Driven Pile Design

22
Driven Pile Design George Goble

description

Driven Pile Design. George Goble. Basic LRFD Requirement. η k Σ γ ij Q ij ≤ φ g R ng η k – factor for effect of redundancy, ductility and importance γ ij – Load factor for the i th load type in the j th load combination Q ij – The i th load type in the j th load combination - PowerPoint PPT Presentation

Transcript of Driven Pile Design

Page 1: Driven Pile Design

Driven Pile Design

George Goble

Page 2: Driven Pile Design

Basic LRFD Requirement

ηk Σ γij Qij ≤ φg Rng

ηk – factor for effect of redundancy, ductility and importance

γij – Load factor for the ith load type in the jth load combination Qij – The ith load type in the jth load combination

φg – The resistance factor for the ath failure mode

Rng - The nominal strength for the ath failure mode

Page 3: Driven Pile Design

Definition of Loads

N – Axial load DC – Structural Dead LoadFT – Load transverse to the LL – Vehicular Live Load bridge centerlineFL – Load parallel to the IM – Vehicular Dynamic Load bridge centerline MT – Moment about the ML – Moment about the transverse axis longitudinal axisWL – Wind on Live Load BR – Vehicular Braking WS – Wind Load on Structure Force

Note: Two different wind loads are specified – winds greater than 55 miles per hour and winds less than 55 miles per hour. At greater than 55 miles per hour no traffic loads are included

Page 4: Driven Pile Design

Force EffectsLoad Set 1, Maximum axial effect with overturning effect

All units are kips and feet

• LOAD N FT FL MT ML

• DC 5564 0 0 0 0

• LL 894 0 0 0 3742• WS (>55) -254 182 145 4334 5454• WS (<55) -142 107 66 1961 3226• WL 0 20 -4.2 -125 600• BR 0 24.2 -54.5 -1636 727

Page 5: Driven Pile Design

Force Effects Load Set 2, Maximum overturning effect with axial effect

All units are kips and feet

LOA N FT FL MT ML

DC 5564 0 0 0 0 LL 662 0 0 0 12552 WS (>55) -254 182 145 4334 5454 WS (<55) -142 107 66 1961 3226 WL 0 20 -4.2 -125 600 BR 0 17.9 -40.0 -1208 537

Page 6: Driven Pile Design

AASHTO Load Combinations

• STR I MAX = 1.25 DC + 1.75 (LL + IM + BR)

• STR I MIN = 0.9 DC + 1.75 (LL + IM + BR)

• STR III = 0.9 DC + 1.4 WS

• STR IV = 1.5 DC

• STR V MAX = 1.25 DC + 1.35 (LL + IM + BR) + 0.4 WS + 1.0 WL

• STR V MIN = 0.9 DC + 1.35 (LL + IM + BR) + 0.4 WS + 1.0 WL

Page 7: Driven Pile Design

Table 2Factored Loads

LOAD N FTFL MT ML z x y Mx My

STR I MAX 8520 42 -95 -2863 7821

STR I MIN 6166 31 -71 -2114 22906

STR III 4652 255 203 6068 7635

STR IV 8346 0 0 0 0

STR V MAX 8105 95 -51 -1549 7924

STR V MIN 5845 87 -32 -971 19561

Page 8: Driven Pile Design

SoilBoring

Page 9: Driven Pile Design

TRY

• 18 inch Square Prestressed Concrete pile

• Use 7000 psi Concrete• Structural Axial Strength

– Pn = 0.80 [ 0.85f’c Ag–(fpe- 85.5) Ag ]

– Pn = 1360 kips

Page 10: Driven Pile Design
Page 11: Driven Pile Design

Wave Equation Results

• D-36-32 Hammer• 3 inches plywood !!• Capacity 1100 kips• Blow Count 10 Blows per inch• Maximum Compression Stress 3.6 ksi• Allowable Driving Stress

– φ(0.85f’c - fpe), - φ = 1.0– For 7.0 ksi Concrete, Allowable Stress = 5.1 ksi

Page 12: Driven Pile Design

WaveEquationBearing Graph

Page 13: Driven Pile Design

Concrete Stress-Strain Curve

Page 14: Driven Pile Design

Trial No. 1• 1100 kips Pile Capacity• 16, 18 inch Square Piles 4 x 4 Group• FB-Pier Input

– Structural Elements and Material Properties– Soil Properties– Structural Geometry– Loads

• Lateral – O’Neil Sand Model• DRIVEN Axial Model

– Increase Axial Capacity by a Factor of 2.0

• Effective Prestress – 800 psi• Linear Analysis – No P-Δ – But Non-Linear Soil

Page 15: Driven Pile Design

Results

• Several Tries - 4 x 4 Group Doesn’t Work – Pile Top Structural Failure

• Change to 20 Inch Square Pile – 4 x 4 Group• Very Safe• Try 3 x 4, 20 Inch Pile Group• Successful After Several Trials

Page 16: Driven Pile Design

FinalDesign

Page 17: Driven Pile Design

Results

Page 18: Driven Pile Design

Bi-Axial Interaction Diagram Pile 4, Load Case 2

Page 19: Driven Pile Design

Critical Conditions

Load Case Max. PileLoad, Pile No.

Kips

Max. UpliftLoad, Pile No.

Kips

Demand/CapacityRatio, Pile No.

Str I Max 847, 9 0.700

Str I Min 791 68, 4 0.654

Str III 561 1.000, 4

Str IV 691 0.570

Str V Max 783 0.673

Str V Min 712 0.649

Page 20: Driven Pile Design

Required Axial Capacity

Rn = Un-Factored Capacity/φ

Rn = 847/0.80

Rn = 1060 kips

Page 21: Driven Pile Design

Wave Equation Analysis

Page 22: Driven Pile Design

Final Requirements

• 12, 20 Inch Square Piles• Estimated Length – 85 Feet – (Bottom of

Cap, -10 Feet)• Required Blow Count – 80 Blows per Foot• Maximum Compression Stress – 3.3 ksi• Maximum Tension – 1.5 ksi – Excessive,

Throttle Back