Discussion #20 - Exam 2 Review - Educating Global...

91
ECEN 301 Discussion #20 Exam 2 Review 1 Date Day Class No. Title Chapters HW Due date Lab Due date Exam 10 Nov Mon 20 Exam Review LAB 7 EXAM 2 11 Nov Tue 12 Nov Wed 21 Boolean Algebra 13.2 13.3 13 Nov Thu 14 Nov Fri Recitation 15 Nov Sat 16 Nov Sun 17 Nov Mon 22 Combinational Logic 13.3 13.5 LAB 10 18 Nov Tue Schedule…

Transcript of Discussion #20 - Exam 2 Review - Educating Global...

Page 1: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 1

Date Day Class

No.

Title Chapters HW

Due date

Lab

Due date

Exam

10 Nov Mon 20 Exam Review

LAB 7

EXAM 2

11 Nov Tue

12 Nov Wed 21 Boolean Algebra 13.2 – 13.3

13 Nov Thu

14 Nov Fri Recitation

15 Nov Sat

16 Nov Sun

17 Nov Mon 22 Combinational Logic 13.3 – 13.5

LAB 1018 Nov Tue

Schedule…

Page 2: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 2

Ask

Alma 5:26

26 And now behold, I say unto you, my brethren, if ye have experienced a change of heart, and if ye have felt to sing the song of redeeming love, I would ask, can ye feel so now?

Page 3: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 3

Lecture 20 – Exam 2 Review

Chapters 4 – 6, 8

Page 4: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 4

Exam 2

12 – 16 November (Monday – Friday)

Chapters 4 – 6 and 8

15 questions

12 multiple choice (answer on bubble sheet!)

• 1 point each

3 long answer (show your work!)

• 4 or 5 points each

Closed book!

One 3x5 card allowed

Calculators allowed

No time limit

Study lecture slides and homework

Page 5: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 5

Exam 2 Review…Overview

1. Capacitors and Inductors

2. Measuring Signal Strength

3. Phasors

4. Impedance

5. AC RLC Circuits

6. AC Equivalent Circuits

7. DC Transient Response

8. Frequency Response

9. Basic Filters

10. Op-Amps

Page 6: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 6

Capacitors & Inductors

Inductors Capacitors

Passive sign

convention

Voltage

Current

Power

)()(1

)( 00

tidvL

tit

tL

dt

tdiLtv

)()(

+ L –

i

+ C –

i

)()(1

)( 00

tvdiC

tvt

tC

dt

tdvCti

)()(

dt

tditLitPL

)()()(

dt

tdvtCvtPC

)()()(

Page 7: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 7

Capacitors & Inductors

Inductors Capacitors

Energy

An instantaneous change

is not permitted in:

Current Voltage

Will permit an

instantaneous change in:

Voltage Current

With DC source element

acts as a:

Short Circuit Open Circuit

2)(2

1)( tLitWL

2)(2

1)( tCvtWC

Page 8: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 8

Capacitors & Inductors

1. What is the difference between the voltage and current behaviour of capacitors and inductors?

Page 9: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 9

Capacitors & Inductors

0.0

1.0

2.0

3.0

4.0

5.0

0.00 2.00 4.00 6.00

0.0

0.1

0.2

0.3

0.4

0.5

0.00 2.00 4.00 6.00

Capacitor voltage vC(t)

Inductor current iL(t)NB: neither can change instantaneously

Capacitor current iC(t)

Inductor voltage vL(t)NB: both can change instantaneously

1. What is the difference between the voltage and current behaviour of capacitors and inductors?

Page 10: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 10

Capacitors & Inductors

2. find the voltage v(t) for a capacitor C = 0.5F with

the current as shown and v(0) = 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0

time (s)

cu

rren

t (A

)

Page 11: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 11

Capacitors & Inductors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0

time (s)

cu

rren

t (A

)

t

t

tt

ti

20

211

10

00

:intervals 4in i(t)current

)0(1

)(0

vidC

tvt

2. find the voltage v(t) for a capacitor C = 0.5F with

the current as shown and v(0) = 0

Page 12: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 12

Capacitors & Inductors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0

time (s)

cu

rren

t (A

)

tv

tvd

td

tv

t

t

2)2(0

21)1()1(2

1002

00

:intervals 4in v(t)voltage

1

0

)0(1

)(0

vidC

tvt

2. find the voltage v(t) for a capacitor C = 0.5F with

the current as shown and v(0) = 0

Page 13: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 13

Capacitors & Inductors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0

time (s)

cu

rren

t (A

)

t

tt

tt

tv

23

2112

10

00

:intervals 4in v(t)voltage

2

2. find the voltage v(t) for a capacitor C = 0.5F with

the current as shown and v(0) = 0

Page 14: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 14

Capacitors & Inductors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 1.0 2.0 3.0 4.0

time (s)

vo

lta

ge

(V

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0

time (s)

cu

rren

t (A

)

t

tt

tt

tv

23

2112

10

00

:intervals 4in v(t)voltage

2

NB: The final value of the capacitor voltage after

the current source has stopped charging the

capacitor depends on two things:

1. The initial capacitor voltage

2. The history of the capacitor current

2. find the voltage v(t) for a capacitor C = 0.5F with

the current as shown and v(0) = 0

Page 15: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 15

Measuring Signal Strength

3. Compute the rms value of the sinusoidal current

i(t) = I cos(ωt)

Page 16: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 16

Measuring Signal Strength

2

02

1

)2cos(222

1

)2cos(2

1

2

1

2

)(cos2

)(1

2

/2

0

22

/2

0

2

/2

0

22

0

2

I

I

dI

I

dI

dI

diT

iT

rms

Integrating a sinusoidal waveform

over 2 periods equals zero

2

1)2cos()(cos2 t

t

3. Compute the rms value of the sinusoidal current

i(t) = I cos(ωt)

Page 17: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 17

Measuring Signal Strength

2

02

1

)2cos(222

1

)2cos(2

1

2

1

2

)2(cos2

)(1

2

/2

0

22

/2

0

2

/2

0

22

0

2

I

I

dI

I

dI

dI

diT

iT

rms

The RMS value of any sinusoid

signal is always equal to 0.707

times the peak value (regardless of

phase or frequency)

3. Compute the rms value of the sinusoidal current

i(t) = I cos(ωt)

Page 18: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 18

Phasors

4. compute the phasor voltage for the equivalent voltage vs(t)

v1(t) = 15cos(377t+π/4)

v2(t) = 15cos(377t+π/12)

v1(t)+

–~

v2(t)+

–~

vs(t)+

–~

Page 19: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 19

Phasors

v1(t)+

–~

v2(t)+

–~

vs(t)+

–~

1. Write voltages in phasor notation

V

ejV

V

ejV

j

j

1215

15)(

415

15)(

12/

2

4/

1

4. compute the phasor voltage for the equivalent voltage vs(t)

v1(t) = 15cos(377t+π/4)

v2(t) = 15cos(377t+π/12)

Page 20: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 20

Phasors

Vj

jjV

VjV

88.349.14

12sin15

12cos15)(

:rrectangula Convert to

1215)(

2

2

v1(t)+

–~

v2(t)+

–~

vs(t)+

–~

1. Write voltages in phasor notation

2. Convert phasor voltages from polar to

rectangular form (see Appendix A)

Vj

jjV

VjV

61.1061.10

4sin15

4cos15)(

:rrectangula Convert to

415)(

1

1

4. compute the phasor voltage for the equivalent voltage vs(t)

v1(t) = 15cos(377t+π/4)

v2(t) = 15cos(377t+π/12)

Page 21: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 21

Phasors

v1(t)+

–~

v2(t)+

–~

vs(t)+

–~

1. Write voltages in phasor notation

2. Convert phasor voltages from polar to

rectangular form (see Appendix A)

3. Combine voltages

49.1410.25

)()()( 21

j

jVjVjVS

4. compute the phasor voltage for the equivalent voltage vs(t)

v1(t) = 15cos(377t+π/4)

v2(t) = 15cos(377t+π/12)

Page 22: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 22

Phasors

v1(t)+

–~

v2(t)+

–~

vs(t)+

–~

1. Write voltages in phasor notation

2. Convert phasor voltages from polar to

rectangular form (see Appendix A)

3. Combine voltages

4. Convert rectangular back to polar

698.28)(

6

10.25

49.14tan

98.28

(14.49)(25.10) r

:polar toConvert

49.1410.25)(

1

22

jV

jjV

S

S

4. compute the phasor voltage for the equivalent voltage vs(t)

v1(t) = 15cos(377t+π/4)

v2(t) = 15cos(377t+π/12)

Page 23: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 23

Phasors

v1(t)+

–~

v2(t)+

–~

vs(t)+

–~

1. Write voltages in phasor notation

2. Convert phasor voltages from polar to

rectangular form (see Appendix A)

3. Combine voltages

4. Convert rectangular back to polar

5. Convert from phasor to time domain

6377cos98.28)(

698.28)(

ttv

jV

S

S

Bring ωt back

NB: the answer is NOT

simply the addition of

the amplitudes of v1(t)

and v2(t) (i.e. 15 + 15),

and the addition of their

phases (i.e. π/4 + π/12)

4. compute the phasor voltage for the equivalent voltage vs(t)

v1(t) = 15cos(377t+π/4)

v2(t) = 15cos(377t+π/12)

Page 24: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 24

Phasors

v1(t)+

–~

v2(t)+

–~

vs(t)+

–~

6377cos98.28)(

698.28)(

ttv

jV

S

S

Re

Im

14.49 π/6

25.10

Vs(jω)

4. compute the phasor voltage for the equivalent voltage vs(t)

v1(t) = 15cos(377t+π/4)

v2(t) = 15cos(377t+π/12)

Page 25: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 25

Impedance

Impedance: complex resistance (has no physical significance)

will allow us to use network analysis methods such as node voltage, mesh current, etc.

Capacitors and inductors act as frequency-dependent resistors

vs(t)+

–~ R

+

vR(t)

i(t)

vs(t)+

–~ C

+

vC(t)

i(t)

vs(t)+

–~ L

+

vL(t)

i(t)

Vs(jω)+

–~

+

VZ(jω)

I(jω)

Z

Page 26: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 26

Impedance

LjjZL )(RjZR )(

+

L

+

C

Re

Im

-π/2

π/2R

-1/ωC

ωL

ZR

ZC

ZL

Phasor domain

+

R

CjjZC

1)(

Vs(jω)+

–~

+

VZ(jω)

I(jω)

Z

Impedance of resistors, inductors, and capacitors

Page 27: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 27

Impedance

5. find the equivalent impedance (ZEQ)

ω = 104 rads/s, C = 10uF, R1 = 100Ω, R2 = 50Ω, L = 10mH

ZEQ

R2 C

R1

L

Page 28: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 28

Impedance

ZEQ

R2 C

R1

L

)37.1(81.9

62.992.1

51

50

)50)(1010)(10(1

50

1

)/1(

)/1(

||

64

2

2

2

2

21

j

j

j

CRj

R

CjR

CjR

ZZZ CREQ

5. find the equivalent impedance (ZEQ)

ω = 104 rads/s, C = 10uF, R1 = 100Ω, R2 = 50Ω, L = 10mH

Page 29: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 29

Impedance

723.02.136

38.9092.101

62.992.1)10)(10(100

)37.1(81.9

24

1

11

j

jj

LjR

ZZZZ EQLREQ

ZEQ

R1

L

ZEQ1

)37.1(81.91EQZ

NB: at this frequency (ω) the circuit has an inductive

impedance (reactance or phase is positive)

5. find the equivalent impedance (ZEQ)

ω = 104 rads/s, C = 10uF, R1 = 100Ω, R2 = 50Ω, L = 10mH

Page 30: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 30

AC RLC Circuits

AC Circuit Analysis1. Identify the AC sources and note the excitation

frequency (ω)

2. Convert all sources to the phasor domain

3. Represent each circuit element by its impedance

4. Solve the resulting phasor circuit using network analysis methods

5. Convert from the phasor domain back to the time domain

Page 31: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 31

AC RLC Circuits

6. find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

R1

vs(t)+

–~

R2

L

C

ia(t) ib(t)

Page 32: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 32

AC RLC Circuits

6. find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

R1

vs(t)+

–~

R2

L

C

ia(t) ib(t)

1. Note frequencies of AC sources

Only one AC source - ω = 1500 rad/s

Page 33: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 33

AC RLC Circuits

6. find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

R1

vs(t)+

–~

R2

L

C

ia(t) ib(t)

1. Note frequencies of AC sources

2. Convert to phasor domain

ZR1

Vs(jω)+

–~

ZR2

Ia(jω)

ZL

ZC

Ib(jω)

Page 34: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 34

AC RLC Circuits

6. find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

ZR1

Vs(jω)+

–~

ZR2

Ia(jω)

ZL

ZC

Ib(jω)

1. Note frequencies of AC sources

2. Convert to phasor domain

3. Represent each element by its impedance

100

11 RZR

015015)(

)cos(15)(

j

s

s

ejV

ttv

75

22 RZR

750

)5.0)(1500(

j

j

LjZL

667

)10)(1500(/1

/1

6

j

j

CjZC

Page 35: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 35

AC RLC Circuits

6. find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

0)(

0)(

0)()()(

:bat KVL

2

2

2

RLCbCa

RbLbCba

RLC

ZZZIZI

ZIZIZII

jVjVjV

+ZR1–

Vs(jω)+

–~

+

ZR2

–Ia(jω)

+ZL–

+

ZC

–Ib(jω)

667

750

75

100

2

1

jZ

jZ

Z

Z

C

L

R

R

4. Solve using network analysis

• Mesh current

sCbCRa

sCbaRa

CRs

VZIZZI

VZIIZI

jVjVjV

)(

)(

0)()()(

:aat KVL

1

1

1

Page 36: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 36

AC RLC Circuits

6. find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

0)8375()667( jIjI ba

+ZR1–

Vs(jω)+

–~

+

ZR2

–Ia(jω)

+ZL–

+

ZC

–Ib(jω)

AI

AI

49.1019.0

917.00032.0

2

1

4. Solve using network analysis

• Mesh current

15)667()667100( jIjI ba

Page 37: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 37

AC RLC Circuits

6. find ia(t) and ib(t)

vs(t) = 15cos(1500t)V, R1 = 100Ω, R2 = 75Ω, L = 0.5H, C = 1uF

+ZR1–

Vs(jω)+

–~

+

ZR2

–Ia(jω)

+ZL–

+

ZC

–Ib(jω) mAtti

AI

)917.01500cos(2.3)(

917.00032.0

1

1

5. Convert to Time domain

mAtti

AI

)49.11500cos(19)(

49.1019.0

2

2

Page 38: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 38

AC Equivalent Circuits

Thévenin and Norton equivalent circuits apply in AC analysis

Equivalent voltage/current will be complex and frequency dependent

Load

+

V

I

Source

VT(jω)

+

ZT

Load

+

V

I

IN(jω)

ZN Load

+

V

I

Norton EquivalentThévenin Equivalent

Page 39: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 39

AC Equivalent Circuits

Computation of Thévenin and Norton Impedances: 1. Remove the load (open circuit at load terminal)

2. Zero all independent sources Voltage sources short circuit (v = 0)

Current sources open circuit (i = 0)

3. Compute equivalent impedance across load terminals (with load removed)

NB: same procedure as equivalent resistance

ZL

Z1

Vs(jω)

+

Z3

Z2

Z4

a

b

Z1 Z3

Z2

Z4

a

b

ZT

Page 40: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 40

AC Equivalent Circuits

Computing Thévenin voltage:1. Remove the load (open circuit at load terminals)

2. Define the open-circuit voltage (Voc) across the load terminals

3. Chose a network analysis method to find Voc

node, mesh, superposition, etc.

4. Thévenin voltage VT = Voc

Z1

Vs(jω)

+

Z3

Z2

Z4

a

b

Z1

Vs(jω)

+

Z3

Z2

Z4

a

b

+

VT

NB: same procedure as equivalent resistance

Page 41: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 41

AC Equivalent Circuits

Computing Norton current:1. Replace the load with a short circuit

2. Define the short-circuit current (Isc) across the load terminals

3. Chose a network analysis method to find Isc

node, mesh, superposition, etc.

4. Norton current IN = Isc

Z1

Vs(jω)

+

Z3

Z2

Z4

a

b

Z1

Vs(jω)

+

Z3

Z2

Z4

a

b

IN

NB: same procedure as equivalent resistance

Page 42: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 42

AC Equivalent Circuits

7. find the Thévenin equivalent

ω = 103 Hz, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

Rs

vs(t)+

–~ RL

L

C +

vL

Page 43: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 43

AC Equivalent Circuits

7. find the Thévenin equivalent

ω = 103 Hz, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

Rs

vs(t)+

–~ RL

L

C +

vL

1. Note frequencies of AC sources

Only one AC source - ω = 103 rad/s

Page 44: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 44

AC Equivalent Circuits

7. find the Thévenin equivalent

ω = 103 Hz, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

Rs

vs(t)+

–~ RL

L

C +

vL

1. Note frequencies of AC sources

2. Convert to phasor domain

Zs

ZLD

+

–~

ZL

ZC

Vs(jω)

Page 45: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 45

AC Equivalent Circuits

7. find the Thévenin equivalent

ω = 103 Hz, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

1. Note frequencies of AC sources

2. Convert to phasor domain

3. Find ZT

• Remove load & zero sources

Zs

ZL

ZC

9182.033.82

414.6550

1

)/1()(

)/1)((

||

2

j

LC

LjR

CjLj

CjLjR

ZZZZ

S

S

LCST

Page 46: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 46

AC Equivalent Circuits

7. find the Thévenin equivalent

ω = 103 Hz, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

9182.033.82TZ

1. Note frequencies of AC sources

2. Convert to phasor domain

3. Find ZT

• Remove load & zero sources

4. Find VT(jω)

• Remove load

Zs

+

–~

ZL

ZC

Vs(jω)+

VT(jω)

NB: Since no current flows in the

circuit once the load is removed:

ST VV

Page 47: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 47

AC Equivalent Circuits

7. find the Thévenin equivalent

ω = 103 Hz, Rs = 50Ω, RL = 50Ω, L = 10mH, C = 0.1uF

9182.033.82TZST VV

Zs

ZLD

+

–~

ZL

ZC

Vs(jω)

ZT

+

–~

VT(jω)

ZLD

Page 48: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 48

DC Transient Response

Transient response of a circuit consists of 3 parts:

1. Steady-state response prior to the switching on/off of a DC source

2. Transient response – the circuit adjusts to the DC source

3. Steady-state response following the transient response

R1

R2 Cvs+

t = 0

DC Source

Switch Energy element

Page 49: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 49

Initial condition x(0): DC steady state before a switch is first activated

x(0–): right before the switch is closed

x(0+): right after the switch is closed

Final condition x(∞): DC steady state a long time after a switch is activated

R1

R2

C

vs+

t = 0

R3

R1

R2

C

vs+

t → ∞

R3

Initial condition Final condition

DC Transient Response – DC Steady-State

Page 50: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 50

Remember – capacitor voltages and inductor currents cannot change instantaneously

Capacitor voltages and inductor currents don’t change right before closing and right after closing a switch

)0()0(

)0()0(

LL

CC

ii

vv

DC Transient Response – DC Steady-State

Page 51: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 51

DC Transient Response – DC Steady-State

8. find the initial and final current conditions at the

inductor

is = 10mA

is

t = 0

RLiL

Page 52: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 52

8. find the initial and final current conditions at the

inductor

is = 10mA

is

t = 0

RLiL

1. Initial conditions – assume the

current across the inductor is in

steady-state.

isiL

NB: in DC steady state inductors act like short

circuits, thus no current flows through R

DC Transient Response – DC Steady-State

Page 53: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 53

8. find the initial and final current conditions at the

inductor

is = 10mA 1. Initial conditions – assume the current

across the inductor is in steady-state.

mA

ii sL

10

)0(isiL

DC Transient Response – DC Steady-State

Page 54: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 54

8. find the initial and final current conditions at the

inductor

is = 10mA

is

t = 0

RLiL

1. Initial conditions – assume the current

across the inductor is in steady-state.

2. Throw the switch

NB: inductor current cannot change instantaneously

RLiL

DC Transient Response – DC Steady-State

Page 55: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 55

8. find the initial and final current conditions at the

inductor

is = 10mA

is

t = 0

RLiL

1. Initial conditions – assume the current

across the inductor is in steady-state.

2. Throw the switch

NB: inductor current cannot change instantaneously

R

+

LiL

NB: polarity of R

mA

ii LL

10

)0()0(

DC Transient Response – DC Steady-State

Page 56: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 56

8. find the initial and final current conditions at the

inductor

is = 10mA

is

t = 0

RLiL

1. Initial conditions – assume the current

across the inductor is in steady-state.

2. Throw the switch

3. Final conditions

NB: in DC steady state inductors act like short circuits

AiL 0)(

DC Transient Response – DC Steady-State

Page 57: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 57

DC Transient Response

Solving 1st order transient response:1. Solve the DC steady-state circuit:

Initial condition x(0–): before switching (on/off)

Final condition x(∞): After any transients have died out (t → ∞)

2. Identify x(0+): the circuit initial conditions Capacitors: vC(0+) = vC(0–)

Inductors: iL(0+) = iL(0–)

3. Write a differential equation for the circuit at time t = 0+

Reduce the circuit to its Thévenin or Norton equivalent The energy storage element (capacitor or inductor) is the load

The differential equation will be either in terms of vC(t) or iL(t)

Reduce this equation to standard form

4. Solve for the time constant Capacitive circuits: τ = RTC

Inductive circuits: τ = L/RT

5. Write the complete response in the form: x(t) = x(∞) + [x(0) - x(∞)]e-t/τ

Page 58: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 58

DC Transient Response

9. find vc(t) for all t

vs = 12V, vC(0–) = 5V, R = 1000Ω, C = 470uF

R

Cvs+

t = 0

i(t)

+

vC(t)

Page 59: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 59

9. find vc(t) for all t

vs = 12V, vC(0–) = 5V, R = 1000Ω, C = 470uF

V

vv SC

12

)(

R

Cvs+

t = 0

i(t)

+

vC(t)

1. DC steady-state

a) Initial condition: vC(0)

b) Final condition: vC(∞)

Vvtv CC 5)0()0(

NB: as t → ∞ the capacitor acts like

an open circuit thus vC(∞) = vS

DC Transient Response

Page 60: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 60

9. find vc(t) for all t

vs = 12V, vC(0–) = 5V, R = 1000Ω, C = 470uF

R

Cvs+

t = 0

i(t)

+

vC(t)

2. Circuit initial conditions: vC(0+)

V

vv CC

5

)0()0(

DC Transient Response

Page 61: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 61

9. find vc(t) for all t

vs = 12V, vC(0–) = 5V, R = 1000Ω, C = 470uF

R

Cvs+

t = 0

i(t)

+

vC(t)

3. Write differential equation (already in

Thévenin equivalent) at t = 0

SCC

SCC

CRS

vtvdt

tdvRC

vtvRti

tvtvv

)()(

)()(

0)()(

:KVL

DC Transient Response

Page 62: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 62

9. find vc(t) for all t

vs = 12V, vC(0–) = 5V, R = 1000Ω, C = 470uF

47.0

)10470)(1000( 6

RC

R

Cvs+

t = 0

i(t)

+

vC(t)

4. Find the time constant τ

1SK

12

SvF

DC Transient Response

Page 63: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 63

9. find vc(t) for all t

vs = 12V, vC(0–) = 5V, R = 1000Ω, C = 470uF

R

Cvs+

t = 0

i(t)

+

vC(t)

5. Write the complete response

x(t) = x(∞) + [x(0) - x(∞)]e-t/τ

47.0/

47.0/

/

712

)125(12

)()0()()(

t

t

t

CCCC

e

e

evvvtv

DC Transient Response

Page 64: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 64

Frequency Response

Frequency Response H(jω): a measure of how the

voltage/current/impedance of a load responds to the

voltage/current of a source

)(

)()(

jV

jVjH

S

LV

)(

)()(

jI

jIjH

S

LI

)(

)()(

jI

jVjH

S

LZ

Page 65: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 65

Frequency Response

10. compute the frequency response HV(jω)

R1 = 1kΩ, RL = 10kΩ, C = 10uF

R1

Cvs(t)+

+

RL

Page 66: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 66

Frequency Response

10. compute the frequency response HV(jω)

R1 = 1kΩ, RL = 10kΩ, C = 10uF

R1

Cvs(t)+

+

RL

1. Note frequencies of AC sources

Only one AC source so frequency

response HV(jω) will be the

function of a single frequency

Page 67: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 67

Frequency Response

10. compute the frequency response HV(jω)

R1 = 1kΩ, RL = 10kΩ, C = 10uF

R1

Cvs(t)+

+

RL

1. Note frequencies of AC sources

2. Convert to phasor domain

Z1 = R1

ZLD=RL

ZC=1/jωC

Vs+

–~

Page 68: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 68

Frequency Response

10. compute the frequency response HV(jω)

R1 = 1kΩ, RL = 10kΩ, C = 10uF

1. Note frequencies of AC sources

2. Convert to phasor domain

3. Solve using network analysis

• Thévenin equivalent

Z1 = R1

ZC=1/jωC

CT ZZZ ||1

Page 69: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 69

Frequency Response

10. compute the frequency response HV(jω)

R1 = 1kΩ, RL = 10kΩ, C = 10uF

C

CST

ZZ

ZjVjV

1

)()(

1. Note frequencies of AC sources

2. Convert to phasor domain

3. Solve using network analysis

• Thévenin equivalent

Z1 = R1

+

VT

ZC=1/jωC

Vs+

–~

CT ZZZ ||1

Page 70: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 70

Frequency Response

10. compute the frequency response HV(jω)

R1 = 1kΩ, RL = 10kΩ, C = 10uF

C

CST

ZZ

ZjVjV

1

)()(

1. Note frequencies of AC sources

2. Convert to phasor domain

3. Solve using network analysis

• Thévenin equivalent

4. Find an expression for the load voltage

CT ZZZ ||1

ZT

ZLDVT

+

–~

+

VL

LDC

LD

C

CS

LDT

LDTL

ZZZ

Z

ZZ

ZjV

ZZ

ZjVjV

||)(

)()(

11

Page 71: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 71

Frequency Response

10. compute the frequency response HV(jω)

R1 = 1kΩ, RL = 10kΩ, C = 10uF

5. Find an expression for the frequency

responseZT

ZLDVT

+

–~

+

VL

LDC

LD

C

C

S

LV

ZZZ

Z

ZZ

Z

jV

jVjH

||

)(

)()(

11

Page 72: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 72

Frequency Response

10. compute the frequency response HV(jω)

R1 = 1kΩ, RL = 10kΩ, C = 10uF

5. Find an expression for the frequency

responseZT

ZLDVT

+

–~

+

VL

110arctan

110

100

110

100

)10/(10)10/(11010

)10/(10

||)(

22

53534

54

11

11

j

jj

j

ZZZZZ

ZZ

ZZZ

Z

ZZ

ZjH

CCLD

CLD

LDC

LD

C

CV

Page 73: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 73

Frequency Response

10. compute the frequency response HV(jω)

R1 = 1kΩ, RL = 10kΩ, C = 10uF

2010.0)( jHV

5. Find an expression for the frequency response

• Look at response for low frequencies (ω = 10)

and high frequencies (ω = 10000)

ZT

ZLDVT

+

–~

+

VL

– 110arctan

110

100)(

22jHV

0907.0905.0)( jHV

ω = 10ω = 10000

Page 74: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 74

Basic Filters

Electric circuit filter: attenuates (reduces) or eliminates signals at unwanted frequencies

0.00 . 0 0 10 . 0 0

.

Low-pass

0.00 . 0 0 10 . 0 0

.

High-pass

0.00.00 10.00

.

Band-pass

0.00 . 0 0 10 . 0 0

.

Band-stop

ω ω

ω ω

Page 75: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 75

Basic Filters – Resonant Frequency

Resonant Frequency (ωn): the frequency at which

capacitive impedance and inductive impedance are

equal and opposite (in 2nd order filters)

LCn

1

C

+

vi(t)

+

vo(t)

L

C

+

vi(t)

+

vo(t)

L

Impedances in series Impedances in parallel

Page 76: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 76

Basic Filters – Resonant Frequency

Resonant Frequency (ωn): the frequency at which

capacitive impedance and inductive impedance are

equal and opposite (in 2nd order filters)

0)( jVo

C

LCjZL

+

Vi(jω)

+

Vo(jω)

ZEQ=0C

LCjZC

0

CLEQ ZZZ

Impedances in series

Page 77: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 77

Basic Filters – Resonant Frequency

Resonant Frequency (ωn): the frequency at which

capacitive impedance and inductive impedance are

equal and opposite (in 2nd order filters)

)()( jVjV io

C

LCjZL

+

Vi(jω)

+

Vo(jω)

ZEQ=∞

C

LCjZC

0

/

||

CL

ZZ

ZZ

ZZZ

CL

CL

CLEQ

Impedances in parallel

Page 78: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 78

Basic Filters – Low-Pass Filters

Low-pass Filters: only allow signals under the cutoff frequency (ω0) to pass

)cos()( 1ttvo

0.00 . 0 0 10 . 0 0

.

Low-pass

ω1 ω0 ω2 ω3

)cos(

)cos(

)cos()(

3

2

1

t

t

ttvi

HL(jω)

R

C

+

vi(t)

+

vo(t)

R

C

+

vi(t)

+

vo(t)

L

1st Order

2nd Order

Page 79: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 79

Basic Filters – High-Pass Filters

High-pass Filters: only allow signals above the cutoff frequency (ω0) to pass

)cos()( 3ttvo

)cos(

)cos(

)cos()(

3

2

1

t

t

ttvi

HH(jω)

0.00 . 0 0 10 . 0 0

.

High-pass

ω1 ω0ω2 ω3

+

vi(t)

+

vo(t)

1st Order

RC

R

+

vi(t)

+

vo(t)

2nd Order

C L

Page 80: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 80

Basic Filters – Band-Pass Filters

Band-pass Filters: only allow signals between the passband (ωa to ωb) to pass

)cos()( 2ttvo

)cos(

)cos(

)cos()(

3

2

1

t

t

ttvi

HB(jω)

0.00.00 10.00

.

Band-pass

ω1 ωa ω2 ω3ωb

+

vi(t)

+

vo(t)

2nd Order

RC

L

Page 81: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 81

Basic Filters – Band-Stop Filters

Band-stop Filters: allow signals except those between the stopband (ωa to ωb) to pass

)cos(

)cos()(

3

1

t

ttvo

)cos(

)cos(

)cos()(

3

2

1

t

t

ttvi

HN(jω)

+

vi(t)

+

vo(t)

2nd Order

RC

L

0.00 . 0 0 10 . 0 0

.

Band-stop

ω1 ωa ω2 ω3ωb

Page 82: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 82

Op-Amps – Open-Loop Mode

Open-Loop Model: an ideal op-amp acts like a difference amplifier (a device that amplifies the difference between two input voltages)

++

v+

+

v–

+

vo

io

i2

i1

–vin

+

+

+–

RoutRin

i1

AOLvin

+

vo

vin

+

v–

v+

NB: op-amps have near-infinite input resistance (Rin) and very small output resistance (Rout)

)( vvA

vAv

OL

inOLoAOL – open-loop voltage gain

Page 83: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 83

Op-Amps – Closed-Loop Mode

Circuit Diagram ACL

Inverting

Amplifier

Summing

Amplifier N

n

Sn

n

F

N

n

SnOLno

vR

R

vAv

1

1

+ +

vo

+

–vS

RS

RF

S

S

F

SCLo

vR

R

vAv

+ +

vo

+

+

+

RSn

RS2

RS1

vSn

vS2

vS1

RF

Page 84: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 84

Op-Amps – Closed-Loop Mode

Circuit Diagram ACL

Noninverting

Amplifier

Voltage

Followers

sCLo

v

vAv

S

S

F

SCLo

vR

R

vAv

1

+ +

vo

+

R

RS

RF

vS

+ +

vo

+

Page 85: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 85

Op-Amps – Closed-Loop Mode

Circuit Diagram ACL

Differential

Amplifier12 SS

S

Fo vv

R

Rv

+ +

vo

+

+

RS

RS

RF

RF

v1

v2

Page 86: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 86

Op-Amps – Closed-Loop Mode

Circuit Diagram ACL

Ideal

Integrator

Ideal

Differentiatordt

tdvCRv S

SFo

)(

t

S

FS

o dvCR

v )(1

+ +

vo(t)

+

vS

CS

RF

+ +

vo(t)

+

vS

RS

CF

Page 87: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 87

Op-Amps

11. find an expression for the gain

CF = 1/6 F, R1 = 3Ω, R2 = 2Ω, CS = 1/6 F

+

vo(t)

iin

CF

R2 v+

v–

iF(t)

i2(t)

R1

i1(t) CS

iS(t)

vs(t)

Page 88: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 88

Op-Amps

11. find an expression for the gain

CF = 1/6 F, R1 = 3Ω, R2 = 2Ω, CS = 1/6 F

+

Vo(jω)

Iin

ZF=1/jωCF

Z2 v+

v–

IF(jω)

I2(jω)

Z1

I1(jω)ZS

IS(jω)

Vs(jω)

Node a

Node b

3

1

62

1

2

1

63

1

111111

0

0

:aat KCL

1221

21

21

Soa

S

F

o

F

a

oa

F

aoaS

F

Vj

Vj

V

ZV

ZZV

ZZZV

Z

VV

Z

VV

Z

VV

III

1. Transfer to frequency domain

2. Apply KCL at nodes a and b

NB: v+ = v– and Iin = 0

Page 89: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 89

Op-Amps

11. find an expression for the gain

CF = 1/6 F, R1 = 3Ω, R2 = 2Ω, CS = 1/6 F

+

Vo(jω)

Iin

ZF=1/jωCF

Z2 v+

v–

IF(jω)

I2(jω)

Z1

I1(jω)ZS

IS(jω)

Vs(jω)

Node a

Node b

02

1

62

1

0111

00

0

:bat KCL

22

2

2

jVV

ZZV

ZV

Z

V

Z

VV

III

oa

S

oa

S

ooa

inS

1. Transfer to frequency domain

2. Apply KCL at nodes a and b

Page 90: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 90

Op-Amps

11. find an expression for the gain

CF = 1/6 F, R1 = 3Ω, R2 = 2Ω, CS = 1/6 F

033 jVV oa

+

Vo(jω)

Iin

ZF=1/jωCF

Z2 v+

v–

IF(jω)

I2(jω)

Z1

I1(jω)ZS

IS(jω)

Vs(jω)

1. Transfer to frequency domain

2. Apply KCL at nodes a and b

3. Express Vo in terms of Vs

Soa VjVjV 235

65

62 j

VV S

o

Page 91: Discussion #20 - Exam 2 Review - Educating Global …bmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301_F08...ECEN 301 Discussion #20 –Exam 2 Review 1 ... 15 sin 12 ( ) 15 cos Convert

ECEN 301 Discussion #20 – Exam 2 Review 91

Op-Amps

11. find an expression for the gain

CF = 1/6 F, R1 = 3Ω, R2 = 2Ω, CS = 1/6 F

+

Vo(jω)

Iin

ZF=1/jωCF

Z2 v+

v–

IF(jω)

I2(jω)

Z1

I1(jω)ZS

IS(jω)

Vs(jω)

1. Transfer to frequency domain

2. Apply KCL at nodes a and b

3. Express Vo in terms of VS

4. Find the gain (Vo/VS)

65

62 jV

V

S

o