Dolomitiza tion truncates the earliest Edi acaran 13 carb ... › gsa › 2014AM › webprogram ›...

1
blue dots limestone, all others dolomite blue dots limestone, all others dolomite Dolomitization truncates the earliest Ediacaran δ 13 C carb negative excursion Paul Hof fman (UVic/Harvard), Galen Halverson (McGill), Marcus Kunzmann (McGill), Eric Bellefroid (Yale), Ben John- son (UVic), Dan Schrag (Harvard). paulfhoff[email protected] landward progradation Islay Bitter Springs Maieberg Shuram SPICE Cambrian Ma Ediacaran Cryogenian Tonian -10 -5 0 5 10 o /oo VPDB 800 750 700 650 600 550 500 Sturtian glaciation Gaskiers glaciation Marinoan glaciation δ 13 C carb U-Pb ages Keele peritidal cycles Ombaatjie Fm ~400 m transgressive tract maximum flood highstand tract glacial surface (discontinuous lodgement tillite) cap dolostone exposure surface peritidal cycles Elandshoek Fm Maieberg Fm Keilberg Mb G highstand limestone 0.4 km P O S T G L A C I A L C A P - C A R B O N A T E S E Q U E N C E S E A W A T E R T ~ 45 o C? S = 1 cement G Ghaub ice grounding-line wedge Ghaub ice grounding-line wedge I C E S H E E T ice grounding-zone wedge S E A G L A C I E R B R I N E T ~ -4.4 o C S ~ 2 falling-stand wedge >0.5 km ~5 km O T A V I G R O U P C A R B O N A T E P L A T F O R M ( N A M I B I A ) transgressive cap dolostone 0.1 km S Y N D E G L A C I A L C A P D O L O S T O N E ice-stream trough dashed Note paleodepth of ice grounding- zone wedge. B R I N E mixed layer Glacial Lake Harland’ MELTWATER lodgement tillite 2 1 3 isostatic adjustment isostatic adjustment partial isostatic adjustment 0 50 km E T O S H A N A T I O N A L P A R K E T E N D E K A P L A T E A U K A M A N J A B I N L I E R 14 o 00'E 15 o 00'E 19 o 00'S 20 o 00'S Kamanjab Khorixas CENOZOIC EARLY CRETACEOUS CARBONIFEROUS-TRIASSIC Karoo Supergroup Kalahari Group Etendeka volcanics mafic intrusives Etjo sandstone Tsumeb Subgroup Abenab Subgroup Otavi Group Mulden Group Damara Supergroup Kuiseb Formation ~500 Ma granite NEOPROTEROZOIC CAMBRIAN Ombombo Subgroup Nosib Group Nabis Formation PALEOPROTEROZOIC metavolcanic, meta- sedimentary & meta- plutonic complex (1.93 to 1.98 Ga) Nosib and Otavi Groups Ugab Subgroup and Naauwpoort Formation ungraded track graded road paved road platform foreslope rainfall >150 mm/yr limestone dolostone TST MFZ ‘cap’ dolostone (dolopelarenite) Stratigraphic thicknesses (250-400 m in total) normalized by member. δ 13 C ( o /oo VPDB) HST dolostone limestone M A I E B E R G F O R M A T I O N cap-carbonate sequence M3 M2 M1 1 4 6 7 8 glacial surface 635 Ma E D I A C A R A N Platform sections -5 -4 -3 -2 -1 0 -6 -5 -4 -3 -2 -1 0 -6 1 1 Inner Platform Outer Platform TST MFZ Stratigraphic thicknesses (250-400 m in total) normalized by member. δ 13 C ( o /oo VPDB) HST M A I E B E R G F O R M A T I O N cap-carbonate sequence M3 M2 M1 glacial surface 635 Ma E D I A C A R A N -5 -4 -3 -2 -1 0 -6 -5 -4 -3 -2 -1 0 -6 1 1 2 5 Platform sections -10 -8 -6 -4 -2 -12 -14 1 0 -1 -2 -3 -4 -5 -6 δ 18 O ( o / oo) VPDB M1 δ 13 C ( o / oo) VPDB dolomitized sections Foreslope sections -10 -8 -6 -4 -2 -12 1 0 -1 -2 -3 -4 δ 18 O ( o / oo) VPDB δ 13 C ( o / oo) VPDB -5 -6 M2 9e 9w 10 12 13 18 o 20 o 18 o 20 o 22 o 24 o 12 o 14 o 16 o 18 o 26 o 28 o 20 o 100 km Kaoko orogen 10 cm 10 cm 25 cm 50 cm 50 cm 25 cm 10 cm Witputs Sub-basin Zaris Sub-basin Naukluft Allochthon Tsumeb K u n e n e R . A N G O L A Kalahari Desert Omaheke Desert K a l a h a r i c r a t o n C o n g o c r a t o n Okavango R . Rehoboth Inlier Waterberg Walvis Bay Swakop- mund Angra Pequena (Luderitz Bay) G a r i e p oro g e n Orange R. Windhoek Okahandja K h o m a s accr. prism H a k o s marg i n S w a k o p m i c r o c o n tin e nt B O T S W A N A S OUTH A FRICA WK z SKZ Witvlei Ridge KALAHARI CRATON Witlvei - Nama groups (NP - C cover) Hakos zone: deformed margin 1.0 - 1.4 Ga basement: Namaqua Belt Khomas zone: accretionary prism Swakop zone: arc-bearing microcraton Outjo belt: northern collision zone DAMARA OROGEN (ca 555 Ma) CONGO CRATON Neoproterozoic cover 1.8 - 2.0 Ga basement KAOKO OROGEN (ca 590 Ma) Central zone: deformed margin Western zone: accreted forearc CKz WKz Carboniferous - Cenozoic SKz Southern zone: deep-sea fan Eastern zone: foreland thrust belt EKz Marmora zone: accreted terranes Port Nolloth zone: deformed margin GARIEP OROGEN (ca 540 Ma) EKz CKz D a m a r a o r o g e n geosuture thrust (teeth on hangingwall) 133 Ma igneous rocks LEGEND Epupa inlier Namib Desert Er Me Br Abstract The Maieberg Formation (Otavi Group) of northern Namibia offers an unusually expanded carbonate isotope record of earliest Ediacaran time (Fig. 1) and is the type example of a global negative δ 13 C excursion, the Maieberg CIE (carbon isotope excursion). The formation presents a complete depositional sequence comprised of three members (Fig. 2): M1, a basal transgressive dolopelarenite (aka ‘cap’ dolostone), deposited above storm wave-base diachronously during initial syndeglacial regression and subsequent profound marine inundation; M2, a middle marly limestone rhythmite, deposited mainly below storm wave-base during maximum flooding (post- GIA); and M3, a regressive dolostone member that filled accommodation created by tectonic subsidence and erosion during the preceding Marinoan glaciation (Fig. 3). The formation is 250- 400 m thick on the carbonate platform (Fig. 2), while isotopically correlative strata taper to 40 m distally on the foreslope. The negative CIE encompasses the entire formation, but its nadir at -5.5 o /oo PDB coincides with M2 (Fig. 4). However, where M2 is locally dolomitized, the nadir is 3 o /oo heavier than normal (Fig. 5), indistinguishable isotopically from M1 and M3. Moreover, the light ‘tail’ in the upper M1 also vanishes where M2 is dolomitized (Fig. 5), yet Mg:Ca data indicate that the light ‘tail’ is not correlated with calcite content. Carbonate δ 18 O and δ 13 C are positively correlated, both being heavier where M2 is dolomitized (Figs. 7 and 8). Isotopic enrichments in C and CAS (carbonate associated sulfate) in areas of the platform where M2 is dolomitized were previously ascribed to restriction and lateral gradients in platform waters (Hurtgen et al., EPSL 245: 551-570, 2006). However, M2 dolomitization is also associated with CIE truncation on the unrestricted foreslope (Fig. 6), casting doubt on this explanation. Isotopic alteration during prolonged burial diagenesis (Bold et al., this session) overcomes this problem, but requires enormous volumes of solute. Whatever the mechanism, pre-existing dolomite (the M1 ‘tail’) was evidently altered as well as limestone. Quantitatively variable expression of other CIE’s may be related to alteration during burial diagenesis, particularly in areas like Namibia, where widespread chemical regmagnetization suggests long-lived ground- water flows driven by orogenic topography during the tectonic assembly of Gondwana. dolomitized Fig. 1. Carbonate δ 13 C record from 820 to 490 Ma (modif ied after Halverson et al., 2005) showing the basal Ediacaran Maieberg CIE (red box). Fig. 2. Earliest Ediacaran Maieberg Formation (postglacial depositional sequence) in section 4 (see Fig. 10), upper Hoanib River near Ombaatjie, Kunene Region, Namibia. Fig. 3. Model scenario for Marinoan deglaciation and the Maieberg Fm depositional sequence. Deglaciation is assumed to generate a global meltwater lid >1.0 km deep at an average rate of 15 Sv (i.e., in 2 kyr), consuming ~6 Wm 2 of energy. Fig. 4. Maieberg CIE in platformal sections where M2 (middle member) is limestone. Fig. 5. Maieberg CIE in platformal sections where M2 (middle member) is dolomite. For section locations, see Fig. 10. Fig. 6. Maieberg CIE in foreslope sections where M2 is marly limestone (open circles) and where it is dolomite (closed circles). Section locations, see Fig. 10. Fig. 7. Member-grouped δ 13 C/δ 18 O crossplot for the platformal sections. Fig. 8. Member- and site-grouped δ 13 C/δ 18 O crossplot for the platformal sections. M2 M3 Stratigraphic thicknesses (12-60 m total for M1-2) normalized by member. Platform sections Fig. 9. Tectonic map of Namibia (SW Africa) and this study area (red box). Outjo basin Otavi platform ( Karoo glacial paleovalley) Etendeka platform foreslope projected shelf break (Otavi Group) Fig. 10. Geological map with section numbers for isotope data (Figs. 4-8). See map Fig. 10 See map Fig. 10 See map Fig. 10 M1 9e 9w 10 11 12 13 ‘cap’ dolostone (dolopelarenite) M2 M3 M1 annual rainfall (cm) Kamanjab inlier glacial paleovalleys Rasthof Trezona -5.0 -4.0 -3.0 -2.0 -1.0 0.0 δ 13 C carb ( o /oo VPDB) 1.0 -6.0 9e 9w 10 11 12 13 M1 Foreslope sections limestone; dolomitized M2 2 1 3 4 5 6 7 8 9 10 11 12 13

Transcript of Dolomitiza tion truncates the earliest Edi acaran 13 carb ... › gsa › 2014AM › webprogram ›...

  • blue dots limestone, all others dolomite

    blue dots limestone, all others dolomite

    Dolomitization truncates the earliest Ediacaran δ13Ccarb negative excursionPaul Hof fman (UVic/Harvard), Galen Halverson (McGill), Marcus Kunzmann (McGill), Eric Bellefroid (Yale), Ben John-son (UVic), Dan Schrag (Harvard). paulfho�[email protected]

    landward progradation

    Islay

    Bitter Springs

    Maieberg

    Shuram

    SPICE

    Cambrian

    Ma

    EdiacaranCryogenianTonian

    -10

    -5

    0

    5

    10

    o /oo

    VPD

    B

    800 750 700 650 600 550 500

    Sturtian

    glaciation

    Gaskiers glaciation

    Marin

    oan g

    laciation

    δ13Ccarb

    U-Pbages

    Keele

    peritidal cycles

    Ombaatj ie Fm

    ~400 m

    transgressive tract

    maximum �ood

    highstand tract

    glacial surface(discontinuous lodgement tillite)

    cap dolostone

    exposure surface

    peritidal cycles

    E landshoek Fm

    Maieberg Fm

    Keilberg Mb

    G

    highstand limestone

    0.4 km

    P O S T G L A C I A L C A P - C A R B O N A T E S E Q U E N C E

    S E A W A T E R

    T ~ 45oC?S = 1

    cement

    G

    Ghaub ice grounding-line wedgeGhaub ice grounding-line wedge

    I C E S H E E T

    ice grounding-zone wedge

    S E A G L A C I E R

    B R I N ET ~ -4.4oCS ~ 2

    falling-stand wedge

    >0.5 km

    ~5 kmO T A V I G R O U P C A R B O N A T E P L A T F O R M ( N A M I B I A )

    transgressive cap dolostone

    0.1 km

    S Y N D E G L A C I A L C A P D O L O S T O N E

    ice-stream trough dashed

    Note paleodepthof ice grounding-zone wedge.

    B R I N E

    mixed layer ‘Glacial Lake Harland’ M E LT WAT E R

    lodgement tillite

    2

    1

    3isostatic adjustment

    isostatic adjustment

    partial isostatic adjustment

    0 50km

    E T O S H A

    N A T I O N A L P A R K

    E T E N D E K A

    P L A T E A U

    K A M A N J A B I N L I E R

    14o00'E 15o00'E

    19o00

    'S20

    o00

    'S

    Kamanjab

    Khorixas

    CENOZOIC

    EARLY CRETACEOUS

    CARBONIFEROUS-TRIASSICKaroo Supergroup

    Kalahari Group

    Etendeka volcanicsma�c intrusives

    Etjo sandstone Tsumeb Subgroup

    Abenab Subgroup

    Otavi Group

    Mulden GroupDamara Supergroup

    Kuiseb Formation

    ~500 Ma granite

    NEOPROTEROZOIC

    CAMBRIAN

    Ombombo Subgroup

    Nosib Group Nabis Formation

    PALEOPROTEROZOIC metavolcanic, meta- sedimentary & meta- plutonic complex(1.93 to 1.98 Ga)

    Nosib and Otavi GroupsUgab Subgroup and Naauwpoort Formation

    ungraded track

    graded road

    paved road

    platform

    foreslope

    rainfall >150 mm

    /yr

    l imestone dolostone

    TST

    MFZ

    ‘cap’ dolostone(dolopelarenite)

    Stratigraphic thicknesses(250-400 m in total) normalized by member. δ13C (o/oo VPDB)

    HST dolostone limestone

    M A

    I E

    B E

    R G

    F

    O R

    M A

    T I

    O N

    cap

    -car

    bona

    te s

    eque

    nce

    M3

    M2

    M1

    14678

    glacial sur face635 Ma

    E D

    I A

    C A

    R A

    N

    Platform sections

    -5 -4 -3 -2 -1 0-6

    -5 -4 -3 -2 -1 0-6 1

    1

    Inne

    r Pla

    tfor

    m

    Out

    er P

    latf

    orm

    TST

    MFZ

    Stratigraphic thicknesses(250-400 m in total) normalized by member. δ13C (o/oo VPDB)

    HST

    M A

    I E

    B E

    R G

    F

    O R

    M A

    T I

    O N

    cap

    -car

    bona

    te s

    eque

    nce

    M3

    M2

    M1glacial sur face

    635 Ma

    E D

    I A

    C A

    R A

    N

    -5 -4 -3 -2 -1 0-6

    -5 -4 -3 -2 -1 0-6 1

    1

    25

    Platform sections

    -10 -8 -6 -4 -2-12-14

    1

    0

    -1

    -2

    -3

    -4

    -5

    -6

    δ18O (o/oo) VPDB

    M1

    δ13C (o/oo) VPDB

    dolomitized sections

    Foreslope sections

    -10 -8 -6 -4 -2-12

    1

    0

    -1

    -2

    -3

    -4

    δ18O (o/oo) VPDB

    δ13C (o/oo) VPDB

    -5

    -6

    M29e9w101213

    18o

    20o

    18o

    20o

    22o

    24o

    12o 14o 16o 18o

    26o

    28o

    20o

    100 km

    Kaoko orogen

    10 cm

    10 cm

    25 cm

    50 cm

    50 cm

    25 cm

    10 cm

    Witputs

    Sub-basin

    Zaris

    Sub-basin

    NaukluftAllochthon

    Tsumeb

    Kunen e R. A N G O L A

    Kalahari

    Desert

    Omaheke

    Desert

    K a l a h a r i c r a t o n

    C o n g o c r a t o n

    Okavango R.

    Rehobo

    th Inlier

    Waterb

    erg

    Walvis Bay

    Swakop- mund

    AngraPequena (Luderitz Bay)

    Gariep orogen Orange R.

    Windhoek

    Okaha

    ndja

    Khom

    as ac

    cr.

    prism

    Hakos

    marg

    inSwa

    kop

    mic

    roco

    ntine

    nt

    B O

    T S

    W A

    N A

    SO

    UT

    H A

    FR

    IC

    A

    WKz

    SKZ

    Witvl

    ei Rid

    ge

    KALAHARI CRATONWitlvei - Nama groups (NP - C cover)

    Hakos zone: deformed margin

    1.0 - 1.4 Ga basement: Namaqua Belt

    Khomas zone: accretionary prism

    Swakop zone: arc-bearing microcraton

    Outjo belt: northern collision zoneDAMARA OROGEN (ca 555 Ma)

    CONGO CRATON Neoproterozoic cover

    1.8 - 2.0 Ga basement

    KAOKO OROGEN (ca 590 Ma)

    Central zone: deformed margin

    Western zone: accreted forearc

    CKz

    WKz

    Carboniferous - Cenozoic

    SKz Southern zone: deep-sea fan

    Eastern zone: foreland thrust beltEKz

    Marmora zone: accreted terranes

    Port Nolloth zone: deformed margin

    GARIEP OROGEN (ca 540 Ma)

    EK

    z

    CK

    z

    Dam

    ara orogen

    geosuture thrust (teeth on hangingwall)

    133 Ma igneous rocks

    L EGEND

    Epupa inlier

    Nam

    ib Desert

    Er

    Me

    Br

    Abstract The Maieberg Formation (Otavi Group) of northern Namibia o�ers an unusually expanded carbonate isotope record of earliest Ediacaran time (Fig. 1) and is the type example of a global negative δ13C excursion, the Maieberg CIE (carbon isotope excursion). The formation presents a complete depositional sequence comprised of three members (Fig. 2): M1, a basal transgressive dolopelarenite (aka ‘cap’ dolostone), deposited above storm wave-base diachronously during initial syndeglacial regression and subsequent profound marine inundation; M2, a middle marly limestone rhythmite, deposited mainly below storm wave-base during maximum �ooding (post-GIA); and M3, a regressive dolostone member that �lled accommodation created by tectonic subsidence and erosion during the preceding Marinoan glaciation (Fig. 3). The formation is 250-400 m thick on the carbonate platform (Fig. 2), while isotopically correlative strata taper to 40 m distally on the foreslope. The negative CIE encompasses the entire formation, but its nadir at -5.5o/oo PDB coincides with M2 (Fig. 4). However, where M2 is locally dolomitized, the nadir is 3o/oo heavier than normal (Fig. 5), indistinguishable isotopically from M1 and M3. Moreover, the light ‘tail’ in the upper M1 also vanishes where M2 is dolomitized (Fig. 5), yet Mg:Ca data indicate that the light ‘tail’ is not correlated with calcite content. Carbonate δ18O and δ13C are positively correlated, both being heavier where M2 is dolomitized (Figs. 7 and 8). Isotopic enrichments in C and CAS (carbonate associated sulfate) in areas of the platform where M2 is dolomitized were previously ascribed to restriction and lateral gradients in platform waters (Hurtgen et al., EPSL 245: 551-570, 2006). However, M2 dolomitization is also associated with CIE truncation on the unrestricted foreslope (Fig. 6), casting doubt on this explanation. Isotopic alteration during prolonged burial diagenesis (Bold et al., this session) overcomes this problem, but requires enormous volumes of solute. Whatever the mechanism, pre-existing dolomite (the M1 ‘tail’) was evidently altered as well as limestone. Quantitatively variable expression of other CIE’s may be related to alteration during burial diagenesis, particularly inareas like Namibia, where widespread chemical regmagnetization suggests long-lived ground-water �ows driven by orogenic topography during the tectonic assembly of Gondwana.

    dolo

    mit

    ized

    Fig. 1. Carbonate δ13C record from 820 to 490 Ma (modif ied after Halverson et al., 2005) showing the basal Ediacaran Maieberg CIE (red box).

    Fig. 2. Earliest Ediacaran Maieberg Formation (postglacial depositional sequence) in section 4 (see Fig. 10), upper Hoanib River near Ombaatjie, Kunene Region, Namibia.

    Fig. 3. Model scenario for Marinoan deglaciation and the Maieberg Fm depositional sequence. Deglaciation is assumed to generate a global meltwater lid >1.0 km deep at an average rate of 15 Sv (i.e., in 2 kyr), consuming ~6 Wm2 of energy.

    Fig. 4. Maieberg CIE in platformal sections where M2 (middle member) is limestone. Fig. 5. Maieberg CIE in platformal sections where M2 (middle member) is dolomite.For section locations, see Fig. 10.

    Fig. 6. Maieberg CIE in foreslope sections where M2 is marly limestone (open circles) and where it is dolomite (closed circles). Section locations, see Fig. 10.

    Fig. 7. Member-grouped δ13C/δ18O crossplot for the platformal sections. Fig. 8. Member- and site-grouped δ13C/δ18O crossplot for the platformal sections.

    M2

    M3

    Stratigraphic thicknesses(12-60 m total for M1-2) normalized by member.

    Platform sections

    Fig. 9. Tectonic map of Namibia (SW Africa) and this study area (red box).

    Outjo b

    asin

    Otavi platform

    ( Karoo glacial paleovalley)

    Etendeka

    platform

    foreslope

    projected shelf break (Otavi Group)

    Fig. 10. Geological map with section numbers for isotope data (Figs. 4-8).

    See mapFig. 10

    See mapFig. 10

    See mapFig. 10

    M19e9w10111213

    ‘cap’ dolostone(dolopelarenite)

    M2

    M3

    M1

    annual rainfall (cm)

    Kamanjab inlierglacialpaleovalleys

    Rasthof

    Trezona

    -5.0 -4.0 -3.0 -2.0 -1.0 0.0 δ13Ccarb (o/oo VPDB)

    1.0-6.0

    9e9w10111213

    M1

    Foreslope sections l imestone; dolomitized

    M22 1

    3

    4

    56

    78

    9101112

    13