Differential Expression of α-Actinins in Masseter Muscle ... · Zucchero TM, Cooper ME, Maher BS,...

3
3/31/2015 1 ACTN3 R577X Genotypes Associate with Class II and Deep Bite Malocclusions Brian M. Zebrick, DDS Temple University Kornberg School of Dentistry Department of Orthodontics May 16, 2015 Kornberg School of Dentistry TEMPLE UNIVERSITY >140 orthognathic surgeries/ year Including mandibular bilateral sagittal split ramus osteotomy “High Throughput” clinic for collection of clinical & biological samples RT-PCR Genotyping Muscle Fiber Type Morpometrics 1. IGF1 Growth pathway So far we have identified 28 significant genetic associations for malocclusion, including: HDAC4, KAT6B, MYO1H, MYO1C, ACTN2, ACTN3, ENPP1, ATP2A2, NUAK1, PPP1CC, RUNX2, GABRA6, CACNA2D1, IL1B, IL1R2, IL6, IL8, CCL2, CCL3, CCL3L3, CCL4, CXCR1 and Nodal Pathway genes Nodal, Lefty, Nodal- modulators Nomo-1, 2, 3, MiR15B/16 and Pitx2. Genotyping & Masseter Gene expression using GWAS candidate genes 2. Nodal Pathway development of skeletal & muscular structures of 1 st Brachial Arch Asymmetric Nodal expression in the node, and signaling in the left Lateral Plate Mesoderm. Medical Physiology & Pathophysiology Essentials & clinical problems 2004 Babu & Roy, 2013 Open Biol. 3(5):130052, 2013 577RR, 577RX= (+) α-actinin-3 577XX= (-) α-actinin-3 ACTN3 Associates with Athleticism and Muscle Size A gene for Speed: The emerging role of α-Actinin-3 in muscle metabolism. Berman & North Physiol 25:2010. Athleticism by R577X Genotype ACTN3 What is the association of ACTN2 and ACTN3 expression and muscloskeletal malocclusion phenotypes in masseter muscle of orthognathic surgery patients? Lateral Cepholograms Class II Deep Normal Open Class III Deep Normal Open

Transcript of Differential Expression of α-Actinins in Masseter Muscle ... · Zucchero TM, Cooper ME, Maher BS,...

3/31/2015

1

ACTN3 R577X Genotypes Associate with Class II and Deep Bite Malocclusions

Brian M. Zebrick, DDS Temple University Kornberg School of Dentistry

Department of Orthodontics May 16, 2015

Kornberg School of Dentistry

TEMPLE UNIVERSITY

>140 orthognathic surgeries/ year • Including mandibular bilateral sagittal split ramus

osteotomy “High Throughput” clinic for collection of clinical & biological samples

RT-PCR Genotyping Muscle Fiber Type Morpometrics

1. IGF1 Growth pathway

So far we have identified 28 significant genetic associations for malocclusion, including: HDAC4, KAT6B, MYO1H, MYO1C, ACTN2, ACTN3, ENPP1, ATP2A2, NUAK1, PPP1CC, RUNX2, GABRA6, CACNA2D1, IL1B, IL1R2, IL6, IL8, CCL2, CCL3, CCL3L3, CCL4, CXCR1 and Nodal Pathway genes Nodal, Lefty, Nodal-modulators Nomo-1, 2, 3, MiR15B/16 and Pitx2.

Genotyping & Masseter Gene expression using GWAS candidate genes

2. Nodal Pathway development of skeletal & muscular structures of 1st Brachial Arch

Asymmetric Nodal expression in the node, and signaling in the left Lateral Plate Mesoderm.

Medical Physiology & Pathophysiology Essentials & clinical problems 2004

Babu & Roy, 2013 Open Biol. 3(5):130052, 2013

577RR, 577RX= (+) α-actinin-3 577XX= (-) α-actinin-3

ACTN3 Associates with Athleticism and Muscle Size

A gene for Speed: The emerging role of α-Actinin-3 in muscle metabolism. Berman & North Physiol 25:2010.

Athleticism by R577X Genotype

ACTN3

What is the association of ACTN2 and ACTN3 expression and muscloskeletal malocclusion phenotypes in masseter

muscle of orthognathic surgery patients?

Lateral Cepholograms

Class II Deep Normal Open

Class III Deep Normal Open

3/31/2015

2

Genotyping

2 SNPs

rs1815739 (the 577X SNP)

rs678397 (no known functional consequences)

Fiber type and RT-PCR analysis of muscle

Immunostaining with antibodies specific for myosin heavy chain (MyHC) isoforms

Type I, type hybrid, type IIA and/or IIX, neonatal, and atrial

Quantification of Actinin mRNA

ACTN2 and ACTN3 were quantified by TaqMan® quantitative real time PCR (qRT-PCR)

Materials and Methods

A) Class III Open Bite (B) Class II Open Bite RR Genotype XX Genotype

ACTN3 Genotypes Have Significant Associations with Differences in Jaw Length and Face Height

Differences in mandibular length by R577X genotype

Zebrick B. et al. 2014:146:603-11

Masseter Muscle Fiber Types Change with ACTN3 Genotypes

(A) Anti-Fast MyHC; (B) Anti-IIA; (C) Anti-Type I; (D) Anti–ACTN3; Bar = 1000μm.

RR Genotype: α-Actinin-3 is in Type II and Hybrid, but not Type I Fibers

XX Genotype: No α-Actinin-3 is in Hybrid or Type II Fibers

Area and Occupancy of Fiber Types by ACTN3 Genotypes

0.043*

Actinin Expression in Masseter Muscle of Orthoganthic Surgery Subjects

ACTN2 ACTN3

Rela

tive Q

uan

tity

0.0

0.5

1.0

1.5

2.0

CC

TC

TT

*

*P = 0.001P = 0.780

TaqMan RT-PCR Quantification

1. ACTN3 expression varied more than ACTN2, with relative amounts of α-actinin-3 decreased in open bite and skeletal Class II.

2. Decreased α-actinin-3 associated with smaller type II fiber diameter.

3. ACTN3 mRNA expression decreased to almost undetectable with 577XX genotype, while ACTN2 expression levels remained unchanged, suggesting α-actinin-2 may not compensate for loss of α-actinin-3.

4. Actn3 knockout mice have significant decreases in bone mineral density. Further, absence of α-actinin-3 in bone resulted in increased expression of Enpp1, a negative regulator of mineralization. These relationships may be important to the development of Class II malocclusions in humans and merit further investigation.

Conclusions The Actn3 Knock Out Mouse: Effects on Bone and Enpp1 Expression

Bone Growth is Decreased In the Actn3-/- Mouse Model

Trabecular Architecture

WT Actn3-/-

Mineral Apposition Rate

WT Actn3-/-

Enpp1 (Ectonucleotide Pyrophosphatase/Phosphodiesterase1)

• Inhibits Mineralization (ectonucleotide pyrophosphatase ephosphodiesterase family)

Enpp1 Expression is Significantly Up-Regulated in Actn3-/- Mice

Bone Volume & Trabecular Number are Reduced

Mineral Apposition Rate is Lower

From:Yang et al., Bone 2011;49:790-798.

Symbol Illumina* KO vs WT

TaqMan KO vs WT TaqMan p-value

Enpp1 1.45 1.66 0.02

*Osteoblast Microarrays

3/31/2015

3

Future Directions Actn3 KO Reductions in Mandibular Length

Skull Jaw Length Nasal Inter-orbital

ACTN3-/- Length Width Height Mandible

Maxilla Length Width

n=2 Mean 25.60 11.10 11.85 11.70 13.15 16.85 7.20

SD 0.42 0 0.21 0 0.21 0.78 0.57

ACTN3+/+ Mean 25.40 11.00 11.85 12.25 13.30 16.55 6.98

n=4 SD 0.69 0.67 0.43 0.33 0.55 0.70 0.17

Δ 0.20 0.10 0 -0.55 -0.15 0.30 0.22

p 0.73 0.85 1.00 0.09 0.55 0.65 0.44

KO WT

Future Directions: Gene microarray comparing mandibular gene expression in Actn3 KO, The GIANT Consortium GWAS as a priori genes of interest

Personalized Medicine Approach

Salivary Tests

More Personalized and Specific Treatment Plans

Optimized Results

Future Directions

1. Sciote JJ, Raoul G, Ferri J, Close J, Horton MJ, Rowlerson A. Masseter Function and Skeletal Malocclusion. Rev Stomato Chiru Maxillo-fac 2013;114:79-85.

2. Ringquvist M. Fiber types in human masticatory muscles. Relation to function. Eur J Oral Sci 1974;82:333-335. 3. Sciote JJ, Horton MJ Rowlerson AM, Ferri J, Close J, Raoul G. Human masseter, malocclusions and muscle growth factor expression. J Oral Maxillofac Surg

2012;70:440-448. 4. Gregor C, Hietschold V, Harzer W. A 31P-magnet resonance spectroscopy study on the metabolism of human masseter in individuals with different vertical facial

pattern. Oral Surg Oral Med Oral Pathol Oral Radiol 2013;115:406-414. 5. Karaderi T, Oskolkov N, Ladenvall C, Keildson S, Mahajan A, Lind L, et al. Genome-wide association analysis of skeletal muscle fiber types. (Abstract/Program

#907). Presented at the 63rd Annual Meeting of The American Society of Human Genetics, October 23, 2013 in Boston, MA. 6. Bray MS, Hagberg JM, Perusse L, Tankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes:

The 2006-2007 update. Med Sci Sports Exerc 2008;41:34-72. 7. Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol 2990;578:3-22. 8. Ahmetov II, Vinogradova OL, Williams AG. Gene polymorphisms and fiber-type composition of human skeletal muscle. Int J Sport Nut Exer Metab 2012;

22(4):292-303.

9. K. Miyamoto, Y. Ishizuka, K. Tanne. Changes in masseter muscle activity during orthodontic treatment evaluated by a 24-hour EMG system. Angle Orthod 1996; 66:223-228.

10. J.R.C. Mew. The postural basis of malocclusion: A philosophical overview Am J Orthod Dentofac Orthop 2004;126:729-738. 11. Vincent B, DeBock K, Ramaekers M, Van den Eede E, Van Leemputte V, Hesper P, et al. ACTN3 (R577X) genotype is associated with fiber type distribution.

Physiol Genomics 32: 58–63, 2007. 12. North KN, Beggs AH. Deficiency of a skeletal muscle isoform of α-actinin (α-Actinin-3) in merosin-positive congenital muscular dystrophy. Neuromusc Disord

1996;6(4):229-235. 13. Beggs AH, Byers TJ, Knoll JHM, Boyce FM, Bruns GAP, Kunkel LM. Cloning and characterization of two human skeletal muscle α-actinin genes located on

chromosomes 1 and 11. J Biol Chem 1992;267(13):9281-9288. 14. North KN, Yang N, Wattanasirichaigoon D, Mills M, Easton S, Beggs AH. A common nonsense mutation results in α-actinin-3 deficiency in the general population.

Nature Genet 1999;21:353-354. 15. Mills MA, Yang N, Weinberger RP, Vander Woude DL, Beggs AH, Easteal S, et al. Differential expression of the actin-binding proteins, α-actinin-2 and -3, in

different species: implications for the evolution of functional redundancy. Hum Mol Genet 2001;10(13):1335-1346. 16. Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet

2003;73:627-631.

References 17. Alfred T, Ben-Shiomo Y, Cooper R, Hardy R, Cooper C, Deary IJ, et al. ACTN3 genotype, athletic status, and life course physical capability: Meta-analysis of the published literature and

findings from nine studies. Hum Mut 2011;32:1008-1018. 18. Frey N, Olson EN. Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple z-disc proteins. J Biol Chem 2002;277:13998-14004. 19. Swoap SJ, Hunter RB, Stevenson EJ, Felton HM, Kansagra NV, Lang JM, et al., The calcineurin-NFAT pathway and muscle fiber-type gene expression. Am J Physiol Cell Physiol

2000;279(4):C915-24. 20. Ahmetov II, Druzhevskaya AM, Lyubaeva EV, Popov DV, Vinogradova OL, Williams AG. The dependence of preferred competitive racing distance on muscle fibre type composition and

ACTN3 genotype in speed skaters. Exp Physiol 2001;96:1302-1310. 21. Zucchero TM, Cooper ME, Maher BS, Daak-Hirsch S, Nepomuceno B, Ribeirs L, et al. interferon Regulatory Factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate. New

Eng J Med 2004;351:769-780. 22. Sciote JJ, Rowlerson A. Skeletal fiber types and spindle distribution in limb and jaw muscles of the adult and neonatal opossum, Monodelphis domestica. Anat Rec 1998;251:548-562. 23. Sciote JJ, Rowlerson AM, Hopper C, Hunt NP. A fiber type classification scheme for the human masseter muscle. J Neurol Sci 1994;126:15-24. 24. Horton MJ, Rosen C, Close JM, Sciote JJ. Quantification of myosin heavy chain RNA in human laryngeal muscles: differential expression in the vertical and horizontal posterior

cricoarytenoid and thyroarytenoid. Laryngoscope 2008;118:472-477. 25. Berman Y, North KN. A gene for speed: The emerging role of α-Actinin-3 in muscle metabolism. Physiol 2010;25:250-259. 26. Yang N, Schindeler A, McDonald MM, Seto JT, Houweling PJ, Monkol L, et al. α-Actinin-3 deficiency is associated with reduced bone mass in human and mouse. Bone 2011;49:790-798. 27. Mackenzie NCW, Huesa C, Rutsch F, MacRae VE. New insights intoE NPP1 function: Lessons from clinical and animal studies. Bone 2012;51(5):961-968. 28. Ermakov S, Toliat MR, Cohen Z, Malkin I, Altmuller J, Livshits G, et al. Association of ALPL and ENPP1 gene polymorphisms with bone strength related skeletal traits in a Chuvashian

population. Bone 2010;46:1244-1250. 29. Cheung C-L, Livshits G, Zhou Y, Meigs JB, McAteer JB, Florez JC, et al. Hip geometry variation is associated with bone mineralization pathway gene varants: The Framingham Study. J

Bone Min Res 2010;25(7):1564-1571. 30. Ermakov S, Rosenbaum MG, Malkin I, Livshits G. Family-based study of association between ENPP1 genetic variants and craniofacial morphology. Ann Hum Biol 2010;37(6):754-766. 31. Friedlander SM, Herrmann AL, Lowry DP, Mepham ER, Lek M, North KN et al. ACTN3 allele frequency in humans covaries with global latitudinal gradient. PLOS ONE 2013;8(1):e52282. 32. Kato k, Nishimasu H, Okudaira S, Mihara E, Ishitani R, Takagi J, et al. Crystal structure of Enpp1, an extracellular glycoprotein involved in bone mineralization and insulin signaling. Proc

Nat Acad Sci 2012;109(42):16876-16881. 33. Maddux BA, Chang Y-N, Accili D, McGuinness OP, Youngren JF, Goldfine ID. Overexpression of the insulin receptor inhibitor PC-1/ENPP1 induces insulin resistance and hyperglycemia. Am

J Physiol Endocrin Metab 2006 290:E746-E749. 34. Oberbach A, Bossen Y, Lehmann S, Niebauer J, Adams V, Paschke R et al. Altered fiber distribution and fiber specific glycolytic and oxidative enzyme activity is skeletal muscle of

pateints with type 2 diabetes. Diabetes Care 2006;29(4):895-900. 35. Arnay Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Op genet Disease 2008;18:426-434.

References

Acknowledgements

James Sciote

Michael Horton

Teesit Teeramongkolgul

James Cavalancia

Jeffrey Godel

Alex Vieira

Pf. Joel Ferri

Pf. Gwenael Raoul

Resident:

Romain Nicot

Pf. Kathryn North

THANK YOU!