Dist Muestrales-Int. de Confianza

33
9. DISTRIBUCIONES MUESTRALES Distribución de Medias Muestrales. Simbología que será utilizada: Medidas Población Muestra Media Aritmética Varianza Desviación típica S Tamaño = Media de todas las Medias Muestrales = Desviación típica de todas las medias Muestrales. M = Número de muestras posibles. Cuando la selección se hace sin reposición: Cuando se hace la selección con reposición. Si consideramos una población de N elementos, con media y desviación típica , si se obtienen M número de Muestras posibles, de tamaño n, simbolizamos a cada media Muestral por, . Y cada desviación típica Muestral por, TEOREMA:

Transcript of Dist Muestrales-Int. de Confianza

Page 1: Dist Muestrales-Int. de Confianza

9. DISTRIBUCIONES MUESTRALES

Distribución de Medias Muestrales.

Simbología que será utilizada:

Medidas Población Muestra

Media Aritmética

Varianza

Desviación típica S

Tamaño

= Media de todas las Medias Muestrales

= Desviación típica de todas las medias Muestrales.

M = Número de muestras posibles.

Cuando la selección se hace sin reposición:

Cuando se hace la selección con reposición.

Si consideramos una población de N elementos, con media y

desviación típica , si se obtienen M número de Muestras posibles, de

tamaño n, simbolizamos a cada media Muestral por, . Y

cada desviación típica Muestral por,

TEOREMA:

Dada una población, si extraemos todas las muestras

posibles de un mismo tamaño, entonces la media de la distribución de

todas las medias Muestrales posibles. Será igual a la media poblacional.

Simbolizaremos la media de todas las medias Muestrales por , la

cual será igual a la media Poblacional.

Page 2: Dist Muestrales-Int. de Confianza

La varianza de todas las medias muestrales se simboliza por y

el error estándar por igual .

Siendo (para muestras grandes o sea n > 30 y se denomina

error estándar de la media).

La media de todas las medias muestrales debe ser exactamente

igual a la media poblacional ( ) debido a que la distribución de muestreo

resulta de todas las muestras posibles que se pueden extraer de una

población; por tal razón incluye a todos sus elementos.

Expliquemos lo anterior mediante un pequeño Ejemplo:

Supongamos una población de 5 elementos y los valores que toma la

variable, arbitrarios, ya sean kilómetros, metros, valores, etc.

N = 5; siendo: X1= 7 X2=3 X3=5 X4=8 X5=2 con los anteriores valores

se puede calcular la media, la varianza y desviación típica poblacional.

Ahora determinaremos el número de muestras posibles (M) de

esta población, si el tamaño de la muestra que fijamos arbitrariamente

es 2 y la selección se hace sin repetición.

Las combinaciones que se pueden obtener:

Page 3: Dist Muestrales-Int. de Confianza

X1 X2 X2 X3 X3 X4 X4 X5

X1 X3 X2 X4 X3 X5

X1 X4 X2 X5

X1 X5

Calculemos la media aritmética para cada una de las posibles muestras.

5 4 6,5 5

6 5,5 3,5

7,5 2,5

4,5

La media de todas las medias muestrales será igual a:

Se podrá observar que se cumple el teorema de que la media de

todas las medias muestrales es igual a la media poblacional.

En cuanto a la desviación típica de todas las medias muestrales,

encontramos que:

Pero sabemos que

Page 4: Dist Muestrales-Int. de Confianza

Luego:

En el caso de una selección con repetición se tendrán los

siguientes casos posibles:

M = N2 = 52 = 25

X1 X2 X3 X4 X5

X1 X1 X1 X1 X2 X1 X3 X1 X4 X1 X5

X2 X2 X1 X2 X2 X2 X3 X2 X4 X2 X5

X3 X3 X1 X3 X2 X3 X3 X3 X4 X3 X5

X4 X4 X1 X4 X2 X4 X3 X4 X4 X4 X5

X5 X5 X1 X5 X2 X5 X3 X5 X4 X5 X5

Los resultados serán los mismos, es decir . Es de

anotar que, cuando se hace la selección sin reposición, la población se

hace suficiente, ya que en cada extracción o selección, el elemento o

unidad puede ser nuevamente seleccionado, y así sucesivamente.

TEOREMA CENTRAL DEL LÍMITE:

A medida que n aumenta, la distribución muestral de medias

muestrales se aproxima a una distribución normal con y .

De acuerdo al teorema, la variante estadística para distribución de

medias muestrales será:

Variable tipificada de la distribución muestral.

Page 5: Dist Muestrales-Int. de Confianza

Ejemplo 1: Supongo que de una población Normal se elige una muestra

aleatoria de tamaño 9 con media y desviación típica ¿Cuál

es la probabilidad de que la media muestral sea mayor que 28?

Solución:

= 25

= 6

n = 9

P ( > 28) = ?

Véase la tabla de Z

P (Z > 1,5) = 0,5000 – 0,4332

P (Z > 1,5)=0,0668

En consecuencia, la probabilidad de que una muestra aleatoria de

tamaño 9 tenga una media mayor que 28 es P ( > 28)= 0,00668.

0,4332

25 28

0 1,5ff

Page 6: Dist Muestrales-Int. de Confianza

DISTRIBUCIÓN DE MEDIAS MUESTRALES

1. La altura media de 400 alumnos de un plantel de secundaria es de

1,50 mts. y su desviación típica es de 0,25 mts. Determinar la

probabilidad de que una muestra de 36 alumnos, la media sea

superior a 1,60 mts.

Solución:

2. Si en el ejemplo (1) se considera que dicho plantel de secundaria

tiene un total de N = 400 alumnos, ¿Cuál es la probabilidad, en una

muestra de 36 alumnos, de que la media sea superior a 1,60 mts.?

Solución

0,4940

1,50 1,60

0 2,51

0,0060

X

Z

0,5000

0 1,2

0,4918

0,5000

1,5 1,6

0,0082

XZ

P (Z > 1,2) = 0.5-0.4918 = 0.0082

Page 7: Dist Muestrales-Int. de Confianza

3. Las estaturas de cierto grupo de adultos tienen una media de 167,42

y una desviación estándar de 2,58 centímetros. Si las estaturas

están normalmente distribuidas y se eligen aleatoriamente 25

personas del grupo, ¿Cuál es la probabilidad de que su media sea

de 168,00 centímetros o más?

Solución:

4. Las estaturas de los estudiantes de una universidad se distribuyen

normalmente con media de 170 centímetros y desviación típica de 10

centímetros. Si se toma una muestra de 81 estudiantes, ¿Cuál es la

probabilidad de que tengan una estatura superior a 175 centímetros?

Solución:

0,5000

170 175

0 4,5

0

XZ

0,5000

167,42 1,68

0 1,12

0,1314

X

0,3686

Z

Page 8: Dist Muestrales-Int. de Confianza

5. En un universidad el promedio de calificación, en exámenes de

admisión, ha sido de 3,5 con una desviación típica de 1. ¿Cuál es la

probabilidad, si el examen lo presentan 36 estudiantes, de que

obtengan un promedio mayor de 3,7?

Solución:

DISTRIBUCIÓN MUESTRAL DE UNA PROPORCIÓN

0,3849

3,5 3,7

0 1,2

0,1151

XZ

Page 9: Dist Muestrales-Int. de Confianza

1. Se tiene que el 4% de las piezas producidas por cierta máquina son

defectuosas. ¿cuál es la probabilidad de que en un grupo de 200

piezas, el 3% o más sean defectuosas?

Solución:

Se desea determinar la

b. Con corrección

Si se quiere obtener una buena aproximación a la distribución

normal, debe hacerse la corrección en la variable discreta,

0,03 0,04

0

0,5000

0,26122

P

-0,71

Page 10: Dist Muestrales-Int. de Confianza

siendo igual a Si se va a obtener un área hacia la

derecha, se restará este factor de corrección, en el caso de

que sea a la izquierda, se sumará ese factor al valor de p.

2. Se desea estudiar una muestra de 49 personas para saber la

proporción de los mayores de 40 años, sabiendo que la proporción

en la población es 0,4. ¿Cuál es la probabilidad de que la proporción

en la muestra sea menor de 0,5?

Solución:

0

0,50000,3133

P

-0,89

0,3133

Z 9

0,8Z

Page 11: Dist Muestrales-Int. de Confianza

3. Para elegir presidente de un sindicato, un candidato obtuvo el

46% de los votos. Determinar la probabilidad de que entre 200,

elegidos al azar, de un total de 1000 afiliados, se obtenga la mayoría

de votos para dicho candidato.

P = 0,46 n = 200 (p > 0,50) = ?

a. Sin Corregir:

0,50,4

0

0,5000

0,4236

P

1,43

Page 12: Dist Muestrales-Int. de Confianza

P (Z > 1,14) = 0,5 – 0,3724 = 0,1271

b. Corregido

Z = 1,07

P (z > 1,07) = 0,5 – 0,3577

= 0,1423

P ( Z > 1,07) = 0,1423

4. Cuarenta y seis por ciento de los sindicatos del país están en

contra de comerciar con la China Continental; ¿Cuál es la

probabilidad de que una encuesta a 100 sindicatos muestre que más

del 52% tengan la misma posición?

0,35770,1423

0,46 0,50

0 1,07

0,3729

0,1271

1,14

Page 13: Dist Muestrales-Int. de Confianza

Solución:

P (Z > 1,21) = 0,5000 - 0,3869=0,1131

5. Se ha determinado que el 65% de los estudiantes

universitarios de Lima prefieren los cuadernos marca Profesional.

¿Cuál es la probabilidad de que en una muestra de 100

universitarios de dicha ciudad, encontremos que:

a. Como máximo el 68% sean usuarios de ese tipo de

cuaderno?

b. Exactamente 66% sean usuarios (utilizar medio punto de

porcentaje para los límites)?

Solución: P = 65% n = 100

0,520,46

0

0,38690,1131

P

1,21Z

Page 14: Dist Muestrales-Int. de Confianza

a.

P (Z < 0,63) = 0,5000 + 0,2357 = 0,7357

b. ¿

P (0,11 Z 0,33) = 0,1255 – 0,0438 = 0,0817

0,630

0,5000

0,2357

P

Page 15: Dist Muestrales-Int. de Confianza

0,320,110,0438

0,1255

P

0,0817

0

Page 16: Dist Muestrales-Int. de Confianza

ESTIMACIÓN

El objetivo principal de la estadística Inferencial es la estimación, esto es

que mediante el estudio de una muestra de una población queremos

generalizar nuestras conclusiones al total de la misma.

Los estadísticos varían mucho dentro sus distribuciones muestrales y

mientras menor sea el error estándar de un estadístico, más cercanos serán

sus valores unos de otros.

Como al estimar un parámetro de población desconocido se suele hacer

una afirmación o juicio, el juicio da solamente una estimación. Es un valor

particular obtenido de las observaciones de la muestra. No hay que

confundir este concepto con el de estimador, que se refiere a la regla o

método de estimar un parámetro de población.

Por ejemplo, se dice que es un estimador muestral de un método

para estimar la media de población. El procedimiento de juzgar acerca de

un parámetro de población se llama estimación estadística, que a su vez se

divide en estimación puntual y estimación por intervalos.

Se habla con frecuencia de límites de probabilidad siendo aquellos

(superior e inferior) asignados a un valor estimado, con el objeto de indicar

el intervalo dentro del cual se supone está comprendido el valor verdadero

(parámetro) conforme a algún acuerdo de carácter probabilístico,

generalmente denominado nivel de confianza.

Los límites de confianza son los valores Zs y Zi (también ts y ti) que forman

los extremos superior e inferior respectivamente de los intervalos de

confianza.

Recordemos que en alguna oportunidad se habló de dos tipos de

estimación: puntual y por intervalos. El primero corresponde a un solo

valor o punto que resulta de una investigación por muestreo, como por

ejemplo, la media aritmética, una proporción, una razón, la varianza, etc. Al

Page 17: Dist Muestrales-Int. de Confianza

realizar una muestra se van a obtener conclusiones sobre la población,

mediante la utilización de alguna medida de posición o de dispersión, pero

este valor puede ser igual o diferente al del parámetro. Veámoslo mediante

un ejemplo.

Valores de Zc correspondientes a varios niveles de

confianza.

Ejemplo:

1. El propietario de una pequeña fábrica de artesanías, toma una muestra

aleatoria de la producción semanal de 6 de los 35 empleados, obteniendo

un promedio de 22,5 figuritas, con una desviación estándar de 3,1.

Solución:

Encontramos que el estimador es de 22,5 el cual puede ser igual o diferente

del promedio (parámetro) si tomamos el total de los 35 empleados. Para

muchos es más fácil y más representativo fijar los límites de confianza para

ese estimativo, con la probabilidad que se considere conveniente,

supongamos del 95%. Por lo tanto se tendrán, partiendo de la variante

estadística, los límites de confianza para ese estimativo, con la probabilidad

que sea la más indicada, decíamos anteriormente del 95%. Su fórmula será,

partiendo de la variante estadística:

despejando

25,75

reemplazando:

19,25

Se tendrán dos límites superior = 25,75 e inferior = 19,25. Con estos

resultados se dirá que la producción real semanal por empleado debe estar

Nivel de confianza

99.73% 99% 98% 96% 95% 90%

zc 3.00 2.58 2.05 2.05 1.96 1.645

Page 18: Dist Muestrales-Int. de Confianza

entre 19 y 26 figuras, con una seguridad o confianza del 95%. Observamos

que nos queda un 5% considerado como error, que el número promedio de

figuras por empleado sea superior a 26 o inferior a 19. La media poblacional

deberá estar incluida (en algún punto) dentro del intervalo.

Podría preguntarse ¿por qué se toma 90%, 99% y no el 100% de

confianza?. Se puede responder al interrogante con el anterior ejemplo,

notando que a medida que se aumenta el nivel de confianza, más amplio va

a ser el intervalo, con la cual se obtendría una información menos precisa y

menos útil.

Con los intervalos de confianza puede realizarse pruebas de hipótesis,

teniendo en cuenta que la prueba debe ser siempre bilateral. Si la hipótesis

nula (Ho) se ubica dentro de intervalo, se acepta; en caso contrario, se

aceptará la alternativa (Ha).

FÓRMULAS PARA CADA CASO

A) Distribución de medias muestrales

Con las siguientes fórmulas se pueden determinar los límites de confianza

para cada caso, dependiendo de la desviación típica y del tamaño de la

muestra, son:

a) Cuando se da

se tienen s y n > 30

se tiene s (corregida) y n≤ 30

se tiene (sin corregir) y n ≤ 30

Ejemplos:

1) Una muestra de 50 observaciones tiene una media de 65 y una

desviación estándar de 4,2. Se piden los límites de confianza del

95%.

Page 19: Dist Muestrales-Int. de Confianza

66,16

63,84

63,84 < < 66,16

2) Una muestra de 26 observaciones tiene una media de 65 y una

desviación de 4,2. Se piden los límites de confianza del 95%.

Solución: = 65 = 4,2 n = 26

66,73

63,27

63,27 < < 66,73

95%

63,27 65 66,73

-2,0595 0 2,0595

x

t

0,4750

-1,96 0 1,96

0,0250

Page 20: Dist Muestrales-Int. de Confianza

b) Proporciones

o

Ejemplo:

Una muestra de 100 votantes elegidos al azar entre todos los de

un barrio, indicaba que el 45% de ellos estaban a favor de un candidato.

Hallar los límite de confianza del 95%.

Solución:

0.45 - 1,96

0,35 < P < 0,55

RESÚMEN DEL CAPÍTULO

INTERVALOS DE CONFIANZA PARA MEDIAS (n 30)

I.C.(u):

En el caso de muestreo en una población infinita o si el muestreo es con

reemplazamiento en una población finita.

I.C (u):

Si el muestreo es sin reemplazamiento en una población finita de tamaño N.

En general, la desviación típica poblacional es desconocida, de modo que

para obtener los límites de confianza anteriores, se utiliza la estima muestra

o S.

Intervalos de confianza para Medias. (n < 30)

0,4750

-1,96 0 1,96

0,4750

Page 21: Dist Muestrales-Int. de Confianza

I.C (u):

INTERVALOS DE CONFIANZA PARA PROPORCIONES

I.C. (P): p + q = 1

Para el caso de muestreo en una población infinita o con reemplazamiento en

la población finita.

I.C. (P):

Si el muestreo es sin reemplazamiento en una población finita de

tamaño N.

Ejemplo:Supongamos que las alturas de 100 estudiantes varones de una universidad representan una muestra aleatoria de estudiantes de esa universidad. La media muestral es de 67.45 pulgadas y la desviación estándar muestral es de 2.93 pulgadas. Hallar los intervalos de confianza a) 95% y b)99% para estimar la altura media de los estudiantes.

a)42

Esto significa que 66.88 < µ < 68.02 o en otras palabras podemos decir que la probabilidad de que la altura media de la población esté entre 66.88 y 68.02 pulgadas es del 95%. Equivale a decir que tenemos el 95% de confianza que la media de la población está entre 66.88 y 68.02.

b)

Esto significa que 66.69 < µ < 68.21 o en otras palabras podemos decir que la probabilidad de que la altura media de la población esté entre 66.69 y 68.21 pulgadas es del 99%. Equivale a decir que tenemos el 99% de confianza que la media de la población está entre 66.69 y 68.21.

Page 22: Dist Muestrales-Int. de Confianza

Ejemplo:Un sondeo de 100 votantes elegidos al azar en un distrito indica que el 55% de ellos estaban a favor de un cierto candidato. Hallar los límites de confianza a) 95% b) 99% y c) 99.73% para la proporción de todos los votantes favorables a ese candidato.

a)

b)

c)

7.4 DETERMINACION DEL TAMAÑO DE LA MUESTRA

Cuando se necesita información para realizar estudios con datos estadísticos y no se puede contar un censo, porque es muy caro, o porque demora mucho o no se cuenta con el personal adecuado; entonces será necesario obtener una muestra, ahora. Pero viene la pregunta: ¿cuál será el número adecuado mínimo del tamaño de la muestra? En principio existe todo un proceso para obtener una muestra representativa de la población. Si el método es aleatorio o probabilistico, entonces el número adecuado de los elementos de la muestra, se pueden calcular usando las siguientes fórmulas. 1. CUANDO EL ESTUDIO ES DE CARÁCTER CUALITATIVO (PROPORCION)

a. Cuando se supone que N es muy grande o cuando el muestreo es con reposición:

b. Cuando la población es finita (se conoce N) o el muestro es sin reposición.

Donde:P=Proporción de éxito; que se conoce por estudios anteriores o similares.Q=(1-P). Proporción de fracaso.Z=Valor que se obtiene de la distribución normal, para un nivel de significación a. Generalmente se toma:Z=1.96 para un nivel de confianza del 95%.Z=2.575 para un nivel de confianza del 99%.E=Error de estimación. Valor que lo determina el investigador. Se sugiere valores en torno al 5%.N= Número de los elementos de la población.

Nota:

Page 23: Dist Muestrales-Int. de Confianza

Si no se conoce P, se puede adoptar las siguientes decisiones:i) Tomar una muestra piloto y calcular el valor de P.ii) Considerar el valor de P=0.5, lo cual dará el número de elementos de la

muestra el mayor valor posible.

2. CUANDO EL ESTUDIO ES DE CARÁCTER CUANTITATIVO (MEDIA)a) Cuando no se conoce el tamaño N de la población o éste es infinito:

b) Cuando el tamaño N de la población es finito:

Ejemplos Nº 004

Se van a realizar un gran y desconocido número de ensayos para calibrar la resistencia media a la rotura de un determinado azulejo en una partida de 10 000,000 unidades. Si deseamos cometer un error inferior a 10 kg/cm2, y por ensayos anteriores conocemos que la varianza en la rotura ha sido de 40 (kg/cm2)2, ¿Qué número de ensayos hemos de realizar si hemos decidido trabajar con un nivel de confianza del 95%?

Si suponemos un gran número de ensayos, suponemos, también, que el tamaño muestral es grande, por lo que podemos establecer normalidad. Los datos serian los siguientes: =95%, E2=10 kg/cm2 ,2=40(kg/cm2)2.

Utilizando la fórmula siguiente: , tenemos:

muestras de azulejos.

Ejemplo Nº 005

Para conocer la valoración en forma de porcentaje de aceptación hacia un determinado profesor decidimos encuestar a un determinado número de sus 100 alumnos. Calcular dicho número, si el error que estamos dispuestos a admitir es del más menos 3% y trabajamos con un nivel de confianza del 95%.

Tenemos los siguientes datos:N=100, E=3%, =95%, p=0.5. q=1-p=0.5

Utilizando la fórmula tenemos:

alumnos.

Ejemplo Nº 006

Para conocer la valoración en forma de porcentaje de aceptación hacia un determinado profesor decidimos encuestar a un determinado número de sus 100 alumnos. Calcular dicho número, si el error que estamos dispuestos a admitir es del más menos 3% y trabajamos con un nivel de confianza del 95%.

Page 24: Dist Muestrales-Int. de Confianza

El tamaño de la población es pequeño con =95%, p=0,5 q=1-p=0.5.

Utilizando la fórmula tenemos:

alumnos.

TAMAÑO DE MUESTRA EN POBLACIONES FINITAS

1. Un auditor desea tener un nivel de confianza del 95%, para que la

verdadera proporción de error no exceda del 2%. Si la población es

muy grande, ¿Qué tamaño tendrá la muestra que va a tomarse, si el

auditor estima que la proporción de error es del 5%?

2. ¿Qué tamaño deberá tener una muestra para estimar dentro del 3%,

la proporción de mujeres casadas que van periódicamente a consulta

ginecológica, en una población de 5000 mujeres y una seguridad del

95%?

solución:

3. E = 0,03

N = 5000

= 0,05

1 - = 0,95

P = 0,50

Q = 0,50

Page 25: Dist Muestrales-Int. de Confianza

n 880 mujeres casadas

utilizando la fórmula (1) tendremos:

3. El departamento de tránsito y transporte requiere estimar la proporción

de conductores con experiencia de un año o menos, que puedan

clasificarse como conductores descuidados. ¿De que tamaño deberá

ser la muestra a fin de que los resultados estén dentro de un 2%, con

una confianza del 95%? Se espera observar que aproximadamente ¼

del total de conductores sean descuidados.

Solución

n = 1801

Conductores con experiencias de un año o menos.

Datos:P = 0,25 Q = 0,75E = 0,12Z = 1,96

Page 26: Dist Muestrales-Int. de Confianza

4. Si en el ejercicio anterior se dijera que el número de conductores a

investigar es de 10000, ¿Cuál será el tamaño de la muestra?

Solución

n = 1526

Conductores con experiencia de un año o menos.