

    N(%

    )

    20 100 1k 10k 20k

    C

    0.01

    0.001

    0.0001

    See Figure 3 for Test Circuit

    A: R1 = R2 = RL = (no load)∞

    B: R1 = R2 = 600Ω, RL = ∞

    C: R1 = R2 = , R∞ L = 600Ω

    Differential Mode

    VO = 10Vrms

    No Cable

    DRV134 Output

    A

    B

    Frequency (Hz)

    TH

    D+

    N (

    %)

    20 100 1k 10k 20k

    0.01

    0.001

    0.0001

    C

    See Figure 3 for Test Circuit

    A: R1 = R2 = RL = (no load)∞

    B: R1 = R2 = 600Ω, RL = ∞

    C: R1 = R2 = , R∞ L = 600Ω

    Differential Mode

    VO = 10Vrms

    500 ft cable

    DRV134 Output

    B

    A

    DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014 www.ti.com

    Electrical Characteristics (continued)At TA = +25°C, VS = ±18 V, RL = 600 Ω differential connected between +VO and –VO, unless otherwise noted.

    PARAMETER TEST CONDITIONS MIN TYP MAX UNITTEMPERATURE RANGE

    Specification Range –40 85 °COperation Range –55 125 °CStorage Range –55 125 °C

    θJA Thermal Resistance 8-Pin DIP 100 °C/WSO-8 Surface mount 150 °C/WSOL-16 Surface 80 °C/Wmount

    7.5 Typical CharacteristicsAt TA = 25°C, VS = ±18 V, RL = 600 Ω differential connected between +VO and –VO, unless otherwise noted.

    Figure 1. Total Harmonic Distortion + Noise vs Frequency Figure 2. Total Harmonic Distortion + Noise vs Frequency

    Figure 3. Total Harmonic Distortion + Noise Figure 4. System Total Harmonic Distortion + Noisevs Frequency vs Frequency

    6 Submit Documentation Feedback Copyright © 1998–2014, Texas Instruments Incorporated

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • Frequency (Hz)

    Vo

    lta

    ge N

    ois

    e (

    nV

    /√H

    z)

    1 10 100 1k 10k 100k 1M

    10k

    1k

    100

    10

    Frequency (Hz)

    Vo

    lta

    ge

    No

    ise

    Vrm

    s)

    1 10 100 1k 10k 100k

    100

    10

    1

    0.1

    Frequency (Hz)

    Am

    plit

    ud

    e (

    % o

    f F

    un

    da

    me

    nta

    l)

    20 100 1k 20k10k

    0.01

    0.001

    0.0001

    0.00001

    Differential Mode

    2nd Harmonic

    3rd Harmonic

    No Cable, RL = ∞

    500 ft Cable,

    RL = 600Ω

    Frequency (Hz)

    Vo

    lta

    ge

    Ga

    in (

    dB

    )

    1k 10k 100k 10M1M

    10

    5

    0

    –5

    –10

    Output Amplitude (dBu)

    TH

    D+

    N(%

    )

    5 10 15 20 3025

    1

    0.1

    0.01

    0.001

    0.0001

    No Cable

    RL = ∞

    500 ft Cable

    RL = 600Ω

    Single-Ended

    Mode

    f = 1kHz

    DRV134 Output

    Differential

    Mode

    500 ft Cable

    RL = 600Ω

    Output Amplitude (dBu)

    DIM

    (%

    )

    5 10 15 20 3025

    1

    0.1

    0.01

    0.001

    0.0001

    Differential Mode

    No Cable

    RL = ∞

    500 ft Cable

    RL = 600Ω

    BW = 30kHz

    DRV134, DRV135www.ti.com SBOS094B –JANUARY 1998–REVISED DECEMBER 2014

    Typical Characteristics (continued)At TA = 25°C, VS = ±18 V, RL = 600 Ω differential connected between +VO and –VO, unless otherwise noted.

    Figure 5. Headroom – Total Harmonic Distortion + Noise Figure 6. Dim Intermodulation Distortionvs Output Amplitude vs Output Amplitude

    Figure 7. Harmonic Distortion Products vs Frequency Figure 8. Gain vs Frequency

    Figure 9. Output Voltage Noise Spectral Density Figure 10. Output Voltage Noisevs Frequency vs Noise Bandwidth

    Copyright © 1998–2014, Texas Instruments Incorporated Submit Documentation Feedback 7

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • Supply Voltage (V)

    Qu

    iesce

    nt

    Cu

    rre

    nt

    (mA

    )

    ±4 ±18±16±14±12±10±8±6

    ±5.6

    ±5.4

    ±5.2

    ±5

    ±4.8

    ±4.6

    T = –55°C

    T = +25°C

    T = +125°C

    Temperature (°C)

    Short

    -Circuit C

    urr

    ent (m

    A)

    –75 –50 –25 0 25 50 75 125100

    ±120

    ±100

    ±80

    ±60

    ±40

    ±20

    +ISC

    –ISC

    Output Current (mA)

    Outp

    ut V

    oltage S

    win

    g (

    V)

    0 ±20 ±40 ±60 ±80 ±100

    18

    16

    14

    12

    10

    8

    –8

    –10

    –12

    –14

    –16

    –18

    –55°C

    +25°C

    +125°C

    +125°C+25°C –55°C

    Supply Voltage (V)

    Diffe

    ren

    tia

    l O

    utp

    ut

    Vo

    lta

    ge

    (V

    rms)

    ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18

    20

    16

    12

    8

    4

    0

    THD+N ≤ 0.1%

    Frequency (Hz)

    Po

    we

    r S

    up

    ply

    Re

    jectio

    n(d

    B)

    10 100 1k 1M100k10k

    120

    100

    80

    60

    40

    20

    0

    +PSRR

    –PSRR

    VS = ±4.5V to ±18V

    Frequency (Hz)

    Ou

    tpu

    t V

    olta

    ge

    Sw

    ing

    (V

    rms)

    10k 20k 100k80k50k

    20

    16

    12

    8

    4

    0

    0.1% Distortion

    0.01% Distortion

    RL = 600Ω

    Diff Mode

    DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014 www.ti.com

    Typical Characteristics (continued)At TA = 25°C, VS = ±18 V, RL = 600 Ω differential connected between +VO and –VO, unless otherwise noted.

    Figure 11. Power Supply Rejection vs Frequency Figure 12. Maximum Output Voltage Swing vs Frequency

    Figure 13. Output Voltage Swing vs Supply Voltage Figure 14. Output Voltage Swing vs Output Current

    Figure 15. Quiescent Current vs Supply Voltage Figure 16. Short-Circuit Current vs Temperature

    8 Submit Documentation Feedback Copyright © 1998–2014, Texas Instruments Incorporated

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • 2µs/div

    5V

    /div

    2µs/div

    5V

    /div

    2µs/div

    50m

    V/d

    iv

    2µs/div

    50m

    V/d

    ivP

    erc

    en

    t of

    Un

    its (

    %)

    Common-Mode Offset Voltage (mV)

    –2

    50

    –2

    25

    –2

    00

    –1

    75

    –1

    50

    –1

    25

    –1

    00

    –7

    5

    –5

    0

    –2

    5 0

    25

    50

    75

    10

    0

    12

    5

    15

    0

    17

    5

    20

    0

    22

    5

    25

    0

    35

    30

    25

    20

    15

    10

    5

    0

    Typical productiondistribution of packagedunits. All package typesincluded.

    Pe

    rce

    nt

    of

    Un

    its (

    %)

    Differential Offset Voltage (mV)

    –1

    0

    –9

    –8

    –7

    –6

    –5

    –4

    –3

    –2

    –1 0 1 2 3 4 5 6 7 8 9

    10

    45

    40

    35

    30

    25

    20

    15

    10

    5

    0

    Typical productiondistribution of packagedunits. All package typesincluded.

    DRV134, DRV135www.ti.com SBOS094B –JANUARY 1998–REVISED DECEMBER 2014

    Typical Characteristics (continued)At TA = 25°C, VS = ±18 V, RL = 600 Ω differential connected between +VO and –VO, unless otherwise noted.

    Figure 17. Differential Offset Voltage Figure 18. Common-Mode Offset VoltageProduction Distribution Production Distribution

    CL = 100 pF CL = 1000 pF

    Figure 19. Small-Signal Step Response Figure 20. Small-Signal Step Response

    CL = 100 pF CL = 1000 pF

    Figure 21. Large-Signal Step Response Figure 22. Large-Signal Step Response

    Copyright © 1998–2014, Texas Instruments Incorporated Submit Documentation Feedback 9

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • Load Capacitance (pF)

    Overs

    hoot (%

    )

    10 1k100 10k

    40

    30

    20

    10

    0

    100mV Step

    DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014 www.ti.com

    Typical Characteristics (continued)At TA = 25°C, VS = ±18 V, RL = 600 Ω differential connected between +VO and –VO, unless otherwise noted.

    Figure 23. Small-Signal Step Overshoot vs Load Capacitance

    10 Submit Documentation Feedback Copyright © 1998–2014, Texas Instruments Incorporated

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • VIN

    Gnd

    +VOA2

    10kΩ

    50Ω

    50Ω

    All resistors 30kΩ unless otherwise indicated.

    +Sense

    –Sense

    –VO

    G = +6dB

    V+

    (12)6

    A3

    A1

    10kΩ

    1µF

    V–

    DRV134

    DRV135

    5 (11)

    1µF

    4

    (6)

    3

    (5)

    8

    (14)

    7

    (13)

    2

    (4)

    1

    (3)

    DRV134, DRV135www.ti.com SBOS094B –JANUARY 1998–REVISED DECEMBER 2014

    8 Detailed Description

    8.1 OverviewThe DRV134 and DRV135 consist of an input inverter driving a cross- coupled differential output stage with 50 Ωseries output resistors. Characterized by low differential-mode output impedance (50 Ω) and high common-modeoutput impedance (1.6 kΩ), the DRV134 and DRV135 are ideal for audio applications.

    Excellent internal design and layout techniques provide low signal distortion, high output level (27 dBu), and alow noise floor (–98 dBu). Laser trimming of thin film resistors assures excellent output common-mode rejection(OCMR) and signal balance ratio (SBR). In addition, low dc voltage offset reduces errors and minimizes loadcurrents.

    The Functional Block Diagram section shows a detailed block diagram of the DRV134 and DRV135.

    8.2 Functional Block Diagram

    8.3 Feature Description

    8.3.1 Audio PerformanceThe DRV134 and DRV135 were designed for enhanced ac performance. Very low distortion, low noise, and widebandwidth provide superior performance in high quality audio applications. Laser-trimmed matched resistorsprovide optimum output common-mode rejection (typically 68dB), especially when compared to circuitsimplemented with op amps and discrete precision resistors. In addition, high slew rate (15 V/μs) and fast settlingtime (2.5 μs to 0.01%) ensure excellent dynamic response.

    The DRV134 and DRV135 have excellent distortion characteristics. As shown in the distortion data provided inthe Typical Characteristics section, THD+Noise is below 0.003% throughout the audio frequency range undervarious output conditions. Both differential and single-ended modes of operation are shown. In addition, theoptional 10μF blocking capacitors used to minimize VOCM errors have virtually no effect on performance.Measurements were taken with an Audio Precision System One (with the internal 80 kHz noise filter) using theTHD test circuit shown in Figure 24.

    Copyright © 1998–2014, Texas Instruments Incorporated Submit Documentation Feedback 11

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • 600Ω

    VCM = 10Vp-p

    300Ω(1)

    300Ω(1)

    VIN

    Gnd

    +VO

    VOD

    –VO

    DRV134

    1µF

    +18V

    6

    8

    1

    7

    2

    1µF

    –18V

    5

    4

    3

    R1 R2

    RL VOUTINA137

    1µF

    VIN

    +VO –In

    +In

    –VO

    +18V

    72

    3

    61

    5

    1µF

    –18V

    4

    DRV134

    1µF

    +18V

    6

    8

    1

    7

    2

    1µF

    –18V

    5

    4

    3

    Test Point

    or

    DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014 www.ti.com

    Feature Description (continued)Up to approximately 10 kHz, distortion is below the measurement limit of commonly used test equipment.Furthermore, distortion remains relatively constant over the wide output voltage swing range (approximately 2.5V from the positive supply and 1.5 V from the negative supply). A special output stage topology yields a designwith minimum distortion variation from lot-to-lot and unit-to-unit. Furthermore, the small and large signal transientresponse curves demonstrate the stability under load of the DRV134 and DRV135.

    Figure 24. Distortion Test Circuit

    8.3.2 Output Common-Mode RejectionOutput common-mode rejection (OCMR) is defined as the change in differential output voltage due to a changein output common-mode voltage. When measuring OCMR, VIN is grounded and a common-mode voltage, VCM,is applied to the output as shown in Figure 25. Ideally no differential mode signal (VOD) should appear.However, a small mode-conversion effect causes an error signal whose magnitude is quantified by OCMR.

    Figure 25. Output Common-Mode Rejection Test Circuit

    8.3.3 Signal Balance RatioSignal balance ratio (SBR) measures the symmetry of the output signals under loaded conditions. To measureSBR an input signal is applied and the outputs are summed as shown in Figure 26. VOUT should be zero sinceeach output ideally is exactly equal and opposite. However, an error signal results from any imbalance in theoutputs. This error is quantified by SBR. The impedances of the DRV134 and DRV135’s output stages areclosely matched by laser trimming to minimize SBR errors. In an application, SBR also depends on the balanceof the load network.

    12 Submit Documentation Feedback Copyright © 1998–2014, Texas Instruments Incorporated

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • VIN

    Gnd

    +VOA2

    10kΩ

    50Ω

    50Ω

    All resistors 30kΩ unless otherwise indicated.

    +Sense

    –Sense

    –VO

    G = +6dB

    V+

    (12)6

    A3

    A1

    10kΩ

    1µF

    V–

    DRV134

    DRV135

    5 (11)

    1µF

    4

    (6)

    3

    (5)

    8

    (14)

    7

    (13)

    2

    (4)

    1

    (3)

    600Ω

    300Ω(1)

    300Ω(1)

    VOUT

    VIN = 10Vp-p +VO

    O–V

    DRV134

    1µF

    +18V

    6

    8

    1

    7

    2

    1µF

    –18V

    Gnd

    5

    4

    3

    DRV134, DRV135www.ti.com SBOS094B –JANUARY 1998–REVISED DECEMBER 2014

    Feature Description (continued)

    Figure 26. Signal Balance Ratio Test Circuit

    8.4 Device Functional Modes

    8.4.1 Differential-Output ModeIn differential-output mode, the DRV134 (and DRV135 in SO-8 package) converts a single-ended, ground-referenced input to a floating differential output with +6 dB gain (G = 2). Figure 27 shows the basic connectionsrequired for operation in differential-output mode.

    Normally, +VO is connected to +Sense, –VO is connected to –Sense, and the outputs are taken from thesejunctions as shown in Figure 27.

    Figure 27. Basic Connections for Differential-Output Mode

    Copyright © 1998–2014, Texas Instruments Incorporated Submit Documentation Feedback 13

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • 600Ω

    VOUT

    = 2VIN

    VIN

    V+

    V–

    DRV134

    8

    1

    7

    2

    G = +6dB

    4

    5

    6

    3

    DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014 www.ti.com

    Device Functional Modes (continued)8.4.2 Single-Ended ModeThe DRV134 can be operated in single-ended mode without degrading output drive capability. Single-endedoperation requires that the unused side of the output pair be grounded (both the VO and Sense pins) to a lowimpedance return path. Gain remains +6 dB. Grounding the negative outputs as shown in Figure 28 results in anon-inverted output signal (G = +2) while grounding the positive outputs gives an inverted output signal (G = –2).

    Figure 28. Typical Single-Ended Application

    For best rejection of line noise and hum differential mode operation is recommended. However, single-endedperformance is adequate for many applications. In general single ended performance is comparable todifferential mode (see THD+N typical performance curves), but the common mode and noise rejection inherent inbalanced-pair systems is lost.

    14 Submit Documentation Feedback Copyright © 1998–2014, Texas Instruments Incorporated

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • VIN

    Gnd

    A2

    10kΩ

    50Ω

    50Ω

    All resistors 30kΩ unless otherwise indicated.

    INA134 (G = 1): VO = 2VININA137 (G = 1/2): VO = VIN

    A3

    A1

    10kΩ

    DRV134

    DRV135

    4

    3

    8

    +VO

    –VO+VO

    –VO

    7

    2

    1

    INA134, INA137

    RECEIVER

    DRIVER

    BALANCED

    CABLE PAIR

    VO

    5

    6

    1

    2

    3

    10µF(1)

    10µF(1)

    DRV134, DRV135www.ti.com SBOS094B –JANUARY 1998–REVISED DECEMBER 2014

    9 Application and Implementation

    NOTEInformation in the following applications sections is not part of the TI componentspecification, and TI does not warrant its accuracy or completeness. TI’s customers areresponsible for determining suitability of components for their purposes. Customers shouldvalidate and test their design implementation to confirm system functionality.

    9.1 Application InformationDecoupling capacitors placed close to the device pins are strongly recommended in applications with noisy orhigh impedance power supplies.

    For best system performance, it is recommended that a high input-impedance difference amplifier be used as thereceiver. Used with the INA134 (G = 0 dB) or the INA137 (G = ±6 dB) differential line receivers, the DRV134forms a complete solution for driving and receiving audio signals, replacing input and output couplingtransformers commonly used in professional audio systems (Figure 29). When used with the INA137 (G = –6 dB)overall system gain is unity.

    9.2 Typical Application

    9.2.1 Cable Driving ApplicationThe DRV134 is capable of driving large signals into 600-Ω loads over long cables. Low impedance shieldedaudio cables such as the standard Belden 8451 or 9452 (or similar) are recommended, especially in applicationswhere long cable lengths are required.

    For applications with large dc cable offset errors, a 10-µF electrolytic nonpolarized blocking capacitor at eachsense pin is recommended as shown in Figure 29.

    Figure 29. Complete Audio Driver and Receiver Circuit

    9.2.1.1 Design RequirementsConsider a design with the goal of differentially transmitting a single ended signal of up to 22.2 dBu through 500ft of cable with no load at the receiving side. The signal at the end of the cable should have no more than 0.002percent of total harmonic distortion plus noise (THD+N) at 10 kHz and less than 0.0005 percent of THD+N forfrequencies between 20 Hz and 1 kHz.

    The system is required to put out a single ended signal 0 dB with respect to the input signal and accommodateinputs with peak to RMS ratios of up to 1.5 for the maximum 22.2 dBu range established above.

    Copyright © 1998–2014, Texas Instruments Incorporated Submit Documentation Feedback 15

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • R1 R2

    RL VOUTINA137

    1µF

    VIN

    +VO –In

    +In

    –VO

    +18V

    72

    3

    61

    5

    1µF

    –18V

    4

    DRV134

    1µF

    +18V

    6

    8

    1

    7

    2

    1µF

    –18V

    5

    4

    3

    Test Point

    or

    � � PEAKPEAK_IN V97.1498.95.1V

    RMS20

    L

    IN V98.910775.0Vu

    ¸¸

    ¹

    ·

    ¨¨

    ©

    §

    ¸¹

    ᬩ

    §

    775.0

    xlog20L 10u

    DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014 www.ti.com

    Typical Application (continued)9.2.1.2 Detailed Design ProcedureThe dBu is a common unit of measurement for input sensitivity and output level of professional audio equipment.A 0 dBu signal dissipates 1 mW into a 600-Ω resistive load; therefore, a 0 dBu signal corresponds toapproximately 0.775 VRMS. Equation 1 shows the relationship between the signal level in dBu (denoted by Lu)and the signal level in VRMS (denoted by x).

    (1)

    For this design, the single ended input signal of 22.2 dBu corresponds to 9.98 VRMS as shown in Equation 2.

    (2)

    Given that the system must accommodate for 22.2 dBu signals with up to 1.5 of peak to RMS ratio, themaximum peak input signal is 14.97 VPEAK as calculated in Equation 3.

    (3)

    The DRV134 is chosen to convert the single ended input signal into a differential signal and the outputs of theDRV134 will be connected to one end of the 500 ft cable. In order to prevent clipping and distortion of the inputsignal, the power supply rails for the DRV134 are chosen as 3 V above and below the peak calculated inEquation 3. The 3 V margin is derived from the output voltage swing specification given in the ElectricalCharacteristics table. The supplies selected are 18 V for V+ and –18 V for V–.

    Finally, the INA137 is used at the end of the 500 ft cable in order to convert the differential signal output of theDRV134 into a single ended signal that is 0 dB with respect to the input signal.

    Figure 30 shows the system diagram.

    Figure 30. Diagram of System Based on DRV134 and INA137

    16 Submit Documentation Feedback Copyright © 1998–2014, Texas Instruments Incorporated

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • Frequency (Hz)

    TH

    D+

    N (

    %)

    20 100 1k 10k 20k

    0.01

    0.001

    0.0001

    C

    See Figure 3 for Test Circuit

    A: R1 = R2 = RL = (no load)∞

    B: R1 = R2 = 600Ω, RL = ∞

    C: R1 = R2 = , R∞ L = 600Ω

    Differential Mode

    VO = 10Vrms

    500 ft cable

    DRV134 Output

    B

    A

    DRV134, DRV135www.ti.com SBOS094B –JANUARY 1998–REVISED DECEMBER 2014

    Typical Application (continued)9.2.1.3 Application CurveFigure 31 shows the performance obtained with the system depicted in Figure 30.

    Figure 31. Measured Performance of a System Based on DRV134

    10 Power Supply RecommendationsThe DRV134 and DRV135 are designed to operate from an input voltage supply range between ±4.5 V and ±18V. This input supply should be well regulated. If the input supply is located more than a few inches from theDRV134 or DRV135 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.

    11 Layout

    11.1 Layout GuidelinesA driver/receiver balanced-pair (such as the DRV134 and INA137) rejects the voltage differences between thegrounds at each end of the cable, which can be caused by ground currents, supply variations, etc. In addition toproper bypassing (as shown in Figure 32 and Figure 33), the suggestions below should be followed to achieveoptimal OCMR and noise rejection.• The DRV134 input should be driven by a low impedance source such as an op amp or buffer.• As is the case for any single-ended system, the source’s common should be connected as close as possible

    to the DRV134’s ground. Any ground offset errors in the source will degrade system performance.• Symmetry on the outputs should be maintained.• Shielded twisted-pair cable is recommended for all applications. Physical balance in signal wiring should be

    maintained. Capacitive differences due to varying wire lengths may result in unequal noise pickup betweenthe pair and degrade OCMR. Follow industry practices for proper system grounding of the cables.

    Copyright © 1998–2014, Texas Instruments Incorporated Submit Documentation Feedback 17

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • DRV135

    -Vo +Vo

    +Sense

    V-

    -Sense

    1 8

    Top View

    LEGEND

    TOP layer: copper pour & traces

    PCB

    via to ground plane

    VIN

    V+

    1 µF

    SMD0603

    4 51 µF

    SMD0603

    Gnd

    DRV134

    NC

    -Vo

    NC

    +Vo

    +Sense

    V-

    NC

    -Sense

    1 16

    Top View

    LEGEND

    TOP layer: copper pour & traces

    PCB

    via to ground plane

    VIN

    NC

    V+

    NC

    NC

    NCNC

    1 µF

    SMD0603

    8 9

    1 µF

    SMD0603

    Gnd

    DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014 www.ti.com

    11.2 Layout Examples

    Figure 32. DRV134 Layout Example

    Figure 33. DRV135 Layout Example

    18 Submit Documentation Feedback Copyright © 1998–2014, Texas Instruments Incorporated

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • DRV134, DRV135www.ti.com SBOS094B –JANUARY 1998–REVISED DECEMBER 2014

    11.3 Thermal PerformanceThe DRV134 and DRV135 have robust output drive capability and excellent performance over temperature. Inmost applications there is no significant difference between the DIP, SOL-16, and SO-8 packages. However, forapplications with extreme temperature and load conditions, the SOL-16 (DRV134UA) or DIP (DRV134PA)packages are recommended. Under these conditions, such as loads greater than 600 Ω or very long cables,performance may be degraded in the SO-8 (DRV135UA) package.

    12 Device and Documentation Support

    12.1 Documentation Support

    12.1.1 Related DocumentationFor related documentation see the following:• Audio Differential Line Receivers 0dB (G = 1), INA134• Audio Differential Line Receivers ±6dB (G = 1/2 or 2), INA137

    12.2 Related LinksThe table below lists quick access links. Categories include technical documents, support and communityresources, tools and software, and quick access to sample or buy.

    Table 1. Related LinksTECHNICAL TOOLS & SUPPORT &PARTS PRODUCT FOLDER SAMPLE & BUY DOCUMENTS SOFTWARE COMMUNITY

    DRV134 Click here Click here Click here Click here Click hereDRV135 Click here Click here Click here Click here Click here

    12.3 TrademarksAll trademarks are the property of their respective owners.

    12.4 Electrostatic Discharge CautionThese devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foamduring storage or handling to prevent electrostatic damage to the MOS gates.

    12.5 GlossarySLYZ022 — TI Glossary.

    This glossary lists and explains terms, acronyms, and definitions.

    Copyright © 1998–2014, Texas Instruments Incorporated Submit Documentation Feedback 19

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.ti.com/lit/ds/symlink/ina134.pdfhttp://www.ti.com/lit/ds/symlink/ina137.pdfhttp://www.ti.com/product/DRV134?dcmp=dsproject&hqs=pfhttp://www.ti.com/product/DRV134?dcmp=dsproject&hqs=sandbuysamplebuyhttp://www.ti.com/product/DRV134?dcmp=dsproject&hqs=tddoctype2http://www.ti.com/product/DRV134?dcmp=dsproject&hqs=swdesKithttp://www.ti.com/product/DRV134?dcmp=dsproject&hqs=supportcommunityhttp://www.ti.com/product/DRV135?dcmp=dsproject&hqs=pfhttp://www.ti.com/product/DRV135?dcmp=dsproject&hqs=sandbuysamplebuyhttp://www.ti.com/product/DRV135?dcmp=dsproject&hqs=tddoctype2http://www.ti.com/product/DRV135?dcmp=dsproject&hqs=swdesKithttp://www.ti.com/product/DRV135?dcmp=dsproject&hqs=supportcommunityhttp://www.ti.com/lit/pdf/SLYZ022http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • DRV134, DRV135SBOS094B –JANUARY 1998–REVISED DECEMBER 2014 www.ti.com

    13 Mechanical, Packaging, and Orderable InformationThe following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated devices. This data is subject to change without notice and revision ofthis document. For browser-based versions of this data sheet, refer to the left-hand navigation.

    20 Submit Documentation Feedback Copyright © 1998–2014, Texas Instruments Incorporated

    Product Folder Links: DRV134 DRV135

    http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135http://www.ti.comhttp://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBOS094B&partnum=DRV134http://www.ti.com/product/drv134?qgpn=drv134http://www.ti.com/product/drv135?qgpn=drv135

  • PACKAGE OPTION ADDENDUM

    www.ti.com 10-Dec-2020

    Addendum-Page 1

    PACKAGING INFORMATION

    Orderable Device Status(1)

    Package Type PackageDrawing

    Pins PackageQty

    Eco Plan(2)

    Lead finish/Ball material

    (6)

    MSL Peak Temp(3)

    Op Temp (°C) Device Marking(4/5)

    Samples

    DRV134PA ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -55 to 125 DRV134PA

    DRV134PAG4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -55 to 125 DRV134PA

    DRV134UA ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-3-260C-168 HR DRV134UA

    DRV134UA/1K ACTIVE SOIC DW 16 1000 RoHS & Green NIPDAU Level-3-260C-168 HR DRV134UA

    DRV134UAE4 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-3-260C-168 HR DRV134UA

    DRV135UA ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-3-260C-168 HR -55 to 125 DRV135UA

    DRV135UA/2K5 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-3-260C-168 HR -55 to 125 DRV135UA

    DRV135UA/2K5E4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-3-260C-168 HR -55 to 125 DRV135UA

    DRV135UAG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-3-260C-168 HR -55 to 125 DRV135UA

    (1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

    (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substancedo not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI mayreference these types of products as "Pb-Free".RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of

  • PACKAGE OPTION ADDENDUM

    www.ti.com 10-Dec-2020

    Addendum-Page 2

    (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuationof the previous line and the two combined represent the entire Device Marking for that device.

    (6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to twolines if the finish value exceeds the maximum column width.

    Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on informationprovided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken andcontinues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

    In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

  • TAPE AND REEL INFORMATION

    *All dimensions are nominal

    Device PackageType

    PackageDrawing

    Pins SPQ ReelDiameter

    (mm)

    ReelWidth

    W1 (mm)

    A0(mm)

    B0(mm)

    K0(mm)

    P1(mm)

    W(mm)

    Pin1Quadrant

    DRV134UA/1K SOIC DW 16 1000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1

    DRV135UA/2K5 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1

    PACKAGE MATERIALS INFORMATION

    www.ti.com 30-Dec-2020

    Pack Materials-Page 1

  • *All dimensions are nominal

    Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

    DRV134UA/1K SOIC DW 16 1000 853.0 449.0 35.0

    DRV135UA/2K5 SOIC D 8 2500 853.0 449.0 35.0

    PACKAGE MATERIALS INFORMATION

    www.ti.com 30-Dec-2020

    Pack Materials-Page 2

  • www.ti.com

    GENERIC PACKAGE VIEW

    This image is a representation of the package family, actual package may vary.Refer to the product data sheet for package details.

    SOIC - 2.65 mm max heightDW 16SMALL OUTLINE INTEGRATED CIRCUIT7.5 x 10.3, 1.27 mm pitch

    4224780/A

  • www.ti.com

    PACKAGE OUTLINE

    C

    TYP10.639.97

    2.65 MAX

    14X 1.27

    16X 0.510.31

    2X8.89

    TYP0.330.10

    0 - 80.30.1

    (1.4)

    0.25GAGE PLANE

    1.270.40

    A

    NOTE 3

    10.510.1

    BNOTE 4

    7.67.4

    4220721/A 07/2016

    SOIC - 2.65 mm max heightDW0016ASOIC

    NOTES: 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.5. Reference JEDEC registration MS-013.

    1 16

    0.25 C A B

    98

    PIN 1 IDAREA

    SEATING PLANE

    0.1 C

    SEE DETAIL A

    DETAIL ATYPICAL

    SCALE 1.500

  • www.ti.com

    EXAMPLE BOARD LAYOUT

    0.07 MAXALL AROUND

    0.07 MINALL AROUND

    (9.3)

    14X (1.27)

    R0.05 TYP

    16X (2)

    16X (0.6)

    4220721/A 07/2016

    SOIC - 2.65 mm max heightDW0016ASOIC

    NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

    METAL SOLDER MASKOPENING

    NON SOLDER MASKDEFINED

    SOLDER MASK DETAILS

    OPENINGSOLDER MASK METAL

    SOLDER MASKDEFINED

    LAND PATTERN EXAMPLESCALE:7X

    SYMM

    1

    8 9

    16

    SEEDETAILS

    SYMM

  • www.ti.com

    EXAMPLE STENCIL DESIGN

    R0.05 TYP

    16X (2)

    16X (0.6)

    14X (1.27)

    (9.3)

    4220721/A 07/2016

    SOIC - 2.65 mm max heightDW0016ASOIC

    NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design.

    SOLDER PASTE EXAMPLEBASED ON 0.125 mm THICK STENCIL

    SCALE:7X

    SYMM

    SYMM

    1

    8 9

    16

  • www.ti.com

    PACKAGE OUTLINE

    C

    .228-.244 TYP[5.80-6.19]

    .069 MAX[1.75]

    6X .050[1.27]

    8X .012-.020 [0.31-0.51]

    2X.150[3.81]

    .005-.010 TYP[0.13-0.25]

    0 - 8 .004-.010[0.11-0.25]

    .010[0.25]

    .016-.050[0.41-1.27]

    4X (0 -15 )

    A

    .189-.197[4.81-5.00]

    NOTE 3

    B .150-.157[3.81-3.98]

    NOTE 4

    4X (0 -15 )

    (.041)[1.04]

    SOIC - 1.75 mm max heightD0008ASMALL OUTLINE INTEGRATED CIRCUIT

    4214825/C 02/2019

    NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. 4. This dimension does not include interlead flash.5. Reference JEDEC registration MS-012, variation AA.

    18

    .010 [0.25] C A B

    54

    PIN 1 ID AREA

    SEATING PLANE

    .004 [0.1] C

    SEE DETAIL A

    DETAIL ATYPICAL

    SCALE 2.800

  • www.ti.com

    EXAMPLE BOARD LAYOUT

    .0028 MAX[0.07]ALL AROUND

    .0028 MIN[0.07]ALL AROUND

    (.213)[5.4]

    6X (.050 )[1.27]

    8X (.061 )[1.55]

    8X (.024)[0.6]

    (R.002 ) TYP[0.05]

    SOIC - 1.75 mm max heightD0008ASMALL OUTLINE INTEGRATED CIRCUIT

    4214825/C 02/2019

    NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

    METALSOLDER MASKOPENING

    NON SOLDER MASKDEFINED

    SOLDER MASK DETAILS

    EXPOSEDMETAL

    OPENINGSOLDER MASK METAL UNDER

    SOLDER MASK

    SOLDER MASKDEFINED

    EXPOSEDMETAL

    LAND PATTERN EXAMPLEEXPOSED METAL SHOWN

    SCALE:8X

    SYMM

    1

    45

    8

    SEEDETAILS

    SYMM

  • www.ti.com

    EXAMPLE STENCIL DESIGN

    8X (.061 )[1.55]

    8X (.024)[0.6]

    6X (.050 )[1.27]

    (.213)[5.4]

    (R.002 ) TYP[0.05]

    SOIC - 1.75 mm max heightD0008ASMALL OUTLINE INTEGRATED CIRCUIT

    4214825/C 02/2019

    NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design.

    SOLDER PASTE EXAMPLEBASED ON .005 INCH [0.125 MM] THICK STENCIL

    SCALE:8X

    SYMM

    SYMM

    1

    45

    8

  • IMPORTANT NOTICE AND DISCLAIMER

    TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

    Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2020, Texas Instruments Incorporated

    http://www.ti.com/legal/termsofsale.htmlhttp://www.ti.com

    1 Features2 Applications3 Description4 Simplified SchematicTable of Contents5 Revision History6 Pin Configuration and Functions7 Specifications7.1 Absolute Maximum Ratings7.2 Handling Ratings7.3 Recommended Operating Conditions7.4 Electrical Characteristics7.5 Typical Characteristics

    8 Detailed Description8.1 Overview8.2 Functional Block Diagram8.3 Feature Description8.3.1 Audio Performance8.3.2 Output Common-Mode Rejection8.3.3 Signal Balance Ratio

    8.4 Device Functional Modes8.4.1 Differential-Output Mode8.4.2 Single-Ended Mode

    9 Application and Implementation9.1 Application Information9.2 Typical Application9.2.1 Cable Driving Application9.2.1.1 Design Requirements9.2.1.2 Detailed Design Procedure9.2.1.3 Application Curve

    10 Power Supply Recommendations11 Layout11.1 Layout Guidelines11.2 Layout Examples11.3 Thermal Performance

    12 Device and Documentation Support12.1 Documentation Support12.1.1 Related Documentation

    12.2 Related Links12.3 Trademarks12.4 Electrostatic Discharge Caution12.5 Glossary

    13 Mechanical, Packaging, and Orderable Information