Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete...

25
EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 1 A/D DSP Discrete Fourier Transform The DFT of a block of N time samples {a n } = {a 0 ,a 1 ,a 2 ,…,a N-1 } is a set of N frequency bins {A m } = {A 0 ,A 1 ,A 2 ,…,A N-1 } where: A m = S n=0 N-1 a n W N mn m = 0,1,2,…,N-1 W N e j2p/N EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 2 A/D DSP Inverse DFT The inverse DFT flips a set of frequency bins {A m } = {A 0 ,A 1 ,A 2 ,…,A N-1 } back to the corresponding time domain samples {a n } = {a 0 ,a 1 ,a 2 ,…,a N-1 }: a n = S m=0 N-1 A m W N - mn n=0,1,2,…,N-1 W N e j2p/N 1 N

Transcript of Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete...

Page 1: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 1A/DDSP

Discrete Fourier TransformThe DFT of a block of N time samples

{an} = {a0,a1,a2,…,aN-1}

is a set of N frequency bins

{Am} = {A0,A1,A2,…,AN-1}

where:

Am = Σn=0

N-1

an WN

mnm = 0,1,2,…,N-1

WN ≡ ej2π/N

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 2A/DDSP

Inverse DFTThe inverse DFT flips a set of frequency bins

{Am} = {A0,A1,A2,…,AN-1} back to the corresponding time domain samples

{an} = {a0,a1,a2,…,aN-1}:

an = Σm=0

N-1

Am WN

- mnn=0,1,2,…,N-1

WN ≡ ej2π/N

1N

Page 2: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 3A/DDSP

DFT Properties

• DFT of N samples spaced T=1/fs seconds:– N bins– Bin m represents frequencies at m * fs/N [Hz]

• DFT resolution:– Proportional to 1/(NT) in [Hz/bin]– NT is total time spent gathering samples

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 4A/DDSP

DFT Properties

• Given that AN-m and Am are complex conjugates,

• For real time sequences, frequency domain magnitudes mirror around fS/2

AN-m = Am*

AN-m= Am

Page 3: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 5A/DDSP

Energy Theorem

Relates energy in the time domain to energy in the frequency domain:

Σn=0

N-1

an2 Σ

m=0

N-1

Am21

N=

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 6A/DDSP

Energy Theorem

Σn=0

N-1

an2 Σ

m=0

N-1

Am21

N=

Σn=0

N-1

an2 Σ

m=0

N-1

Am21

N2=

1N

arms = Σm=0

N-1

Am21

N

Page 4: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 7A/DDSP

• A dc sequence an=adc has only one nonzero term in its DFT:

A0 = Nadc

• A sinewave at the center frequency of bin m has 2 nonzero terms, Am and AN-m, and their magnitudes are the same:

arms = √2N

Am

Am = Narms

√2

Energy Theorem

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 8A/DDSP

• White noise with rms value arms distributes its energy evenly into all frequency bins– If the magnitude in each bin is A,

The Energy Theorem

arms = 1N

NA2 =N

A

A = arms N

Page 5: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 9A/DDSP

DFT Magnitude Plots• Because Am magnitudes are symmetric around fS/2, it

is redundant to plot Am’s for m>N/2

• Usually magnitudes are plotted on a log scale normalized so that a full scale sinewave of rms value aFS yields a peak bin of 0dBFS:

Am (dBFS) = 20 log10

Am

aFS N/2

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 10A/DDSP

Normalized DFTfs = 1e6;fx = 50e3;afs = 1;N = 100;

% time vectort = linspace(0, (N-1)/fs, N);% signaly = afs * cos(2*pi*fx*t);% spectrums = 20 * log10(abs(fft(y)/N/afs*2));% drop redundant halfs = s(1:N/2);% frequency vector (normalized to fs)f = (0:length(s)-1) / N;

0 0.2 0.4 0.6 0.8 1

x 10-4

-1

-0.5

0

0.5

1

Time

Am

plitu

de

0 0.1 0.2 0.3 0.4 0.5-350

-300

-250

-200

-150

-100

-50

0

Frequency [ f / fs ]

Mag

nitu

de [

dB

FS ]

Page 6: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 11A/DDSP

“Another” Example …

This does not look like the spectrum of a sinusoid …

0 1 2 3 4 5

x 10-5

-1

-0.5

0

0.5

1

Time

Sig

nal A

mpl

itude

0 0.1 0.2 0.3 0.4 0.5-50

-40

-30

-20

-10

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 12A/DDSP

DFT Periodicity• The DFT implicitly assumes that

time sample blocks repeat every N samples

• With a non-integral number of periods periods within our observation window, the input yields a huge amplitude/phase discontinuity at the block boundary

• This energy spreads into all frequency bins as “spectral leakage”

• Spectral leakage can be eliminated by either

– An integral number of sinusoids in each block

– Windowing

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10-4

-1

-0.5

0

0.5

1

Time

Sig

nal A

mpl

itude

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10-4

-1

-0.5

0

0.5

1

Time

Sig

nal A

mpl

itude

Page 7: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 13A/DDSP

Spectra

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10-4

-1

-0.5

0

0.5

1

Time

Sig

nal A

mpl

itude

0 0.1 0.2 0.3 0.4 0.5-60

-50

-40

-30

-20

-10

Frequency [ f / fs ]A

mpl

itude

[ d

BF

S ]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10-4

-1

-0.5

0

0.5

1

Time

Sig

nal A

mpl

itude

0 0.1 0.2 0.3 0.4 0.5-400

-300

-200

-100

0

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 14A/DDSP

Integral Number of Periods

fs = 1e6;

% number of full cycles in testcycles = 67;

% power of 2 speeeds up analysis% but make N/cycles non-integer! N = 2^10;

% signal frequencyfx = fs*cycles/N

0 0.1 0.2 0.3 0.4 0.5-350

-300

-250

-200

-150

-100

-50

0

50

Frequency [ f / fs ]

Am

plitu

de [

dB

]

Page 8: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 15A/DDSP

Integral Number of Periods

• Fundamental falls into a single DFT bin

• Noise (here numerical quantization) occupies all other bins

• “Integral number of periods” constrains signal frequency fx

• Alternative: windowing à0 0.1 0.2 0.3 0.4 0.5

-350

-300

-250

-200

-150

-100

-50

0

50

Frequency [ f / fs ]A

mpl

itude

[ d

B ]

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 16A/DDSP

Windowing• Spectral leakage can also be virtually

eliminated by “windowing” time samples prior to the DFT– Windows taper smoothly down to zero at the

beginning and the end of the observation window– Time samples are multiplied by window

coefficients on a sample-by-sample basis

• Windowing sinewaves places the window spectrum at the sinewave frequency– Convolution in frequency

Page 9: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 17A/DDSP

Nuttall Window

• Time samples are multiplied by window coefficients on a sample-by-sample basis

• Multiplication in the time domain corresponds to convolution in the frequency domain 100 200 300 400 500 600 700 800 900 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 18A/DDSP

DFT of Nuttall Window

• Only first 20 bins shown

• Response essentially zero for bins > 5

2 4 6 8 10 12 14 16 18 20

-120

-100

-80

-60

-40

-20

DFT Bin

Nor

mal

ized

Apl

itude

Page 10: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 19A/DDSP

Windowed Data

• The plot on the right shows the signal before and after windowing

• Windowing removes the discontinuity at block boundaries

0 0.2 0.4 0.6 0.8 1

x 10-3

-1

-0.5

0

0.5

1

Time

Sig

nal A

mpl

itude

0 0.2 0.4 0.6 0.8 1

x 10-3

-2

-1

0

1

2

TimeW

indo

wed

Sig

nal A

mpl

itude

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 20A/DDSP

DFT of Windowed Signal

• Spectra of signal before and after windowing

• Window gives ~ 100dB attenuation of sidelobes(use longer window for higher attenuation)

• Signal energy “smeared” over several (approximately 10) bins

0 0.1 0.2 0.3 0.4 0.5-70

-60

-50

-40

-30

-20

-10

0

Frequency [ f / fs ]

Spe

ctru

m n

ot W

indo

wed

[ d

BFS

]

0 0.1 0.2 0.3 0.4 0.5-140

-120

-100

-80

-60

-40

-20

0

Frequency [ f / fs ]

Win

dow

ed S

pect

rum

[ d

BFS

]

Page 11: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 21A/DDSP

Integral Cycles versus Windowing• Integral number of cycles

– Signal energy falls into single DFT bin– Requires careful choice of fx

– Ideal for simulations, usually impractical for measurements

• Windowing– No restrictions on fx and no need to lock it to fsà ideal for measurements

– Signal energy (and harmonics) distributed over several DFT bins

– Requires more datapoints for set accuracy

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 22A/DDSP

Spectral ADC Testing

• ADC with B bits• ±1 full scale input

B = 10;delta = 2/(2^B-1);th = -1+delta/2:delta:1-delta/2;x = sin(…);y = adc(x, th) * delta - 1;

Page 12: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 23A/DDSP

ADC Output Spectrum

• Signal amplitude:– Bin: N * fx/fs + 1

(Matlab arrays start at 1)– A = 0dBFS

• SNR?

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-120

-100

-80

-60

-40

-20

0

Frequency [ f / fs ]A

mpl

itude

[ d

BFS

]

N = 16384 A = 0.0dBFS

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 24A/DDSP

ADC Output Spectrum

• Noise bins: all except signal bin

bx = N*fx/fs + 1;As = 20*log10(s(bx))sn(bx) = 0;An = 10*log10(sum(sn.^2))SNR = As - An

• SNR = 62dB (10 bits)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-120

-100

-80

-60

-40

-20

0

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

N = 16384 A = 0.0dBFS SNR = 62.0dB

Page 13: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 25A/DDSP

Spectral Components• Signal S• DC• Distortion D• Noise N

• Signal-to-noise ratioSNR = S / N

• Signal-to-distortion ratioSDR = S / D

• Signal-to-noise+distortion ratio SNDR = S / (N+D)

• Spurious-free dynamic rangeSFDR

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-120

-100

-80

-60

-40

-20

0

H1 = -76.0dBFS

H2 = -57.8dBFS

H3 = -78.9dBFS

DC = -40.1dBFS

A = -0.0dBFS

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

N = 16384 SNR = 61.9dB SDR = 57.7dB SNDR = 53.5dB SFDR = 57.8dB

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 26A/DDSP

Distortion Components

• At multiples of fx

• Aliasing:– f0 = fx = 0.18 fs– f1 = 2 f0 = 0.36 fs– f2 = 3 f0 = 0.54 fs à 0.46 fs– f3 = 4 f0 = 0.72 fs à 0.28 fs– f4 = 5 f0 = 0.90 fs à 0.10 fs– f5 = 6 f0 = 1.08 fs à 0.08 fs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-120

-100

-80

-60

-40

-20

0

H1 = -76.0dBFS

H2 = -57.8dBFS

H3 = -78.9dBFS

DC = -40.1dBFS

A = -0.0dBFS

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

N = 16384 SNR = 61.9dB SDR = 57.7dB SNDR = 53.5dB SFDR = 57.8dB

Page 14: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 27A/DDSP

Spectrum versus INL, DNL

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45-120

-100

-80

-60

-40

-20

0

H1 = -76.0dBFS

H2 = -57.8dBFS

H3 = -78.5dBFS

DC = -40.1dBFS

A = -0.0dBFS

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

N = 131072 SNR = 61.9dB SDR = 57.7dB SNDR = 53.5dB SFDR = 57.8dB

100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

1.5

2

bin

DN

L [i

n LS

B]

DNL and INL of 10 Bit converter (from converter decision thresholds)

avg=0.0053, std.dev=0.0048, range=0.019

100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

1.5

2

2.5

3

bin

INL

[in

LSB

]

avg=0.21, std.dev=0.75, range=2.1

Good DNL and poor INLsuggests distortion problem

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 28A/DDSP

Noise• At right is the spectrum of

a 10-Bit converter

• SNDR = 47dB –something’s amiss

• Distortion?SDR = 59.9dB – no

• Must be a noise problem, but is it thermal or quantization noise?

0 0.1 0.2 0.3 0.4 0.5-140

-120

-100

-80

-60

-40

-20

0

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

N = 4096 SNR = 49.3dB SDR = 59.9dB SNDR = 47.0dB SFDR = 60.9dB

Page 15: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 29A/DDSP

Noise• At right is the spectrum of a

same 10-Bit converter for fx = fs / 16

• Since fx divides fs, the quantization noise is periodic!

• It falls into the same bins the harmonics would normally occupy

• Hence– SNR à thermal noise– SDR à quantization noise

(apparently the culprit)0 0.1 0.2 0.3 0.4 0.5

-140

-120

-100

-80

-60

-40

-20

0

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

N = 4096 SNR = 65.0dB SDR = 48.4dB SNDR = 47.2dB SFDR = 49.5dB

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 30A/DDSP

Noise• Same converter again

(fx = fs / 16)

• The quantization noise problem has been fixed:SDR = 62dB … for 10bitsCongratulations!

• But apparently the fix causes a thermal noise problem:SNR = 45.5dB

• Another revision(our competitors like this …)

0 0.1 0.2 0.3 0.4 0.5-120

-100

-80

-60

-40

-20

0

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

N = 4096 SNR = 45.5dB SDR = 62.6dB SNDR = 44.3dB SFDR = 65.9dB

Page 16: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 31A/DDSP

Noise• One more time …

(fx = fs / 16)

• The quantization noise is not a major error:SDR = 74dB

• SNR = 56.1dBThis corresponds to Gaussian noise with variance ∆/2 at the converter input … a reasonable design choice 0 0.1 0.2 0.3 0.4 0.5

-140

-120

-100

-80

-60

-40

-20

0

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

N = 4096 SNR = 56.1dB SDR = 73.9dB SNDR = 55.0dB SFDR = 77.5dB

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 32A/DDSP

Noise

• The DNL and INL confirm the good result

• But the INL shows some “bowing” … let’s see if our test masked a distortion problem

100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

1.5

2

bin

DN

L [i

n LS

B]

DNL and INL of 10 Bit converter (from converter decision thresholds)

-0.2 / +0.2 LSB, avg=0.00031, std.dev=0.083, range=0.48

100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

1.5

2

bin

INL

[in

LSB

] -0.3 / +0.2 LSB, avg=-0.039, std.dev=0.071, range=0.47

Page 17: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 33A/DDSP

Noise

• For that we revert to simulating with fs/fx non-integer

• A 3rd harmonic is barely visible

• How can we “lift” it out of the noise?

0 0.1 0.2 0.3 0.4 0.5-140

-120

-100

-80

-60

-40

-20

0

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

N = 4096 SNR = 55.9dB SDR = 76.4dB SNDR = 55.1dB SFDR = 77.3dB

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 34A/DDSP

Noise

• Increasing N, the number of samples (and hence the measurement or simulation time) distributes the noise over more bins

• More bins … less noise power per bin (total noise stays same)

• SFDR = 78dB for 10Bit is acceptable in many applications (e.g. digital imaging)

0 0.1 0.2 0.3 0.4 0.5-150

-100

-50

0

Frequency [ f / fs ]

Am

plitu

de [

dB

FS ]

N = 65536 SNR = 55.9dB SDR = 77.9dB SNDR = 55.2dB SFDR = 78.5dB

Page 18: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 35A/DDSP

Effective Number of Bits

• Is a 10-Bit converter with 55dB SNDR really a 10-Bit converter?

• Effective Number of Bits

Bits8.802.6

76.155dB02.6

dB76.1

=−

=

−=

SNDRENOB

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 36A/DDSP

ADC Applications

Page 19: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 37A/DDSP

Example: AD9235 12Bit / 65MS/s

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 38A/DDSP

AD9235 Spectra

SINAD = SNDR

Page 20: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 39A/DDSP

AD9235 SNR / SFDR

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 40A/DDSP

AD9235 DNL / INL

Page 21: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 41A/DDSP

AD9235 Block Diagram

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 42A/DDSP

AD7677 16Bit / 1MS/s

Page 22: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 43A/DDSP

AD7677 Spectrum

SINAD = SNDR

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 44A/DDSP

AD7677 DNL / INL

Page 23: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 45A/DDSP

AD7677 DC Input

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 46A/DDSP

ADS1254 24Bits / 20kS/s

Page 24: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 47A/DDSP

Recent Nyquist ADC Performance:ISSCC Nyquist ADCsYear paper # lead author power(mW) res SNDR(db) Fs sig BW FOM

2002 10.2 Scholtens 340 6 32dB 1600 660 772001 8.1 Choi 545 6 33dB 1300 650 542001 8.2 Geelen 300 6 36dB 900 450 932000 26.2 Sushihara 400 6 32dB 800 200 202000 26.1 Nagaraj 187 6 35.2dB 700 250 761999 18.5 Tamba 400 6 35dB 500 250 351999 18.6 Yoon 330 6 33dB 500 75 102002 18.2 Lin 0.48 6 33dB 22 11 10232002 10.3 Sushihara 50 7 36.7dB 450 225 3082002 10.1 Poulton 4600 8 38.5dB 4000 2000 372000 2.5 Ming 250 8 46dB 80 20 162002 10.4 Jamal 234 10 57dB 120 60 1822001 8.3 Park 180 10 57dB 100 50 1971999 18.3 Hoogzaad 65 10 57dB 40 20 2282002 10.5 Miyazaki 16 10 54dB 30 15 4701999 18.2 vanderPloeg 195 10 58dB 25 5 201999 18.4 Brandt 75 10 60dB 20 10 1332002 10.6 Kuttner 12 10 55dB 20 10 4682000 2.3 Singer 500 12 70dB 65 32 2022001 8.4 vanderPloeg 295 12 54 25 02000 2.4 Pan 850 12 64dB 50 25 472002 18.4 Kulhalli 30 12 68dB 21 10 8371999 18.1 Erdogan 16 12 71dB 0.125 0.05 112002 18.5 Waltari 715 13 50 25 02000 2.2 Choe 800 13 66dB 40 20 502000 2.1 Moreland 1250 14 75dB 100 25 1122001 8.5 Kelly 340 14 73dB 75 37.5 4932001 8.6 Yu 860 14 40 02000 2.7 Chen 720 14 74dB 20 10 70

All Bandwidths are in MHz, all FOM are 10^9

PBWENOB

FOM×

=

Figure of Merit:

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 48A/DDSP

10-Bit ADC Power

Page 25: Discrete Fourier Transforminst.eecs.berkeley.edu/~n247/sp07/lectures/L13.pdf · DSP Discrete Fourier Transform The DFT of a block of N time samples {a n} = {a 0,a 1,a 2,…,a N-1}

EECS 247 Lecture 13: Spectral Testing © 2002 B. Boser 49A/DDSP

12-Bit ADC Power